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Abstract

Using the Zsigmondy’s theorem is not allowed on a large share of competitions of
diverse levels, from the regional ones to the worldwide, such as IMO. The reason of this
tendency lies in a highly complex proof of the theorem, which transcends the scope of
the high school math. However, there is a simplified version of the given theorem, which
is still useful and handy. In this article, we are going to present it together with a proof.
At the very end, there is a list of problems, which the given version aids to solve.

Let P (m) be the set of prime divisors of m. The Weak Zsigmondy’s theorem proves
that for k < n, P (ak − bk) ̸= P (an − bn) for positive integers a and b (with some excep-
tions), without proving the existence of a primitive prime divisor of an − bn. Instead, we
prove this solely by inequalities, modular arithmetic, and divisibility.

Introduction

Some facts and notations that will be used further throughout the paper:

• (a, b) is the greatest common divisor of a and b.

• orda(n) is the order of n modulo a. In other words, it is the least positive integer k such
that nk ≡ 1 (mod a).

• Let a, b, n,m be positive integers. If (n,m) = d, then

(an − bn, am − bm) = ad − bd (1)

• For any non-negative x, the following inequality holds

3x ≥ x+ 1 (2)

(Actually ex ≥ x+ 1.)

• If x, y are positive real numbers and x > y, then

xn − yn ≥ (x− y)n ∀n ∈ N (3)

• Lifting the Exponent (LTE)[3]: Let p be a prime number and let νp(n) be the
exponent of p in the prime factorization of n. If a, b ∈ Z and a ≡ b ̸≡ 0 (mod p), then

1. νp (a
n − bn) = νp(n) + νp(a− b), if p > 2;

2. ν2 (a
n − bn) = ν2(n) + ν2(a− b), if p = 2 and 4 | a− b;

3. ν2 (a
n − bn) = ν2(n) + ν2(a− b) + ν2(a+ b)− 1, if p = 2, n is even.
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The theorem and its weaker version

Zsigmondy’s theorem.[4]

For any pair of co-prime positive integers a > b ≥ 1 and any positive integer n > 1 there
exists a prime number p, such that p | an − bn, but p ∤ ak − bk for any positive integer k < n.
Exceptions:

• n = 2, a+ b = 2m, m ≥ 2;

• n = 6, a = 2, b = 1.

Weak Zsigmondy’s theorem.

For any pair of co-prime positive integers a > b ≥ 1 and any pair of positive integers n > k ≥ 1
there exists a prime number p such that p | an − bn, but p ∤ ak − bk. Exceptions:

• n = 2, a+ b = 2m, m ≥ 2.

The proof is split into two sections – Main lemma and the completion of the proof.

Proof of the weak version

Main lemma

For any pair of co-prime positive integers a > b ≥ 1 and any n > 1 there exists prime p such
that p | an − bn, but p ∤ a− b. Exceptions:

• n = 2, a+ b = 2m,m ≥ 2

Proof. Clearly, the case n = 2, a + b = 2m,m ≥ 2 is an exception. Now we suppose that the
statement of Main lemma is not true. Suppose that a − b and an − bn have the same sets of
prime divisors. In other words, in canonical forms a − b = 2αpα1

1 pα2
2 . . . pαt

t , and an − bn =
2βpβ1

1 pβ2

2 . . . pβt
t . Notice that αi ≤ βi for any 1 ≤ i ≤ t as a − b | an − bn. We consider two

cases:

1. n is odd

2. n is even

Case 1.1. n is odd.

Notice that 2 ∤ a− b =⇒ 2 ∤ an− bn. On the other hand, if 2 | a− b, from the expansion

(an − bn) = (a− b)(an−1 + . . .+ bn−1),

we get that
ν2(a

n − bn) = ν2(a− b),

as an−1+ . . .+ bn−1 is an odd number. So, in both cases ν2(a
n− bn) = ν2(a− b) = α = β. Also

from LTE:

νpi (a
n − bn) = νpi(a− b) + νpi(n) ⇐⇒ νpi(n) = βi − αi ∀1 ≤ i ≤ t.
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Hence,

n ≥ pβ1−α1

1 pβ2−α2

2 . . . pβt−αt
t =

t∏
i=1

pβi−αi

i = d. (4)

At this point the value of n seems very large, so we use inequalities. We know that n ≥ 3, so
from (2)

an − bn ≥ a3 − b3 > (a− b)3.

Therefore, there exists 1 ≤ l ≤ t such that βl > 3αl ≥ αl. Now, we prove that αip
βi−αi

i ≥ βi.

αip
βi−αi

i ≥ βi ⇐⇒ αi

(
pβi−αi

i − 1
)
≥ βi − αi.

But this is true, because from (2) and αi ≥ 1 we get:

αi

(
pβi−αi

i − 1
)
≥ pβi−αi

i − 1 ≥ 3βi−αi − 1 ≥ βi − αi ∀i : 1 ≤ i ≤ t.

However, from βl > αl we deduce that 3βl−αl − 1 > βl − αl, meaning that we got a strict
inequality. That is why αip

βi−αi

i ≥ βi for any 1 ≤ i ≤ t, and αlp
βl−αl

l > βl. These facts
combined with (4) and (3) give us

2βpβ1

1 pβ2

2 . . . pβt
t = an − bn ≥ (a− b)n ≥ (a− b)d =

= 2αd
t∏

i=1

pαid
i ≥ 2α

t∏
i=1

p
αip

βi−αi
i

i > 2βpβ1

1 pβ2

2 . . . pβt
t ,

a contradiction.

This is the backbone of the proof as the rest of it consists of a simple case work and the direct
application of the Case 1.1.

Case 1.2. n is even.

Let n = 2sn1, and (n1, 2) = 1. There are two possible cases:

Case 1.2.1. n1 > 1.

Then an1 − bn1 | an − bn. From Case 1.1

∃ p : p | an1 − bn1 | an − bn, p ∤ a− b,

leading to a contradiction.

Case 1.2.2. n1 = 1, s ≥ 2.

If a − b ̸= 2k for some positive integer k, then as (a − b, a + b) = (2b, a − b) = (2, a + b) ≤ 2
there exists a prime p | a+ b | a2s − b2

s
, p ∤ (a− b). A contradiction.

Therefore, it remains to consider a− b = 2k for some positive integer k. Since s ≥ 2,

a2
s − b2

s ≡ 0 (mod a4 − b4).

Also we know that (a− b, a+ b) = (a+ b, a2 + b2) = (a2 + b2, a− b) = 2.
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Clearly, a2+ b2 > a+ b > 2, so a+ b and a2+ b2 cannot be both some powers of 2. Thus, there
exists prime p,

p | (a+ b)(a2 + b2) | a2s − b2
s

, p ∤ a− b.

Which is a contradiction.

We got contradictions in both cases (n is even and n is odd) – that’s why the statement of
Main lemma is true.

Completion of the proof

Now we finish the proof of the Weak Zsigmondy’s theorem. As before, we have an exception
when n = 2, a+ b = 2m. We consider the other cases. There are three major cases:

1. (n, k) = k > 1;

2. (n, k) = 1;

3. (n, k) = d, 1 < d < k.

Case 2.1. (n, k) = k > 1.

Let a1 := ak, b1 := bk, n := kn1. From Main lemma

∃ p : p | an1
1 − bn1

1 = an − bn, p ∤ a1 − b1 = ak − bk,

which is a contradiction except for the case when n1 = 2, ak + bk = 2m,m ≥ 2. Now we prove
that this case is impossible.

Since a and b are relatively prime, a ≡ b ≡ 1 (mod 2). By looking at ak + bk modulo 4, we get
that k is odd. This means that a+ b ≡ 0 (mod 4), which is why according to LTE

m = ν2
(
ak + bk

)
= ν2(a+ b) + ν2(k) = ν2(a+ b).

But that is impossible, because ak + bk > a+ b and ak + bk ≡ 0 (mod a+ b).

Case 2.2. (n, k) = 1.

According to Main lemma we can find a prime p such that

p | an − bn, p ∤ a− b.

Then p ∤ ak − bk, because
(
an − bn, ak − bk

)
= a− b, which is not divisible by p.

Case 2.3: (n, k) = d, 1 < d < k.

Let a1 = ad, b1 = bd, n1 =
n
d
, k1 =

k
d
. From Main lemma, Case 2.1, and Case 2.2

∃ p : p | an1
1 − bn1

1 = an − bn, p ∤ a1 − b1 =⇒ p ∤ ak11 − bk11 = ak − bk.

All three cases lead to contradictions. This concludes the proof of the Weak Zsigmondy’s
theorem.
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Example problems

Despite the fact that the weak version is not as strong as the original Zsigmondy’s theorem,
it is still of great use for solving several problems of olympiad math level. Below are several
examples.

Example 1.

(IMO shortlist 1997) Let q,m, n be positive integers such that q > 1 and m ̸= n. Prove that if
qm − 1 and qn − 1 have the same prime divisors, then q + 1 is a power of 2.

Proof. This is a special special case of the Weak Zsigmondy’s Theorem, where a = q, b = 1.
We know that this might be possible only when q + 1 = 2r for r ≥ 2.

Example 2.

Prove that there are no triples (a, b, c) of positive integers such that for any n ≥ 1:

an − bn | cn

Proof. Suppose that c = pα1
1 . . . pαk

k . Then all prime divisors of an − bn belong to the set
{p1, . . . , pk}. But the Weak Zsigmondy’s theorem contradicts that.

Example 3.

For prime numbers p and q there exist positive integers m and n such that:

(a) 1 + q + · · ·+ qn is a power of p,

(b) 1 + p+ · · ·+ pm is a power of q.

Prove that either p or q equals to 2.

Proof. Suppose that q > 2 and p > 2, then from (a) and (b) we get that n+1 and m+1 must
be odd. Let qn+1 − 1 = (q − 1)pα and pm+1 − 1 = (p− 1)qβ.

Claim 1. n+ 1 and m+ 1 are prime numbers.

Assume that there is a positive integer d such that d | n+ 1, then

q − 1 | qd − 1 | qn+1 − 1 =⇒ qd − 1 = (q − 1)pγ

for some positive integer γ.

But, according to the Weak Zsigmondy’s theorem, qn+1 − 1 has a prime divisor that doesn’t
divide qd − 1, hence we got a contradiction, and n + 1 must be prime. Analogously, m + 1 is
prime.

Claim 2. α ≡ 0 (mod n+ 1) and β ≡ 0 (mod m+ 1).
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Let k = ordp(q). Since n+ 1 ≡ 0 (mod k), either k = 1 or k = n+ 1. If k = 1, then q − 1 ≡ 0
(mod p), but LTE gives

νp
(
qn+1 − 1

)
= νp(q − 1) + νp(n+ 1) = νp(q − 1) + α > νp(q − 1).

Hence p | n+1 =⇒ n+1 = p, α = 1 =⇒ q3− 1 ≤ qp− 1 = (q− 1)p ≤ (q− 1)2, which is not
true. That’s why k ̸= 1, so k = n + 1 and notice that qβ ≡ 1 (mod p), hence n + 1 = k | β.
Likewise, it can be proven that m+ 1 | α.

The divisibility implies that β ≥ n+ 1 and α ≥ m+ 1, but then(
qn+1 − 1

) (
pm+1 − 1

)
= (q − 1)(p− 1)pαqβ ≥ (q − 1)(p− 1)pn+1qm+1,

which is impossible. So either p or q equals to 2.
(Example: p = 2, q = 7, n = 1,m = 2.)

Practice problems

Main problem. For any pair of co-prime nonzero integers a > b (note: a and be might
negative) and any pair of positive integers n > k ≥ 1 there exists prime number p, such that
p | an + bn, but p ∤ ak + bk. Exceptions:

• n = 3, a = 2, b = 1.

(Note: Solution needs some not too difficult modifications.)

Problem 1. (IMO 2000 shortlist) Find all triplets of positive integers (a,m, n) such that
am + 1 | (a+ 1)n.

Problem 2. ([5]) Let A be a finite set of prime numbers and let a be an integer greater than
1. Prove that there are only finitely many positive integers n such that all prime factors of
an − 1 are in A.

Problem 3. Prove that the sequence an = 3n − 2n contains no three numbers in geometric
progression.

Problem 4. (Balkan MO 2009) Solve the equation 3x − 5y = z2 in positive integers.

Problem 5. Find all solutions of the equation x2009 + y2009 = 7z for x, y, z positive inte-
gers.

Problem 6. (IMO shortlist 2000) Does there exist a positive integer n such that n has exactly
2000 prime divisors and n divides 2n + 1?

Problem 7. (IZhO 2017) For each positive integer k denote C(k) to be sum of its distinct
prime divisors. For example C(1) = 0, C(2) = 2, C(45) = 8. Find all positive integers n for
which C(2n + 1) = C(n).
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