
The 1st Gulf Physics Olympiad — Theoretical Competition
Riyadh, Saudi Arabia — Monday, March 21st 2016

• The examination lasts for 5 hours. There are 3 problems
worth in total 30 points. Please note that the point
values of the three theoretical problems are not
equal.

• You must not open the envelope with the prob-
lems before the signal of the beginning of compet-
ition.

• You are not allowed to leave your working place
without permission. If you need any assistance
(broken calculator, need to visit a restroom, etc), please
raise your hand until an organizer arrives.

• Use only the front side of the sheets of paper.

• For each problem, there are dedicated Solution Sheets
(see header for the number and pictogram). Write your
solutions onto the appropriate Solution Sheets. For each
Problem, the Solution Sheets are numbered; use the
sheets according to the enumeration. Always mark
which Problem Part and Question you are deal-
ing with. Copy the final answers into the appropriate

boxes of the Answer Sheets. There are also Draft pa-
pers; use these for writing things which you don’t want
to be graded. If you have written something that you
don’t want to be graded onto the Solution Sheets (such
as initial and incorrect solutions), cross these out.

• If you need more paper for a certain problem, please raise
your hand and tell an organizer the problem number; you
are given two Solution sheets (you can do this more than
once).

• You should use as little text as possible: try to
explain your solution mainly with equations, numbers,
symbols and diagrams. Though in some places textual
explanation may be unavoidable.

• After the signal signifying the end of examination
you must stop writing immediately. Put all the pa-
pers into the envelope at your desk. You are not al-
lowed to take any sheet of paper out of the room.
If you have finished solving before the final sound signal,
please raise your hand.

— page 1 of 5 —



Problem T1. Stabilizing unstable states
(11 points)
Part A. Stabilization via feedback (3.5 points)
Let us study, how an initially unstable equi-
librium position can be stabilized. First we
consider a reversed pendulum: a thin long
rod of homogeneous mass distribution and
length l is fixed at its lowest point to a hinge
so that it can freely rotate around the hinge.
We describe the position of the rod via the
angle φ between the rod and a vertical line.
We shall assume that φ ≪ 1 (φ is much
smaller than 1). The free fall acceleration
g = 9.8 m/s2.
i. (1.5 pts) Express the angular acceleration of the rod φ̈

in terms of φ, and the parameters l and g. Show that the
inclination angle φ as a function of time t is expressed as
φ(t) = Aet/τ + Be−t/τ , where A and B are constants which
depend on the initial position and initial angular speed of the
rod, and τ is a characteristic time. Express τ in terms of l and
g. (You may use dimensional analysis, but then you’ll lose 0.5
pts.) Hint: for a rod of length l and mass m, the moment of
inertia with respect to its endpoint is 1

3 ml2.
ii. (0.5 pts) Now, a boy tries to keep a long thin rod standing
vertically on his palm. For instance, as soon as the rod starts
falling leftwards, he moves his palm to an even greater distance
leftwards so that the rod’s centre of gravity would be positioned
rightwards from the rod’s support point. Then, the torque of
the gravity force would rotate the rod rightwards, decreasing
the previously observed leftwards angular speed. Estimate, for
which rod lengths the boy can keep the rod vertically if his
reaction time is estimated as τr = 0.2 s. (The reaction time is
the time lag between the command sent by brain to hands, and
the corresponding motion of the hands.)
iii. (0.5 pts) Humans and birds keep their standing position
similarly and move the support centre (the point at the bottom
of their feet where the total normal force is applied), e.g. by
adjusting the angle between a leg and the foot, so as to oppose
the falling motion of the upper part of their body. A small bird
of length lb = 6 cm can stand on its feet; estimate the upper
bound for its reaction time.
iv. (1 pt) Equilibrium on a bike is also kept by displacing
the support centre which lies on the line connecting the wheel-
ground contact points; that line can be conveniently displaced
by turning the handlebar while driving forth. Estimate the
minimal driving speed vm of a bicyclist by which the equilib-
rium can be maintained in such a way. Assume that for the

bicyclist, the characteristic falling time is the same as for a
rod of length L = 2 m; the distance between the centres of the
wheels d = 1 m.
Part B. Tightrope walker (3.5 points)
A tightrope walker cannot move the support point in the dir-
ection perpendicular to the rope. His equilibrium is kept by
displacing the centre of gravity, instead. Let us make a simple
model of a man balancing on a rope.
Lower half of the body is modelled
by a point mass m at height H,
and the upper half of the body

— by an equal point mass m at
the height 1.4H. The mutual pos-
ition of these point masses can be
changed by bowing right or left;
for the sake of simplicity, let us
assume that the distance of the
point masses from the rope will re-
main unchanged, i.e. these behave
as if being fixed to the endpoints
of two thin rods of lengths H and
1.4H respectively, see figure. Let
the rods form angles α1 and α2

with the vertical line (positive angles correspond to clock-wise
rotation), so that the angle between the rods is β = α1 −α2. A
tightrope walker can control the value of the angle β by bowing.
i. (1 pt) Let us assume that initially, the tightrope walker
was standing in an almost perfect equilibrium (α1 = α2 = 0).
Due to instability of this equilibrium, he starts slowly falling
clock-wise, which he notices at t = t0 when α1 = α2 = α0 > 0.
He bows rapidly to stop falling: assume that the angle β takes
almost instantaneously a new value β0. Express the new
values of the angles α1 and α2 in terms of β and α0.
ii. (0.5 pts) So, the tightrope walker is now bowing and keeps
this body shape (β = β0) for the time period Tb, upon which he
straightens himself almost instantaneously and makes thereby
β = 0. His aim is to resume the motionless standing position
with α1 = α2 = 0. Should he have bowed clock-wise (β0 > 0)
or counter-clock-wise? Motivate your answer.
iii. (1 pt) From now on, we assume that α0 ≪ β0. Imme-
diately after he has straightened himself, neither his angular
speed α̇1 = α̇2 nor angle α1 are zero: zero values will be
achived much later. Which value (expressed in terms of H

and g) should the ratio α̇1/α1 take at that moment?
iv. (1 pt) Express the required duration Tb in terms of α0, β0,
H, and g assuming that α0 ≪ β0.
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Part C. Kapitza’s pendulum (4 points)
In 1908 Andrew Stephenson found that the upper position of
a pendulum can be stable, if its suspension point oscillates
with a high frequency. The explanation of this phenomenon
was provided in 1951 by Russian physicist Pyotr Kapitza. In
what follows we’ll find the stability criterion of such a pendu-
lum. Apart from being just a nice toy, the Kapitza’s pendulum
demonstrates the method of separating fast and slow processes
which plays an important role in physics. High frequency os-
cillations can drive a slow motion in various systems, e.g. high
frequency electric fields act on charges with an effective average
force known as the ponderomotive force.
We consider a pendulum of length l, similar
to that of Part-A-Question-i, but now the
rod is massless, with a point mass at its end,
and the suspension point oscillates vertically
(see the figure). Let the velocity v of the
suspension point depend on time t as shown
in the graph below (v > 0 corresponds to
upward motion); the oscillations’ half-period
T ≪ l/v0. We also assume that v0/T ≫ g

so that for questions i–ii you may ignore the
free fall acceleration. In order to simplify calculations, you’ll
need to study this process in the frame of reference of the sus-

pension point (keep in mind: reference frame’s acceleration a⃗

gives rise to an inertial force −Ma⃗ acting on a body of mass
M).

i. (1.5 pts) Suppose that at t = T/2, the pendulum was mo-
tionless and inclined by a small angle φ0. Sketch the graph of
the inclination angle φ as a function of time, and determine
the angular displacement of the pendulum ∆φ for the moment
t = T , i.e. ∆φ = φ(T ) − φ(T/2). You may assume in your
calculations that ∆φ ≪ φ0 (this is valid because T ≪ l/v0).
ii. (1.5 pts) Since we still neglect gravity, only inertial force
exerts a torque on the pendulum. Determine the average value
of this torque (with respect to the suspension point, averaged
over the full period 2T ).
iii. (1 pt) Now, let us take into account that there is also the
gravity field of the Earth. Determine, which inequality must be
satisfied for g, T , l and v0 in order to ensure the stability of the
vertical position of such a pendulum (some of these parameters
may not be needed for your inequality).
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Problem T2. Gravitational waves (10 points)
Part A. Dipole radiation (2.4 points)
Static electric and gravity fields are described by identical set of
equations — as long as we are far from black holes. However,
if we add terms describing time variations of the fields, the
equations become different. Therefore, expressions for electro-
magnetic waves cannot be directly carried over to gravitational
waves. Still, for expressions given below, the difference will be
only in the value of numerical prefactors.

Charges moving with acceleration lose kinetic energy by ra-
diating electromagnetic waves; this radiation is known as the
dipole radiation. The total radiation power is expressed as

Ped =
¨⃗
d

2

6πε0c3 , (1)

where ¨⃗
d is the second time derivative of the dipole moment, c

is the speed of light, and ε0 — vacuum permittivity. Dipole
moment for a system of charges qi is defined as d⃗ =

∑
i r⃗iqi,

where r⃗i is vector pointing from the origin to the position of
i-th charge. For harmonically oscillating dipoles, the radiated
wave frequency equals to the frequency of oscillations.
i. (1.4 pts) Consider an electron of charge −e and mass m, cir-
culating around an atomic nucleus of charge +Ze at distance r;
neglect quantum mechanical effects. Express the total radiated
power, and the wavelength λ of the radiated waves in terms of
e, Z, m, r, and physical constants.
ii. (1 pt) Let us try to carry over Eq. (1) to gravitational
waves; then, the total radiation power Pgd would be propor-

tional to ¨⃗
dg

2
, where d⃗g is the gravitational dipole moment,

and two dots denote the second time-derivative. Analogously
to the electrical dipole, gravitational dipole moment for a sys-
tem of point masses mi is defined as d⃗g =

∑
i r⃗imi. Show that

always Pgd = 0.
Part B. Quadrupole radiation (7.6 points)
Let us consider a binary star consisting of two stars of equal
mass M which rotate around a circular orbit of radius R with
angular speed ω.
i. (1 pt) Express ω in terms of M , R, and constants.
ii. (0.8 pts) While there is no gravitational dipole radiation,
there is a quadrupole one. In analogy with the dipole radi-
ation, it should be proportional to squared time-derivatives of
the quadrupole moment. For this problem, it is enough to know
that for our binary star, the gravitational quadrupole moment
components are of the order of MR2. So, we expect the total
radiation power to have a form Pqg = AM2R4, where the factor
A may depend on ω and physical constants (here ω is an inde-
pendent parameter, though for a binary star it depends on M

and R). Find expression for Pqg using dimensional analysis.

iii. (0.8 pts) The effect of gravitational waves is measured by
strain h = ∆l/l; here l is a distance between two points in
space, and ∆l is the change of that distance due to the wave.
As usual for waves, the energy flux density S (radiation energy
per unit time and unit area) is proportional to the squared wave
amplitude: S = Kh2

0 (h0 denotes the wave amplitude). Based
on dimensional arguments, express the factor K in terms of
constants and the angular frequency of the wave ω.
iv. (1 pt) The dipole radiation is distributed over propagation
directions anisotropically, but let us ignore this: for the sake of
simplicity, assume isotropic radiation. Express the amplitude
h0 of gravitational waves at distance L in terms of M , R, and
physical constants.

The energy of the binary star decreases in time due to the
emission of gravitational waves. So, the distance R between the
two stars decreases. This process will continue until the stars
collide and merge (R becomes of the order of the radius of a
star). In LIGO experiment (reported on 11th February 2016),
gravitational waves emitted right before a merger of two black
holes were observed. For the radius of a black hole, we’ll use
the Schwarzschild radius Rs which is defined as such a critical
distance from a point mass M that light cannot escape due to
gravitational pull from distances r < Rs. To derive properly
an expression for Rs, theory of general relativity is needed.
v. (1 pt) Express Rs in terms of M and physical constants.
Use the following fact: if we neglect general relativity and use
special relativity together with Newtonian gravitation law, we
obtain a result which is exactly half of the correct one.
vi. (1.5 pts) In LIGO experiment, using a 4-km-long laser
interferometer, the strain h (see question iii) was measured as
a function of time; the result is given in the graph below. Us-
ing this graph and assuming that the masses of the two black
holes were equal, estimate the mass of each of them numer-
ically. Gravitational constant G = 6.67 × 10−11 m3s−2kg−1;
c = 3.00 × 108 m/s.

vii. (1.5 pts) Using the same data as for question vi, estimate
the distance to these black holes.
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Problem T3. Magnetars (9 points)
Magnetic fields are everywhere around us. Some typical mag-
netic B-field values: Earth’s magnetic field: 25 − 60 µT; at
Sunspots: 0.3 T; strong permanent magnets: around 1 T; con-
tinuously maintained magnetic fields in laboratory: up to 45 T;
neutron stars and magnetars: up to 1011 T. In what follows we
study few aspects of strong magnetic fields.

Magnetic field energy density
w = B2 1

2µµ0
, where µ0 ≈ 1.3 × 10−6 N/A2

is the vacuum permeability, and µ — the
relative permeability of the medium. Sys-
tem tries to move towards a lower energy
state and so ferromagnetic materials with
µ ≫ 1 are pulled towards regions with strong magnetic fields,
and diamagnetic materials with µ < 1 are pushed out. For
diamagnetic materials, the magnetic suspectibility χ = µ − 1
is small, |χ| ≪ 1, and so the effect is small unless the field
is strong. Water is a diamagnetic with χ = −9 × 10−6 and
animals are mostly made of water. So, a frog can levitate in a
magnetic field if the field is strong enough, see the photo.
i. (1.5 pts) Let the frog height hf

be not more than h0 = 10 mm, and
let us assume simplifyingly that the
squared magnetic field depends lin-
early on height z, see figure. Find
how strong magnetic field B0 (in
Teslas) is needed to keep this frog in levitation. Assume that
the frog is made entirely of water (density ρ = 1000 kg/m3);
free fall acceleration g = 9.8 m/s2. Hint: for |χ| ≪ 1, we can
write w ≈ B2 1−χ

2µ0
; hence, the energy density associated with

the presence of water is ∆w = B2 1−χ
2µ0

− B2 1
2µ0

= −B2 χ
2µ0

.
Stars are made of a plasma which is

a good electrical conductor. Because of
that, magnetic field lines behave as if be-
ing “frozen” into the moving plasma (this
follows from the Faraday’s induction law
and Kirchoff’s voltage law: due to the ab-
sence of electrical resistance, the voltage drop along a closed
fictitious contour inside the plasma must be zero, hence the
magnetic flux cannot change). If a star were to collapse into
a neutron star, this effect would lead to an instantaneous in-
crease of the magnetic field, see the sketch of the magnetic
field lines before and after the collapse (recall that magnetic
field strength is proportional to the density of field lines).
ii. (1 pt) Assuming that the polar magnetic field of a star
is Bs = 100 µT and its average density ρs = 1400 kg/m3,
what would be its polar magnetic field strength Bc after its
collapse into a neutron star due to the compression of mag-

netic field lines as depicted above? The neutron star density
ρn = 5 × 1017 kg/m3.
iii. (1 pt) In reality, magnetic fields of neutron stars are gen-
erated differently. Let us consider a very simplified model. In-
terior part of the star has collapsed to a neutron star’s size and
density, but the exterior parts remains of the same size. As-
sume that before the collapse, the star was rotating as a solid
body with angular speed ωs. Express the new angular speed
of the interior part of the star ωn in terms of ωs, ρs and ρn.
iv. (1.5 pts) Rotation speeds of the inner- and outer parts are
different, hence the field lines will be stretched, see figure.

For the sake of simplicity: (a) we use 2-dimensional geometry,
i.e. consider stars as being cylindrical; (b) while the initial field
was a dipole field, we assume that it was cylindrically symmet-
ric as shown in figure; (c) endpoints of field lines are attached
to the inner cylinder (the neutron star) and to the outer cyl-
indrical shell (the remnant of the original star). Let the initial
magnetic field at the outer shell be B0. Express the magnetic
field B as a function of time t in the region where field lines
are being stretched for t ≫ 1/ωn in terms of B0 and ωn.
v. (1 pt) So, the energy is converted during the star collapse as
follows: gravitational energy is converted into kinetic one (let
us neglect thermal energy), which is later on converted into
the magnetic one. Based on this scenario, estimate the max-
imal strength of the magnetic field Bmax for a neutron star of
mass Mn = 4 × 1030 kg and radius Rn = 13 km. Recall that
G = 6.67 × 10−11 m3s−2kg−1.
vi. (1 pt) Very strong magnetic fields affect chemical proper-
ties of matter by changing the shape of electron orbits. This
happens when the Lorenz force acting on an orbital electron be-
comes stronger than the Coulomb force due to the atomic nuc-
leus. Estimate the strength of the magnetic field BH needed
to distort the electron orbit of an hydrogen atom which has
radius RH = 5 × 10−11 m. Note that 1

4πε0
= 9 × 109 m/F ,

e = 1.6 × 10−19 C, and electron mass me = 9.1 × 10−31 kg.
vii. (2 pts) In very strong magnetic fields, atomic electron
clouds take cylindrical shape. Estimate the length-to-diameter
ratio κ = l/d of such electron clouds for hydrogen atoms near
a neutron star, in magnetic field Bn = 108 T. Note that the
Planck’s constant h = 6.6 × 10−34 J · s. Hint: the radius of the
cyclotron orbit for an electron in quantum-mechanical ground
state can be estimated using uncertainty principle.

— page 5 of 5 —



Problem T1. Stabilizing unstable states (11
points)
Part A. Stabilization via feedback (3.5 points)
i. (1.5 pts) The moment of inertia of the rod is
I = ml2

3 . The torque is mg φl
2 . (0.4 pts)

so that the Newton’s 2nd law is written as

Iφ̈ = mg
φl

2

φ̈ = 3
2

g

l
φ. (1)

(0.4 pts)
If we take φ = Ae

t
τ + Be− t

τ , then
φ̈ = A

τ2 e
t
τ + B

τ2 e− t
τ = φ

τ2 . (0.3 pts)
Substituting this into the equation of motion (1) we get

φ

τ2 = 3
2

g

l
φ

τ =

√
2
3

l

g
.

(0.4 pts)
This means that φ = Ae

t
τ + Be− t

τ is the solution for the equa-
tion of motion.
ii. (0.5 pts) The boy has to react before the rod falls over the
angle π

2 . Boy notices that the rod is falling, and tries to react.
If the rod falls faster than his reaction time, he cannot keep it
in balance. In the expression φ = Ae

t
τ + Be− t

τ , the dominat-
ing term is the first one (the second one decays in time), so we
can put φ = Ae

t
τ , where A is the angle at t = 0. Hence, the

falling time t = τ ln(π/2A) depends on the initial angle A, but
logarithmic dependence is very slow — the logarithm remains
always of the order of unity. So we can estimate the falling time
just as the characteristic time of the rod. This means that

τr ≈

√
2
3

lr
g

(0.3 pts)

lr = τ2
r

3g

2
= 0.59 m

(0.2 pts)
iii. (0.5 pts) The bird won’t be able to rebalance itself when
it has fallen over π

2 . Similarly to the previous question, we can
say that the bird’s reaction time must be equal to the charac-
teristic time τb. (0.3 pts)
Then we get

τb ≈

√
2
3

lb
g

= 0.065 s

(0.2 pts)

iv. (1 pt) The cyclist is able to balance himself by turning
the handlebar so that the line connecting the wheels will move
to the desire direction. For that line to move, the bike must
move forward to a distance which is of the order of inter-wheel
separation. So we can require vmτ ≈ d, where τ is bike’s char-
acteristic falling time. (0.5 pts)
Note that with this equation we neglect the cyclists’ reaction
time (which makes balancing more difficult) but on the other
hand the line connecting the wheels moves slightly already at
a twice smaller forward-displacement of the bike (which makes
balancing easier). Anyway, we are only making an estimate, so
a mistake by a factor of 2 is perfectly OK.

Then we get

d = vmτ = vm

√
2
3

L

g

(0.2 pts)

vm = d

√
3
2

g

L
= 2.7 m/s

(0.3 pts)
Part B. Tightrope walker (3.5 points)
i. (1 pt) From the conservation of angular momentum

m(1.4H)2 dα1

dt
+ mH2 dα2

dt
= Const.

(0.3 pts)
Partial credit 0.2 pts if the conservation is mentioned without
writing equation. This process is instantaneous, i.e. dα1

dt and
dα1
dt are very large, much large than that constant at the right-

hand-side (which is defined by the initial falling speed), hence
we can put Const= 0.

(0.2 pts)
This simplifies into

1.96∆α1 = −∆α2 (2)

(0.1 pts)
We also have

β = α1 − α2 = (α0 + ∆α1) − (α0 + ∆α2) = ∆α1 − ∆α2 (3)

(0.2 pts)
Solving the equations (1) and (2) we get

α1 = α0 + β

2.96
(0.1 pts)

α2 = α0 − 1.96
2.96

β

(0.1 pts)
ii. (0.5 pts) In order to be able to straighten himself, the
walker’s centre of mass has to move leftwards, by a negative
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angle. (0.1 pts)

By changing the upper body’s angle by ∆α1, the lower
body’s angle will change by ∆α2 = −1.96∆α1. The centre
of mass will then move by

1.4H∆α1 + H∆α2 = 1.4H∆α1 − 1.96H∆α1 = −0.56H∆α1

(0.3 pts)

Because the centre of mass will have to move by a negative
angle, ∆α1 needs to be positive, which means that the walker
has to bow clockwise. (0.1 pts)

iii. (1 pt) We can write the equation of motion

2.96α̈1H = 2.4gα1

Similarly to the question i. in part A, the solution for this dif-
ferential equation is α1(t) = Ae t

τ + Be− t
τ , where τ =

√
2.96
2.4

H
g .

(0.2 pts)
Because the time it takes to get to the vertical position is
infinite, the component Ae t

τ needs to be 0, meaning that
α1(t) = Be− t

τ . (0.3 pts)
By taking time derivative, we obtain
α̇1 = − 1

τ Be− t
τ . (0.3 pts)

For the instance when the boy straightened himself, t = 0, the
equations take form α1 = B and α̇1 = − B

τ . So, α̇1 = − α1
τ ,

which can be rewritten as

α̇1

α1
= − 1

τ
= −

√
2.4
2.96

g

H

(0.2 pts)
iv. (1 pt) After the walker has straightened himself, the angle
which he is at is still α0, because during stage where he is bow-
ing, the torque is much larger than when he is straightened,
meaning that the change in angular speed is much larger than
the change in the angle. (0.1 pts)
As found in the previous subquestion, the speed before and
after the bowing are α0

τ and − α0
τ respectively. Then the change

in the angular momentum is

∆L = −5.92mH2 α0

τ

(0.3 pts)
Because during the falling stage the change in angle is minus-
cule, we can express the change in angular momentum as
∆L = MTb, where M is the torque during bowing stage.

(0.2 pts)
During the bowing stage, the angles of the body segments are

α1 = α0 + β0

2.96
≈ β0

2.96

α2 = α0 − 1.96
2.96

β0 ≈ 1.96
2.96

β0

The torque can be expressed as

M = 1.4mgHα1 + mgHα2 =

1.4
2.96

β0mgH − 1.96
2.96

β0mgH = −0.56
2.96

β0mgH

(0.3 pts)
Writing out ∆L = MTb we get

−5.92mH2 α0

τ
= −0.56

2.96
β0mgHTb

Tb = 31.29α0

β0

H

τg
= 31.29α0

β0

H

g

√
2.4
2.96

g

H
= 28.18α0

β0

√
H

g

(0.1 pts)
Part C. Kapitza’s pendulum (4 points)

Throughout the entire problem, we use the system of refer-
ence of the suspension point.
i. (1.5 pts) During these periods of time when the suspension
point accelerates upwards (and force of inertia is downwards),
the equation of motion of the pendulum can be written as

d2φ

dt2 = a0

l
φ,

where a0 = 2v0/T is the frame’s acceleration. (0.4 pts)
Incomplete attempts at writing Newton second law will be par-
tially credited (0.2 pts).
The relative change of φ is assumed to be small, so we can
approximate φ ≈ φ0 to obtain

d2φ

dt2 = 2v0

T l
φ0.

(0.2 pts)
During the rest of the time, the same equation can be used if
a0 is changed to −a0. (0.2 pts)
Therefore, the graph consists of parabolic segments, as depic-
ted in the Figure. (0.4 pts)
The amplitude is found as

∆φ = 1
4

v0T

l
φ0.

(0.3 pts)

ii. (1.5 pts)
The average torque ⟨M⟩ = ⟨mla(t)φ(t)⟩ . (0.3 pts)

Let us note that ⟨a(t) ⟨φ⟩⟩ = ⟨a(t)⟩ ⟨φ⟩ = 0. (0.3 pts)
Therefore we can rewrite the average torque as
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⟨M⟩ = ⟨mla(t)[φ(t) − ⟨φ⟩]⟩ = −ml
2v0

T
⟨|φ(t) − ⟨φ⟩ |⟩

(0.3 pts; if wrong sign 0.2 pts)
It is easy to see that the average of |φ − ⟨φ⟩ | over the entire
period equals to the average over the time interval 0 < t < τ .
Straightforward integration yields

⟨|φ − ⟨φ⟩ |⟩ = 2
T

∫ T/2

0
∆φ

(
1 − 4t2

T 2

)
dt = 2

3
∆φ = 1

6
v0T

l
φ0.

(0.4 pts)
Upon substituting this result into the previous expression we
obtain

⟨M⟩ = −1
3

mv2
0φ0.

(0.2 pts)

iii. (1 pt) Gravity field does not affect the expression for the
average torque of the force of inertia. So, we can use the result
of the previous question. However, it gives rise to an additional
contribution to the average torque, equal to glmφ0. (0.4 pts)
Therefore, the equation of motion can be written as

l2 d2φ0

dt2 =
(

gl − 1
3

v2
0T 2

)
φ0.

(0.4 pts)
The stability is ensured if the factor at the right-hand-side is
negative, i.e. if 3gl < v2

0 . (0.2 pts)
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Problem T2. Gravitational waves (10 points)
Part A. Dipole radiation (2.4 points)

For the sake of convenience, let us denote k = 1
4πϵ0

i. (1.4 pts) The total dipole moment can be expressed as
d⃗ = −r⃗1e + r⃗2Ze, (0.2 pts)
where r⃗1 and r⃗2 are the position vectors of the electron and
nucleus respectively. Then ¨⃗

d = − ¨⃗r1e + ¨⃗r2Ze = − F⃗
m e − F⃗

m1
Ze,

(0.1 pts)
but because the mass of the nucleus m1 is much larger than m,
we can neglect the second term. Then∣∣∣ ¨⃗

d
∣∣∣ =

∣∣∣∣∣− F⃗

m
e

∣∣∣∣∣ = kZe3

mr2

(0.3 pts)

Ped =
¨⃗
d

2

4πϵ0c3 =
(

kZe3

mr2

)2 1
6πϵ0c3

(0.2 pts)
We can express λ as λ = c

f = 2πrc
v . (0.2 pts)

We get v from the relation mv2

r = k Ze2

r2 , then v = e
√

kZ
mr .

(0.3 pts)
Finally

λ = 2πrc

v
= 2πrc

e

√
mr

kZ

(0.1 pts)
ii. (1 pt) We know that d⃗g =

∑
i r⃗imi. Let us recall that the

distance to centre of mass is
r⃗cm =

∑
i r⃗imi∑

i mi
.

Then (0.3 pts)

d⃗g =
∑

i

r⃗imi = r⃗cm

∑
i

mi

(0.2 pts)
(Equivalently one can notice that ˙⃗

dg =
∑

i v⃗imi the net mo-
mentum.) r⃗cm is constant because there aren’t any external
forces acting on the system. (0.3 pts)
This means that ¨⃗

dg = 0 and Pgd = 0. (0.2 pts)

Part B. Quadrupole radiation (7.6 points)
i. (1 pt) The force acting on one of the stars is

F = G
M2

4R2 = Mv2

R

(0.6 pts)
From here we can express the star’s speed v. We can express
the star’s angular speed from the relation ω = v

R . (0.2 pts)

ω = v

R
= 1

2

√
GM

R3

(0.2 pts)

ii. (0.8 pts) The dimensions for A need to be

W 1
kg2m4 = kgm2

s3
1

kg2m4 = 1
s3m2kg

(0.2 pts)
A can only consist of the gravitational constant G, speed of
light c and angular velocity ω. (0.2 pts)
We can write a system of equations for every unit, m, s and kg.
If we take the power of G, c and ω to be a, b and c respectively,
we can write out for metres

3a + b = −2,

(0.1 pts)
for seconds

−2a − b − c = −3,

(0.1 pts)
and finally for kilograms

−a = −1.

(0.1 pts)
Solving the equations we get a = 1, b = −5 and c = 6, which
means that

A = G
ω6

c5

(0.1 pts)

iii. (0.8 pts) The solution for this subquestion is the same as
for the previous one. The units for K are

W
m2 = kg

s3

(0.2 pts)
K can only depend on G, c and ω, (0.2 pts)
if we take their powers to be a, b and c respectively, we can
write out for metres

3a + b = 0

(0.1 pts)
for seconds

−2a − b − c = −3

(0.1 pts)
and finally for kilograms

−a = 1

(0.1 pts)
Solving the equations we get a = −1, b = 3 and c = 2, which
means that

K = c3ω2

G
(0.1 pts)
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iv. (1 pt) The flux at distance L is S = Pqg

4πL2 , (0.4 pts)
on the other hand we can express flux as S = Kh2

0. This means
that

Kh2
0 = Pqg

4πL2 = AM2R4

4πL2

(0.4 pts)
and finally

h0 =
√

AM2R4

K4πL2 =
√

Gω6

c5
G

c3ω2
M2R4

4πL2 = Gω2MR2

2
√

πc4L
= G2M2

8
√

πc4LR

(0.2 pts)

v. (1 pt) At distance Rs from the black hole, it takes all
the energy mc2 for an object to overcome the potential energy
−G Mm

Rs
. This means that

mc2 = G
Mm

Rs
.

(0.7 pts)
(If non-relativistic energy mc2/2 is used, deduct 0.3 pts.) From
here we can express Rs

Rs = GM

c2

(0.1 pts)
This answer is 2 times smaller than the correct one, which
means that

Rs = 2GM

c2

(0.2 pts)

vi. (1.5 pts) We can estimate the mass of the black holes by
finding the orbital frequency and then using the expression we
found in the first subquestion (Kepler’s III law). (0.3 pts)
The strain is maximal when the orbital radius for the black
holes is Rs. (0.3 pts)
Reading from the graph, we get that the orbital period is
T ≈ 0.006 s (0.3 pts)
and frequency ω = 2π

T = 1000 rad/s. Then

ω = 1
2

√
GM

R3
s

;

(0.2 pts)
substituting Rs we obtain

ω = 1
2

√
GM

c6

8G3M3 = c3

2
√

2GM

(0.2 pts)
The mass of a black hole is

M = c3

2
√

2ωG
= 1.45 × 1032 kg = 72 M⊙

(0.2 pts)
In reality the masses of the black holes were 36 M⊙ and 29 M⊙,
where M⊙ is the mass of Sun.
vii. (1.5 pts) As mentioned previously the maximal strain is
when the black hole’s orbital radius is Rs, reading from the
graph we get that the strain is h0 ≈ 0.9 × 10−21 . (0.4 pts)
Then, using the result of question iv,

h0 = G2M2

8
√

πc4LRs
;

(0.4 pts)
Substituting Rs we obtain

h0 = G2M2

8
√

πc4L

c2

2GM
= GM

16
√

πc2L

(0.3 pts)
The distance to the black hole is

L = GM

16
√

πc2h0
;

(0.2 pts)
numerically

L = 4.21 × 1024 m.

(0.2 pts)
This can be also expressed in megaparsecs, L = 136 Mpc. In
reality, the distance was L = 410 Mpc ± 170 Mpc.
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Problem T3. Magnetars (11 points)
i. (1.5 pts) If we change the frog’s height by ∆h, the change
in potential energy needs to be smaller than the change in mag-
netic energy. (0.2 pts)
Note that for every point in frog, the change in magnetic energy
is the same, thus we can express it as

∆E = −V
∆(B2)χ

2µ0
= V

B2
0χ∆h

2h0µ0

(0.6 pts)The change in potential energy is

∆Π = V ρg∆h

(0.3 pts)Then ∆E + ∆Π < 0

V
B2

0χ∆h

2h0µ0
+ V ρg∆h < 0

(0.2 pts)
This means that

B0 >

√
−2h0µ0ρg

χ

(0.1 pts)
and numerically

B0 = 5.32 T.

(0.1 pts)

ii. (1 pt) Let us observe a piece of the star with a volume V0

before the collapse and volume V1 after the collapse. The mass
before and after are same. This means that

V0ρs = V1ρn

(0.1 pts)
The radius of the star scales as V 1/3, (0.1 pts)
and the cross-sectional area as V 2/3. (0.1 pts)
The total magnetic field through the volume is also the same
before and after the collapse:

BsV
2
3

0 = BnV
2
3

1

(0.4 pts)
Now we can express Bn

Bn = Bs

(
V0

V1

) 2
3

= Bs

(
ρn

ρs

) 2
3

(0.2 pts)
and numerically

Bn = 5.0 × 105 T

(0.1 pts)

iii. (1 pt) During the collapse there is no torque on the
star, this means that the angular momentum remains constant.
Thus

2
5

MR2
sωs = 2

5
MR2

nωn

(0.6 pts)
Recall that Rs is inversely proportional to ρ

1/3
s . (0.2 pts)

Now we can express ωn

ωn = ωs
R2

s

R2
n

= ωs

(
ρn

ρs

) 2
3

(0.2 pts)
iv. (1.5 pts) After time t, the neutron star has turned by an
angle β = ωnt. (0.2 pts)
The magnetic fields pass any radial line from the centre of the
neutron star on average N = β

2π = ωnt
2π times. (0.3 pts)

The total magnetic flux entering the outer shell remains con-
stant, and thus is always equal to Φ = 2πR0B0, (0.3 pts)
where R0 is the radius of the outer shell. This means that the
flux through any radial line is ΦN . (0.4 pts)
Then

BR0 = 2πR0B0N = R0B0ωnt

(0.2 pts)
And finally

B = B0ωnt

(0.1 pts)

v. (1 pt) We can find the gravitational energy by integrating:
we imagine removing the material layers of thickness dx one by
one, starting from the outermost one. The potential energy for
a hollow sphere with a thickness dx in the gravity field of the
matter inside it is

dΠ = −G
(4πx2dxρn) 4

3 πx3ρn

x
= −16π2

3
Gρ2

nx4dx

(0.2 pts)
Integrating from x = 0 to x = Rn we get

Π = −16π2

15
Gρ2

nR5
n = −3

5
GM2

n

Rn

(0.3 pts)
A partial credit of 0.2 pts is given is if integration is substituted
by a simplifying product.
This potential energy is equal to the magnetic energy

Π = 4
3

πR3B2
n

1
2µ0

= 3
5

GM2
n

Rn

(0.3 pts)
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Solving for Bn we get
Bn = 3 M

R2

√
µ0G

10π

(0.1 pts)
and numerically

Bn = 1.18 × 1014 T

(0.1 pts)

vi. (1 pt) The electron orbit will get distorted when the
Lorentz force becomes in the same order of magnitude as Cou-
lomb force. (0.1 pts)
The Coulomb force is

F1 = 1
4πϵ0

e2

R2
H

(0.2 pts)
On the other hand,

F1 = mev2

RH

(0.2 pts)
We can express the velocity of electron

v = e

√
1

4πϵ0RHme

(0.1 pts)
Then the Lorentz force is

F2 ≈ evB

(0.2 pts)
Upon substituting v we obtain

F2 = e2
√

1
4πϵ0RHme

From the condition F1 ≈ F2 we can express the magnetic field
strength

B =
√

me

4πϵ0R3
H

(0.1 pts)
and numerically

B = 2.56 × 105 T

(0.1 pts)

vii. (2 pts) Perpendicularly to the magnetic field, the Lorentz
force is much larger than the Coulomb force since the magnetic
field Bn is much larger than the magnetic field found in the
previous question. This means that in the perpendicular plane,
the electrons move along a circular cyclotron orbit. (0.2 pts)
Then we can write

mev2

R1
= evBn,

(0.2 pts)
where R1 = d/2 is the orbit’s radius. Now we apply the uncer-

tainty principle. The uncertainty of the momentum is

∆p = 2mev

(0.3 pts)
and uncertainty of the coordinate

∆x = 2R1

(0.2 pts)
So we have

4mevR1 ≈ ~

(0.2 pts)
Substituting mev = ~

4R1
to the first equation we get

~
R2

1
= 4eBn

(0.1 pts)
Then

R1 =
√

~
4eBn

(0.1 pts)
The length of the cylinder will still remain in the order of mag-
nitude of RH because the Lorentz force doesn’t act on the
electron in that axis (parallel to the magnetic field). (0.5 pts)
Then the ratio of the length and diameter is approximately

κ = RH

R1
= 2RH

√
eBn

~

(0.1 pts)
and numerically

κ = 39 ≈ 40 .

(0.1 pts)
Note that if we were to make calculations for magnetars with
B = 1 × 1011 T, the orbital electrons would be ultrarelativistic.
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Problem T1. Main sequence stars (11 points)
In all your subsequent calculations you may use the following
physical constants and their numerical values.
Stefan-Boltzmann constant σ = 5.670× 10−8 W/(m2K4)
(Note that σT 4 gives the black body thermal radiation power
per unit area at temperature T .)
Boltzmann constant kB = 1.38× 10−23 m2 · kg · s−2 ·K−1.
The rest mass of a proton mp = 1.67× 10−27 kg.
Rest energy of a proton mpc

2 = 938 MeV,
where 1 MeV = 1.6× 10−13 J.
Rest energy of a helium nucleus mHec

2 = 3727 MeV.
Rest energy of an electron and positron mec

2 = 0.5 MeV.
Speed of light c = 3× 108 m/s,
Universal gas constant Rg = 8.31 J ·K−1 ·mol−1

Avogadro’s number NA = 6.02× 1023 mol−1

Part A. Lifetime of Sun (3 points)
For this Part, the following values can be also used.
The mass of Sun M� = 2× 1030 kg.
The radius of Sun R� = 7× 108 m.
Surface temperature of Sun T� = 6× 103 K.
i. (0.7 pts) The Sun emits thermal radiation as a perfectly
black body. Determine the total radiation power of the Sun (in
watts).
ii. (0.5 pts) The Sun maintains its temperature owing to
the fusion reaction, the net effect of which can be written as
4p+ →4He2+ + 2e+ + 2νe, where p+ denotes a proton, 4He2+

— a helium nucleus, e+ — a positron, and νe — an electron
neutrino of negligible rest energy. Show that the energy released
by such a fusion of four protons is W0 = 24 MeV.
iii. (0.5 pts) Antimatter cannot co-exist with matter: upon
meeting, a positron and an electron disappear by producing
two photons. How much energy per each fusion of four protons
into a helium nucleus must leave Sun (carried away by photons
and neutrinos) in order to keep it at a thermal equilibrium?
iv. (1.3 pts) Assuming that only the central part of the Sun
(the Sun’s nucleus) which makes 1

8 of the total mass of the Sun
is hot enough for fusion reaction to take place, and neglecting
the energy carried away by neutrinos, estimate the total lifetime
of the Sun. Note that there is no convection in the central parts
of the Sun, and therefore the particles inside the Sun’s nucleus
remain trapped therein. Based on your result, comment on the
current age of Sun, τ� = 5× 109 y.
Part B. Mass-luminosity relationship of stars (4.5 points)
Inside the nuclei of the so-called main sequence stars (such as
our Sun), the fusion reaction takes place in a stable regime:
if fluctuations were to increase the reaction rate slightly, the
increased thermal output would lead to an increase of the pres-

sure, to a thermal expansion of the fusion plasma, and as a
result, to a decrease of the reaction rate. The reaction rate
grows very rapidly with temperature and because of that, even
if the reaction rates in different stars of different masses may
differ considerably, the interior temperatures remain fairly sim-
ilar. In what follows, you may assume that the temperature
of the nuclei of stars is independent of the stellar mass
and equal to

Tc = 1.8× 106 K;

this approximation holds particularly well for stars larger than
Sun.

In order to make our next calculations mathematically easier,
we make the following additional approximations.
(a) The mass of the stellar core is M

8 and its radius is R0
2 , where

M is the total mass of the star and R0 — the radius of the star.
(b) The mass density ρc, pressure pc, and temperature Tc in-
side the stellar core can be approximately taken to be
constant throughout its volume.
(c) For tasks i–iv, we assume also that all
the mass 7

8M of the outer layers of the star
is concentrated into a very narrow spher-
ical layer of radius R0

2 around the core, see
figure. In reality, this is certainly not true — the layer is not
narrow. However, this approximation will have only a minor
effect on the expression for the pressure (in task iv).
i. (0.4 pts) Express the free fall acceleration immediately above
the narrow spherical layer (point Q in figure) in terms of M
and R0.
ii. (0.4 pts) Express the free fall acceleration immediately
beneath the narrow spherical layer (point P in figure).
iii. (0.4 pts) Express the gravity force acting on a small piece
of the narrow spherical layer in terms of its surface area A, M
and R0.
iv. (0.4 pts) Express the pressure pc in terms of the radius R0

and mass M of the star; (we overestimate it only by a factor
which is less than two).
v. (1 pt) Derive another expression for the pressure pc, this
time in terms of R0, M , and the core temperature Tc. Assume
that the nucleus of a star is made of a fully ionised hydrogen,
i.e. there are free protons and free electrons, both of which
can be described as an ideal gas.
vi. (0.4 pts) Based on your previous results, express the radius
R0 of a star in terms of its mass M and temperature Tc.
vii. (1.5 pts) The radiative power of a star is limited by at
which rate the produced heat can travel through the outer layers
of the star and reach the surface. The heat conductivity κ is
defined as the proportionality coefficient between the heat flux
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density (thermal power per unit area) and temperature gradient
dT
dr , where r is the distance from the centre of the star. For a
plasma, the heat conductivity is inversely proportional to its
density, κ = f(T )/ρ. Assume simplifyingly that κ is constant
throughout the bulk of a star, up to the near-surface regions
at r = R0 where the temperature T � Tc, and is equal to
κ = f(Tc)/ρc. Show that the total radiative power P of a star
is proportional to Mγ , and find the exponent γ.
Part C. Proton-proton fusion chain (3.5 points)
We say that a constant is fundamental if it cannot be expressed
in terms of other fundamental constants; for instance, the Stefan-
Boltzmann constant can be expressed in terms of kB, speed
of light c, and Planck’s constant ~. However, majority of the
fundamental constants are created artificially by physicists due
to a non-fundamental way of choosing the units. For instance,
SI system of units needs electrostatic constant ke , but for
Gauss system of units, charge units are such that ke = 1. So,
majority of the “fundamental” constants are not really that
fundamental, and depend on our (essentially arbitrary) choice
of units. However, there are also dimensionless combinations of
physical constants, which can be considered as the parameters
of our Universe, and which define the way in which matter and
fields evolve.
i. (1.5 pts) Find a dimensionless combination α−1 and calcu-
late its value using the following subset of fundamental constants
(it may happen that only few constants will enter the expression
for α−1):
c = 3× 108 m/s,
G = 6.67× 10−11 m3 · kg−1s−2,
kB = 1.38× 10−23 J ·K−1,
NA = 6.02× 1023 mol−1,
~ = h

2π = 1.05× 10−34 J · s,
e = 1.6× 10−19 C,
ke = 1

4πε0
= 8.99× 109 m ·F−1.

Note that any power of α is also dimensionless; you are asked to
find the simplest combination of constants which yields α−1 > 1.
Hint: before applying dimensional analysis, all units need to

be expressed using the base units (m, s, A, K, kg, mol).
ii. (1 pt) The first and limiting step in the fusion of four pro-
tons into a helium atom inside a star of sub-solar mass is the
fusion of two protons,

p+ + p+ →2H+ + e+ + νe.

This process is obstructed, however, by a coulomb repulsion of
two protons. You may assume that until the distance between
the centres of two protons remains larger than the proton ra-
dius rp = 0.85× 10−15 m, there is only a Coulomb force; at
distances smaller than rp, an attractive strong force steps into
play and dominates over the Coulomb force. Estimate the tem-
perature T ′ required for the fusion of two protons if there were
no quantum-mechanical effects. Compare this result with the
value of Tc ≈ 1.8× 106 K.
iii. (1 pt) What enables the fusion of stellar hydrogen is the
quantum-mechanical tunnel effect. With this task, you’ll learn
that the fusion reaction rate depends on the dimensionless para-
meter α, thus we can say that the parameter α defines the
production rate of heavier nuclei in our Universe. (It appears
that in a slightly different Universe with a slightly different
value of α, no carbon nuclei neccessary for the existance of life
would have been produced1.)

It appears that a particle can tunnel through an energy
barrier (a region in space where the potential energy Π(r) is
larger than the total energy W ) with probability

p ≈ exp{−2~−1
∫ √

2m[Π(r)−W ]dr},

where the integral is to be taken over the range at which
Π(r) > W . Express the tunnelling probability for the proton-
proton fusion reaction for head-on collision of two counter-
moving protons of speed v in terms of α, v and c. You may
assume that the proton radius rp is much smaller than the ra-
dius r? at which the proton “dives into the tunnel” [Π(r?) = W ],
and make use of the equality

∫ a
0

√
1
x −

1
adx = π

2
√
a.

1J. Barrow and F. Tipler, The Anthropic Cosmological Principle, Oxford, (1988)
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Problem T2. Water tube (8 points)
Consider a tube which is obtained

when two metallic cylinders are welded
together as shown in the figure. Up-
per cylinder has internal cross-sectional
area A = 10 cm2, and the lower one —
1.1A = 11 cm2. Two pistons are connec-
ted with a narrow (rigid but light) steel
bar of length H = 30 cm; the distance
from the lower piston to the welding
area is h = 10 cm. The space between
the pistons is filled with water of density
ρ = 1000 kg/m3 and temperature T = 20 ◦C. The mass of each
of the pistons m

2 = 50 g (neglect the mass of the rod connecting
them) free fall acceleration g ≈ 10 m/s2 and the atmospheric
pressure p0 = 1× 105 Pa. The tube stands vertically on a solid
horizontal surface; the pistons can move freely up and down,
friction force can be neglected. The distance between the bot-
tom of the lower piston and the horizontal surface is more than
20 cm.

i. (0.5 pts) Let pP denote the pressure at a point P at the
bottom of the water column, and pQ — at a point Q at the
bottom. Find pP − pQ.
ii. (1.5 pts) Consider the two pistons, steel bar, and water
column as a single compound body. Make a sketch and mark
on it all the forces acting on this compound body by arrows
(denote them by letters — ~F1, ~F2, etc.). Determine the values
of all these forces.
iii. (1.2 pts) Determine the values of pP and pQ.
iv. (0.8 pts) Determine the tension force T in the steel bar.
v. (1 pt) Now, the whole system is slowly raised to a height
L = 25 cm (this is the distance between the horizontal surface
and the bottom edge of the tube), and released. The system
falls due to gravity, hits the surface (assume the impact to be
plastic, i.e. the kinetic energy of the metallic tube is converted
into heat), remains standing vertically on the horizontal surface
for a brief period of time τ , and jumps up into air. Why does
it jump? Provide a qualitative explanation.
vi. (3 pts) Find the duration τ during which the tube remains
standing on the surface (after falling and before jumping).
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Problem T3. Accelerating shock wave (11 points)
In interstellar space, shock waves can accelerate charged
particles to very high energies. We shall use an idealized model
of a shock wave, and assume that it is a potential barrier of a
constant height −V0 which moves with a constant velocity w
along the x-axis:

V (x, y, z, t) = −V0 if x < wt;

V (x, y, z, t) = 0 if x > wt.

In the frame where the shock wave is at rest, the energy of an
electron is conserved. This means that as long as the kinetic
energy of an electron of mass m and charge −e moving towards
the shock wave is insufficient ( 1

2mu
2 < eV0, where u denotes the

speed with which the electron is approaching the shock wave),
it is reflected back from the shock wave in the same way as
an elastic ball bounces from a rigid wall. In what fol-
lows, unless otherwise mentioned, we assume that the
electron is bounced elastically by the shock wave. You
can always use the parameters e, V0, m, B, and w to express
your answers. Unless otherwise specified, the velocity of the
electron is assumed to be non-relativistic.
i. (1 pt) Let the initial speed of the electron be ~v = (vx, vy, vz),
with vx < w. Determine the velocity ~v′ (i.e. the components
v′x, v′y, v′z) of the electron after being hit by the shock wave.
ii. (1 pt) Now, there is also an homogeneous magnetic field of
induction B, parallel to the z-axis. At the beginning, electron
rests at the origin, and at t = 0 is hit by the shock wave. Sketch
qualitatively the trajectory drawn by the electron; cover the
time period from t = 0 until at least t = πm

Be .
iii. (0.5 pts) Find the curvature radius of the electron’s tra-
jectory immediately after its first collision with the shock wave.
iv. (1 pt) The electron undergoes soon, at t = t2, a second im-
pact; write down an equation for determining t2. Use numerical
calculation to obtain an expression for t2.
v. (0.5 pts) Determine the average x-directional velocity vx

of the electron (averaged over the time interval τ between two
subsequent collisions of the electron with the shock wave).
vi. (1.5 pts) As time goes on, the electron undergoes many
collisions with the shock wave. Show that during its motion,
vy + kx = const, where k is a constant; express k in terms of e,

m and B.
vii. (1 pt) From now on, let us consider the limit
t � 2πm

Be . Determine the average y-directional acceleration
ay of the electron (express it in terms of e, m and B or constant
k introduced by task vi).
viii. (1 pt) It appears that at the limit t � 2πm

Be , the time
interval τ between subsequent collisions becomes shorter and
shorter, hence we can assume that τ � 2πm

Be . This means that
during a time interval between two subsequent collisions the
velocity vector of the electron will change only by a very small
angle and hence, its acceleration vector ~a = (ax, ay) can be
assumed to be constant.

Let us use now the shock wave’s frame of reference, and
consider the electron’s phase diagram, i.e. a diagram which
describes the state of the electron as a point in the x′ − p′x-
plane, where the vertical axis p′x = m(vx − w) corresponds to
the x′-component of the momentum, and x′ =

∫
(vx − w)dt

denotes the distance from the shock wave. Depict qualitatively
the electron’s phase trajectory, i.e. the curve drawn in phase
diagram during one period (between two subsequent collisions
of the electron with the shock wave). Grades for this task are
based purely on the shape of the curve.
ix. (1.5 pts) As time goes on, the width and height of the phase
trajectory will change; however, it appears that the surface area
of the region surrounded by the phase trajectory (referred to as
the adiabatic invariant) will remain constant with a very good
precision. For an initially resting electron, the adiabatic invari-
ant appears to be approximately equal to 1.36(mw)2

Be . Determine
the total kinetic energy Wf of the electron when it falls behind
the shock wave; express it in terms of e, V0, and ε, which is
defined as ε ≡ 2eV0

mw2 ; assume that ε� 1.
x. (2 pts) This final task is independent from the previous
tasks. Consider the propagation of a shock wave as described
before, but under the absence of a magnetic field. A relativistic
electron moves parallel to the front (in the laboratory frame,
the perpendicular component of its velocity is strictly zero).
Assuming that mw2 < eV0 and w � c (with c denoting the
speed of light), what should be the relativistic energy of the
electron so that it could fall behind the shock wave? You can
use any reasonable approximations.
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Problem T1. Main sequence stars (11 points)
Part A. Lifetime of Sun (3 points)
i. (0.7 pts) Since the Sun behaves as a perfectly black body
it’s total radiation power can be expressed from the Stefan-
Boltzmann law as

P = 4πR2
�σT

4
� = 4.5× 1026 W.

(Formula 0.5, nuber 0.1, units 0.1 pts.)
ii. (0.5 pts) From the energy conservation law

4mpc
2 = mHec

2 + 2mec
2 +W0

(0.2 pts). Then

W0 = 4mpc
2 −mHec

2 − 2mec
2 = 24 MeV.

(Formula 0.1, nuber 0.1, units 0.1 pts.)
iii. (0.5 pts) The fusion of four protons creates two positrons
which in turn annihilate with two electrons meaning that an
additional energy of W1 = 4mec

2 = 2.0 MeV is released. Then
the total energy released is W2 = W0 +W1 = 26 MeV. (Noticing
that 4 particles annihilate per one He atom 0.2, formula 0.1,
number 0.1, units 0.1 pts.)
iv. (1.3 pts) Over the course of Sun’s lifetime the central part
of the Sun will undergo fusion and release energy. The total
number of reactions that will take place is

N = M�
8

1
4mp

(0.3 pts). And thus, the total energy released is

E = NW2 = 1
8M�

W2

4mp
= 1.56× 1044 J

(0.3 pts). The total lifetime of the Sun can be approximated as

τ = E

P
= 1.1× 1010 y.

(Formula 0.4, nuber 0.1, units 0.1 pts.)
The current age of the sun τ� = 5× 109 y is approximately

two times smaller than the calculated theoretical age (0.1 pts).
Part B. Mass-luminosity relationship of stars (4.5 points)
i. (0.4 pts) Since all of the star’s mass is below the point Q,
the gravitational acceleration is the same as that of a point
mass with a mass of M (0.2 pts). Then

aQ = GM(
R0
2
)2 = 4GM

R2
0

(0.2 pts).
ii. (0.4 pts) By applying Gauss’s law for gravity for a sphere
surrounding the stellar core

4π
(
R0

2

)2
aP = 4πGM8

(0.2 pts);

aP = GM

2R2
0

(0.2 pts).
iii. (0.4 pts) Since the gravitational acceleration decreases
linearly along the thickness of the spherical layer, the aver-
age acceleration experienced by the spherical layer is aavg =
aP +aQ

2 = 9GM
4R2

0
(0.1 pts). Furthermore, a piece of the small

spherical layer with an area A has a mass of

m = A

4π
(
R0
2
)2

7M
8 = 7

8π
MA

R2
0

(0.1 pts). From the Newton’s second law

F = maavg = 63
32π

GM2A

R4
0

(0.2 pts).
iv. (0.4 pts) The previously calculated force acting on the
small piece of the narrow spherical layer can also be expressed
as

F = Apc = 63
32π

GM2A

R4
0

(0.3 pts). Then

pc = 63
32π

GM2

R4
0

(0.1 pts).
v. (1 pt) From the ideal gas law

pc
4π
(
R0
2
)3

3 = nRgTc

where n is the number of moles of protons and electrons inside
the stellar core (0.6 pts; 0.4 if electrons are forgetten). Since
the mass of an electron is negligible compared to the mass of a
proton, n = 2M

8mpNa
= M

4mpNa
(0.3 pts). Then

pc
πR3

0
6 = MRgTc

4mpNa
= MkBTc

4mp

and
pc = 3

2π
MkBTc
R3

0mp

(0.1 pts).
vi. (0.4 pts) Combing both expressions for pc, one gets

63
32π

GM2

R4
0

= 3
2π

MkBTc
R3

0mp

(0.2 pts).

R0 = 21
16
GMmp

kBTc

(0.2 pts).
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vii. (1.5 pts) Writing out the energy balance for a spherical
shell with a radius of x and thickness dx concentric to the star

−4πx2 dT
dx κ = P

(0.4 pts) and rearranging the terms, one gets

−4πκdT = P
dx
x2

(0.2 pts). Integrating from x = R0
2 to x = R0 yields

−4πκ
∫ T (R0)

Tc

dT = P

∫ R0

R0
2

dx
x2

−4πκ(T (R0)− Tc) = −P
(

1
R0
− 2
R0

)
4πκTc = P

R0

(0.2 pts). Then
P = 4πκTcR0

(0.3 pts). When similar expression is obtained without integ-
ration (leading to a wrong factor), only 0.2 for integration is
lost.

Substituting κ = f(Tc)
ρc

, ρc = 3M
4πR3

0
and R0 = 21

16
GMmp

kBTc
, we

ultimately end up with

P =
(

21
8
Gmp

kB

)4
π2T 3

c f(Tc)
3 M3

(0.3 pts). Thus γ = 3 (0.1 pts).
Part C. Proton-proton fusion chain (3.5 points)
i. (1.5 pts) First, we must convert the units to base units:
[c] = m/s,
[G] = m3 · kg−1s−2,
[kB ] = m2 · kg · s−2 ·K−1 (0.1 pts),
[NA] = mol−1,
[~] = m2 · kg/s (0.1 pts),
[e] = C,
[ke] = kg ·m3 ·C−2s−2 (0.1 pts).
Let α = [c]β [G]γ [kB]δ[NA]ε[~]µ[e]φ[ke]ω. Then we can create
an equation for each unit:
m: β + 3γ + 2δ + 2µ+ 3ω = 0
s: −β − 2γ − 2δ − µ− 2ω = 0
kg: −γ + δ + µ+ ω = 0
K: −δ = 0
mol: −ε = 0

C: φ− 2ω = 0.
(0.1 pts for each equation.) After solving the system of equa-
tions and setting ω = 1, we get β = −1, γ = 0, δ = 0, ε = 0,
µ = −1, φ = 2, and ω = 1 (apart from δ and ε, 0.1 pts for each
value). Thus

α = kee
2

c~
= 7.3× 10−3 .

(0.1 pts for the numerical value.)
ii. (1 pt) Let the distance to the centre of mass for both protons
be x. Then the force acting on one of the protons is F (x) = kee

2

4x2

and thus the potential energy is

Π =
∫ x

∞
F (x)dx = kee

2

4

∫ x

∞

dx
x2 = kee

2

4x .

(0.3 pts out which 0.1 goes for correctly treating the distance
to the centre of mass and distance between the protons.) By
applying the energy conservation law at x = rp

2 and x =∞, we
get

kee
2

2rp
= mpv

2

2

(0.2 pts). Furthermore

mpv
2

2 = 3kBT ′

2

(0.3 pts). T ′ can be expressed as

T ′ = kee
2

3kBrp
= 6.5× 109 K

(0.1 pts for formula). This is around T ′

Tc
= 3600 times larger

than the actual temperature of the stellar core (0.1 pts).
iii. (1 pt) The total energy of a proton moving at speed v is
W = mpv

2

2 and the potential energy, as expressed in the last sub-
task, is Π(r) = kee

2

2r = αc~
2r . The moment at which the proton

”dives into the tunnel” happens when W = Π(r) = Π(r?) = αc~
2r?

(0.3 pts). Thus r? = αc~
mpv2 (0.1 pts). Then the probability of

the tunnelling taking place is

p ≈ exp
[
−2~−1

∫ r?

0

√
mpαc~

(
1
r
− 1
r?

)
dr
]

=

(0.3 pts)

= exp
(
−2~−1√mpαc~

π
√
r?

2

)
= exp

(
−παc

v

)
(0.3 pts).
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Problem T2. Water tube (8 points)
i. (0.5 pts) There is a water column of height H between
points P and Q creating an additional pressure of pP − pQ =
ρgH = 3000 Pa. (Formula 0.3 pts, value 0.1 pts, units 0.1 pts.)

N N

F1

F2

F3

ii. (1.5 pts) The external forces acting
on the system are sketched on the figure
to the right. F2 = Ap0 = 100 N (for-
mula 0.1 pts, value with units 0.1 pts)
and F1 = 1.1Ap0 = 110 N (formula 0.1
pts, value with units 0.1 pts) is the at-
mospheric pressure acting on the pistons.
F3 = (M+m)g = 4.1 N (formula 0.1 pts,
value with units 0.1 pts) is the gravita-
tional force acting on the water-piston
system, where M = (H + 0.1h)Aρ =
0.31 kg (formula 0.1 pts, value with units
0.1 pts) is the mass of the water column. N is the total normal
force exerted by the metal cylinder. There is no horizontal
component for the normal force since it cancels out due to
symmetry. N can be expressed from the Newton’s 2nd law
applied on the vertical axis

N + F2 + F3 − F1 = 0

N +Ap0 + (M +m)g − 1.1Ap0 = 0

N = 0.1Ap0−(M+m)g = 0.1Ap0−((H+0.1h)Aρ+m)g = 5.9 N.

(Formula 0.2 pts, value with units 0.1 pts.) Each correctly
shown force in the sketch: 0.1 pts (0.4 pts overall).
iii. (1.2 pts) Notice that N = 0.1Ap1 (0.6 pts), where

p1 = 10N/A = 59 kPa

(formula 0.2 pts) is the pressure at the joint of the two tubes.
Therefore,

pQ = p1 − ρg(H − h) = 57 kPa.

(Formula 0.1 pts, value with units 0.1 pts.) and

pP = p1 + ρgh = 60 kPa.

(Formula 0.1 pts, value with units 0.1 pts.)
Alternatively, applying the Newton’s law on the vertical axis

for the piston, one gets

Ap0 −ApQ +mg + 1.1ApP − 1.1Ap0 = 0

(0.3 pts),

−0.1Ap0 +mg −ApQ + 1.1A(pQ + ρgH) = 0

(0.3 pts),

pQ = p0 − 11ρgH − 10mg
A

= 57 kPa

(formula 0.2 pts, value with units 0.1 pts).

pP = pQ + ρgH = p0 − 10ρgH − 10mg
A

= 60 kPa

(formula 0.2 pts, value with units 0.1 pts).
iv. (0.8 pts) Newton’s 2nd law on the vertical axis for the top
piston can be written out as

mg

2 +Ap0−ApQ + T = 0

(0.4 pts).

T = A(pQ − p0)− m

2 g = −A
(

11ρgH + 10mg
A

)
− mg

2 =

= −11ρgHA− 21
2 mg = −43.5 N

The negative sign of the tension force means that the steel bar
is being compressed, not stretched. (Formula 0.2 pts, value
with units 0.1 pts, sign or direction of T 0.1 pts.)
v. (1 pt) During the impact, the metallic tube comes to rest
but the two pistons keep moving downwards because the pistons
and the tube aren’t strongly connected (0.3 pts). As a result,
the volume between the two pistons increases (since the area of
the bottom piston is larger than the top piston) and vacuum
is created (0.3 pts). This causes the atmospheric pressure to
try to reverse the change and push the pistons upwards (0.2
pts). Because no energy is lost in the water-piston system (for
simplicity we assume the friction between the tube and water
/ pistons to be negligible), after the pistons have returned to
their initial position, their speed will be of equal magnitude
and of opposite sign, pointing upwards, which in turn makes
the tube jump (0.2 pts).
vi. (3 pts) Neglecting the pressure of water vapors and of the
water column of 20 cm, the pressure between the pistons is zero,
hence the net force acting on the system “water + pistons” is

F = −0.1Ap0 + (m+M)g = 5.9 N

(1.3 pt). Because the force is constant throughout the whole
process, the change of momentum for the water-piston system
can be expressed as

(M +m)(−v)− (M +m)v = Fτ ⇒

(1.3 pt)

2v =
(

0.1Ap0

M +m
− g
)
τ ⇒

τ = 20 (M +m)v
Ap0 − 10(m+M)g

where v =
√

2gL is the speed of the tube when it reaches the
ground. Thus

τ = 20 M +m

Ap0 − 10(m+M)g
√

2gL = 0.31 s.

(Formula 0.2 pts, value 0.1 pts, units T 0.1 pts.)
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Problem T3. Accelerating shock wave (11 points)
i. (1 pt) In the reference frame of the shock wave, the electron’s
initial velocity is ~v1 = (vx−w, vy, vz) (0.3 pts). After deflecting
against the shock wave, the horizontal component of the velocity
gets flipped (0.2 pts). Thus, the electron’s velocity in the mov-
ing frame of reference, after deflecting against the shock wave, is
~v2 = (w− vx, vy, vz) (0.1 pts). Moving back into the laboratory
frame of reference, the final velocity is ~v′ = (2w − vx, vy, vz)
(0.2 pts for x component, 0.1 both for x and y components).

y

x

ii. (1 pt) After being hit by the shock
wave, the electron starts moving with
speed v = 2w. Due to the magnetic
field, it moves along a circular traject-
ory, and at the initial moment of time,
the trajectory is perpendicular to the
front. Additionally, the electron peri-
odically undergoes collisions against the
shock wave, and the x-coordinates of
the collision points grow in time. This is
enough to draw an approximate sketch
of the electron’s trajectory.

Grading: trajectory is made from circular segments (0.3 pts)
which are connected at the reflection points so that instantan-
eous change of direction is clearly seen (0.2 pts). 0.2 pts if the
trajectory starts parallel to the x-axis, 0.1 pts if the direction
of motion is shown by arrow or described in another way; 0.2
pts if the reflection points advance in the same direction as the
shock wave.
iii. (0.5 pts) The Lorentz force acting on the electron acts as
a centripetal force

evB0 = mv2

R

(0.4 pts). Thus R = mv
eB0

= 2mw
eB0

(0.1 pts).
iv. (1 pt) Before the first collision, the electron’s x-coordinate is
x1(t) = R sin

(
2π t

T

)
(0.2 pts) and the shock wave’s x-coordinate

is x2(t) = wt (0.1 pts). The second impact happens when
x1(t) = x2(t) (0.2 pts). Thus

2mw
eB0

sin
(
B0e

m
t2

)
= wt2

sin
(
B0e

m
t2

)
= 1

2
B0e

m
t2

(0.1 pts). Substituting u = B0e
m t2, one gets

sin(u) = u

2
(0.2 pts). This equation can be solved numerically to get
u = 1.895 (0.1 pts). Thus t2 = 1.895 m

B0e
(0.1 pts).

v. (0.5 pts) Every time a collision happens, the electron and
the front are at the same place, with the same value of the

x-coordinate. This means that the electron’s and shock wave’s
average velocities in the direction of the x-axis are the same.
In other words, vx = w (0.5 pts).

vi. (1.5 pts) It is easier to find the value of k by taking a
derivative from both sides of the equation as it gets rid of
the constant. Then v̇y + kvx = 0 (0.2 pts). The only forces
acting on the electron are the Lorentz force and the repulsion
forces between the electron and the shock wave (0.3 pts). Since
the shock wave affects the electron only in the horizontal dir-
ection (0.2 pts), the acceleration’s vertical component comes
purely through the Lorentz’s force (0.2 pts). This means that
mÿ = −evxB0 holds throughout the electron’s motion (0.2 pts).
In other words, v̇y = −B0e

m vx. Plugging this to the conservation
law, we get −B0e

m vx + kvx = 0 (0.3 pts). Thus k = B0e
m (0.1

pts).

vii. (1 pt) By taking a derivative from the conservation law
vy + B0e

m x = const, we get ay + B0e
m vx = 0 (0.5 pts). Over the

long run, the average x-directional moving speed of the electron
is the same as that of the shock wave’s. Thus ay + B0e

m w = 0
(0.4 pts) and ay = −B0e

m w (0.1 pts).

viii. (1 pt) Over the course of one period, there is a constant
acceleration ax acting on the electron in the x-direction, both
in the lab frame, and in the shock wave’s frame; the behaviour
is the same what would be if there were a free fall acceleration
g = a. If we let x be the relative distance between the electron
and the shock wave, and the initial x-directional momentum at
x = 0 be px0, then the quantity E = p2

x0
2m = p2

x

2m +maxx is con-
served over the course of one period (energy conservation law)
(0.2 pts). Thus px =

√
p2
x0 − 2m2axx (0.1 pts). On the phase

diagram, this corresponds to a parabola who’s axis of symmetry
is at px = 0 (0.2 pts). Furthermore, at x = 0, the momentum of
the electron gets flipped due to the collision against the shock
wave, meaning that there is a straight line from (0,−px0) to
(0, px0) (0.3 pts). This gives enough information to draw the
phase diagram (correctly drawn figure 0.1 pts, arrow shown 0.1
pts).
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-px0

px0

x1

px

x

ix. (1.5 pts) The area under the phase diagram can be found
by integrating px(x)dx from x0 = 0 to x1 = p2

x0
2m2ax

and multiply-
ing the result by two (since the phase diagram is symmetrical
about px = 0). Thus

S = 2
∫ x1

0

√
p2
x0 − 2m2axxdx = 2px0

∫ x1

0

√
1− x

x1
dx =

= 4
3px0x1 = 2

3
p3
x0

m2ax
= 2

3
mv3

0
ax

(0.3 pts). Due to the conservation of this quantity (we use its
initial value taken from the problem text),

2
3
mv3

0
ax

= 1.36(mw)2

B0e

ax = 1
2.04

v3
0B0e

mw2

(0.3 pts), where v0 is the electron’s speed at x = 0. The
electron will fall behind the shock wave when mv2

0
2 > eV0 or

v0 >
√

2eV0
m = w

√
ε (0.2 pts). The horizontal acceleration

comes from Lorentz force ax = B0evy

m (0.3 pts). Thus

1
2.04

B0e

mw2w
3ε

3
2 = B0evy

m
1

2.042wε
3
2 = vy

(0.2 pts).
Since vy � vx, Wf ≈

mv2
y

2

Wf = ε3

2.04
mw2

2 = ε2

2.042 eV0

(0.2 pts).
x. (2 pts) In the reference frame of the shock wave, initially,
the electron’s x-directional and y-directional momenta are px
and py respectively. In the limiting case, the electron’s final
x-directional momentum is 0. Since the shock wave acts only in
the x direction, py will stay same throughout the motion. The
Lorentz invariant of the 4-momentum, initially and after the
electron has come to rest, can be written out as

E2 = p2
xc

2 + p2
yc

2 +m2
0c

4

(0.6 pts),
(E − eV0)2 = p2

yc
2 +m2

0c
4

(0.6 pts). Subtracting one equation from the other, we get
2EeV0 − e2V 2

0 = p2
xc

2 = m2
relc

2w2 = E2w2

c2 . Thus

E2w
2

c2 − 2EeV0 + e2V 2
0 = 0

(0.2 pts),

E = eV0c
2

w2

(
1±

√
1− w2

c2

)
;

(0.2 pts) with minus sign we would obtain p2
yc

2 = (E − eV0)2 −
m2

0c
4 < (E − eV0)2 − e2V 2

0 c
4/w4 < 0 which is not acceptable.

Thus, we need to take the plus sign (0.2 pts):

E = eV0c
2

w2

(
1 +

√
1− w2

c2

)
;

for w � c we can approximate E = 2eV0c
2

w2 (0.1 pts). So, the
electron will fall behind the shock wave if its relativistic energy
E ≥ 2eV0c

2

w2 (0.1 pts).
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