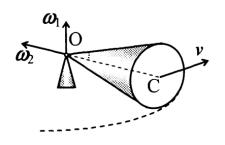
$$R = \frac{U}{I} = \frac{\rho}{2\pi r} \,. \tag{3}$$

11 класс

Задача_1.

Конус одновременно учувствует в двух движениях: вращении вокруг



вертикальной неподвижной оси с угловой скоростью $\vec{\omega}_1$ и вращении вокруг оси OC с угловой скоростью $\vec{\omega}_{2}$. Направление соответствующих векторов показано на рисунке. При этом точка С движется ПО окружности радиуса $R/tg\alpha$ с постоянной скоростью u, поэтому $\omega_1 = vtg\alpha/R$.

Так как конус катится по горизонтальной плоскости без скольжения, то скорость вращения вокруг оси ОС тех точек основания конуса, которые соприкасаются с плоскостью, равна v. Радиус окружности, по которой вращаются эти точки, равен R, поэтому угловая скорость вращения конуса вокруг оси ОС равна $\omega_2 = v/R$.

Принимая во внимание, что векторы $\vec{\omega}_1$ и $\vec{\omega}_2$ взаимно перпендикулярны, получаем для модуля вектора полной угловой скорости конуса $\vec{\omega} = \vec{\omega}_1 + \vec{\omega}_2$ выражение

$$\omega = \sqrt{\omega_1^2 + \omega_2^2} = \frac{v}{R\cos\alpha} = 2.3 \,\mathrm{pag/c}.$$
 (1)

Вектор углового ускорения конуса по определению равен

$$\vec{\beta} = \frac{d\vec{\omega}}{dt} = \frac{d\vec{\omega}_1}{dt} + \frac{d\vec{\omega}_2}{dt}, \qquad (2)$$

Причем первое слагаемое в этой сумме равно нулю, так как вектор $\vec{\omega}_1$ остается неизменным, как по длине, так и по направлению. Вектор же $\vec{\omega}_2$, оставаясь неизменным по длине, вращается вокруг вертикальной оси с угловой скоростью $\vec{\omega}_1$ и направлен перпендикулярно этой оси. Рассматривая $\vec{\omega}_2$ как радиус вектор некоторой точки, расположенной на его конце, приходим к выводу, что $d\vec{\omega}_2/dt$ имеет смысл линейной скорости вращения этой точки по окружности с радиусом ω_2 , то есть $|d\vec{\omega}_2/dt| = \omega_1\omega_2$. В результате, угловое ускорение конуса β определяется выражением

$$\beta = \omega_1 \omega_2 = (v/R)^2 tg\alpha = 2.3 \text{ рад/c}^2.$$

Задача_2.

Напряжение на конденсаторе C_3 равно E, следовательно его заряд равен $q_3 = C_3 E = 10^{-4} \, \mathrm{K}$ л. Заряд на конденсаторах C_1 и C_2 одинаковый, а напряжения складываются, поэтому

$$\frac{q}{C_1} + \frac{q}{C_2} = E, \tag{1}$$

откуда

$$q_1 = q_2 = q = \frac{C_1 C_2}{C_1 + C_2} E = 2 \cdot 10^{-5} \text{ Кл.}$$
 (2)

Эквивалентная емкость системы конденсаторов равна

$$C = C_3 + \frac{C_1 C_2}{C_1 + C_2} = 12 \,\mathrm{mk}\Phi.$$
 (3)

Задача 3.

При сжатии газа внешней силой совершается работа

$$A = \frac{m}{\mu} RT \ln \frac{V_1}{V_2} = \frac{m}{\mu} RT \ln \frac{p_2}{p_1}$$
 (1)

где p_1 и p_2 - соответственно начальное и конечное давление. Отсюда получаем

$$\mu = \frac{mRT \ln(p_2/p_1)}{A}.$$
 (2)

Подставляя в эту формулу числовые значения, находим, что $\mu = 4$ кг/моль. Значит, исследуемый газ – гелий.

Используя уравнение состояния, находим первоначальный объем газа

$$V_1 = \frac{A}{p_1 \ln p_2 / p_1} = 2,4 \,\mathrm{m}^3. \tag{3}$$