Решение экспериментального задания

3-го этапа Республиканской олимпиады по физике, 2022

11 класс, (15 баллов)

Рассчитаем изменение энергии в результате работы сил на малом участке

$$dA = (F(x) - \mu(x)mg)dx \tag{1}$$

$$dA = dE = \frac{dE}{dv} * \frac{dv}{dx} * dx = mv \frac{dv}{dx} dx$$
 (2)

$$\mu(x) = \frac{F(x) - mv \frac{dv}{dx}}{mg} \tag{3}$$

$$\frac{dv}{dx} = 3.$$

Вычислим значения $\mu(x)$ по формуле (3)

X, M	F(x), H	v(x), m/c	$\mu(x)$
0,00	5,12	0	0,51
0,05	6,17	0,15	0,57
0,10	7,16	0,3	0,63
0,15	8,07	0,45	0,67
0,20	8,91	0,6	0,71
0,25	9,68	0,75	0,74
0,30	10,38	0,9	0,77
0,35	11,01	1,05	0,79
0,40	11,57	1,2	0,80
0,45	12,05	1,35	0,80
0,50	12,47	1,5	0,80
0,55	12,81	1,65	0,80
0,60	13,09	1,8	0,77
0,65	13,29	1,95	0,74
0,70	13,42	2,1	0,71
0,75	13,48	2,25	0,67
0,80	13,47	2,4	0,63
0,85	13,39	2,55	0,57
0,90	13,24	2,7	0,51
0,95	13,01	2,85	0,45
1,00	12,72	3	0,37

$$S = \sum_{i=1}^{n} (\mu_i - ax_i^2 - bx_i - c)^2$$

$$\frac{dS}{da} = \sum_{i=1}^{n} 2(-x_i^2)(\mu_i - ax_i^2 - bx_i - c) = 0$$

$$\frac{dS}{db} = \sum_{i=1}^{n} 2(-x_i)(\mu_i - ax_i^2 - bx_i - c) = 0$$

$$\frac{dS}{da} = \sum_{i=1}^{N} 2(-1)(\mu_i - ax_i^2 - bx_i - c) = 0$$

Что приводит к системе уравнений:

$$a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i + nc = \sum_{i=1}^{n} \mu_i$$

$$a\sum_{i=1}^{n}{x_{i}}^{3}+b\sum_{i=1}^{n}{x_{i}}^{2}+c\sum_{i=1}^{n}{x_{i}}=\sum_{i=1}^{n}{x_{i}}\mu_{i}$$

$$a\sum_{i=1}^{n} x_i^4 + b\sum_{i=1}^{n} x_i^3 + c\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i^2 \mu_i$$

$$n = 21, \sum_{i=1}^{21} x_i = 10,5, \sum_{i=1}^{21} x_i^2 = 7,18, \sum_{i=1}^{21} x_i^3 = 5,51, \sum_{i=1}^{21} x_i^4 = 4,52, \sum_{i=1}^{21} \mu_i = 14,01,$$

$$\sum_{i=1}^{21} x_i \mu_i = 6,73, \sum_{i=1}^{21} x_i^2 \mu_i = 3,13$$

$$7,18a + 10,5b + 21c = 14,01$$

$$5,51a + 7,18b + 10,5c = 6,73$$

$$4,52a + 5,51b + 7,18c = 3,13$$

Её решение: a-1,42 , b=-1,3 , c=0,51

$$\mu(x) = 0.51 - 1.3x + 1.42x^2$$

Максимум достигается при x=0,45 и равен $\mu_{max}=0,80$

Формула (1)	[0,5 балла]
Формула (2)	[0,5 балла]
Формула (3)	[1 балл]
Построение таблицы v(x)	[0,5 балла]
Построение таблицы $\mu(x)$ (менее 20 верных значений 1 балл, менее	[1,5 балла]
15 -0,5 балла, менее 10 – 0 баллов)	
Верная система уравнений буквенная (1 балл за каждое)	[3 балла]
Верная система уравнений численная (1,5 балла за каждое)	[4,5 балла]
Решение системы (1 балл за каждый коэффициент)	[3 балла]
Нахождение максимума и его координаты	[0,5 балла]