9 класс «Плавление льда»

Часть 1. Плавление льда в пресной воде.

- 1.1 Примерная масса кусочка льда $m_0 \approx 9.0$ г.
- 1.2 График зависимости температуры воды от времени в течение плавления льда приведен ниже.

1.3 Судя по графику, плавление льда закончилось, когда температура воды достигла минимального значения, то есть в момент времени $\tau = 561c$.

Допустимо также считать, что плавление началось не в начальный момент времени, а при $\tau = 18c$, потому что в этой точке скорость уменьшения температуры заметно возросла.

1.4 За время плавления льда температура воды понизилась от $t_1 = 18^{\circ}C$ до $t_2 = 9.8^{\circ}C$. Если пренебречь теплообменом, то вся теплота, выделившаяся при остывании воды пошла на плавление льда. В этом случае уравнение теплового баланса имеет вид

$$cm(t_1 - t_2) = \lambda m_0, \tag{1}$$

где m = 752 — масса воды в стакане, λ — удельная теплота плавления льда.

Из этого уравнения следует формула для расчета удельной теплоты плавления льда

$$\lambda = \frac{cm(t_1 - t_2)}{m_0}. (2)$$

Подстановка численных значений приводит к результату

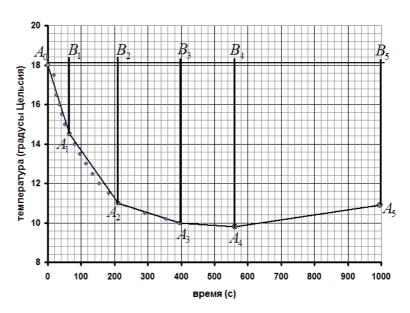
$$\lambda = \frac{cm(t_1 - t_2)}{m_0} = 2,9 \cdot 10^5 \frac{\cancel{\square} \cancel{3}}{\kappa 2}.$$
 (3)

1.5 Прежде всего отметим, что в данном случае поток теплоты направлен из воздуха в воду, так как температура воды меньше, чем температура окружающей среды.

Мощность потока теплоты пропорциональна разности температур, поэтому может быть представлена в виде

$$P = \beta(t_0 - t). \tag{4}$$

Так как температура воды в стакане постоянно изменяется, то необходимо разбить весь промежуток времени на малые интервалы $\Delta \tau_i$ и просуммировать по всем малым интервалам:


$$Q = \sum_{i} \beta (t_i - t_0) \Delta \tau_i = \beta \sum_{i} (t_i - t_0) \Delta \tau_i.$$
 (5)

Последняя сумма численно равна площади между кривой зависимости $t(\tau)$ и горизонтальной прямой $t=t_0$.

Для определения коэффициента пропорциональности воспользоваться данными нагреванию воды (после того, как расплавился). лед рисунке показано разбиение требуемых площадей интервалы. Площадь трапеции $A_{\Lambda}A_{5}B_{5}B_{\Lambda}$ (участок нагрева) численно равна

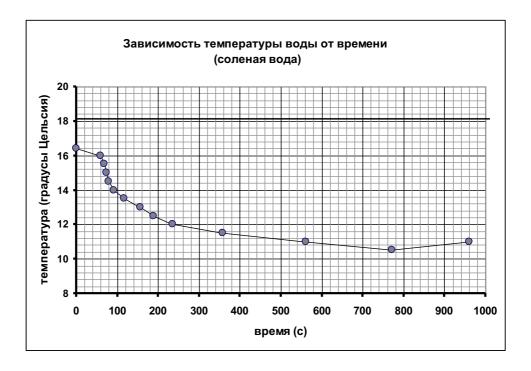
$$S_0 \approx 3370 \, \text{cpad} \cdot c$$

Этой площади соответствует нагрев воды на $(\Delta t)_2 = 1,1^{\circ}C$. Площадь криволинейной трапеции $A_0A_4B_4$ (этап остывания вследствие плавления) равна

$$S = 3660 cpad \cdot c \tag{6}$$

Количество поступившей на этом этапе теплоты эквивалентно нагреву воды на величину

$$\left(\Delta t\right)_{1} = \frac{S}{S_{0}} \left(\Delta t\right)_{2} \approx 1,08^{\circ}C. \tag{7}$$


Можно также сразу заметить, что эти площади примерно равны, поэтому можно считать, что за время плавления вода получила такое же количество теплоты, какое и отдала на этапе нагрева после окончания плавления. Иными словами, для уточнения значения удельной теплоты плавления к разности температур необходимо прибавить величину $(\Delta t)_1$. Такой пересчет приводит к уточненному значению удельной теплоты плавления

$$\lambda = \frac{cm\left(t_1 - t_2 + \left(\Delta t\right)_1\right)}{m_0} = 3,3 \cdot 10^5 \frac{\text{Дэк}}{\kappa 2},\tag{8}$$

что очень близко к табличному значению.

Часть 2. Плавление льда в растворе соли.

2.1 График зависимости температуры воды от времени в течение плавления льда приведен ниже.

2.2 В этом случае удельная теплота плавления оказывается равной

$$\lambda = \frac{cm(t_1 - t_2)}{m_0} = \frac{4.2 \cdot 10^3 \cdot 75 \cdot 10^{-3} (16 - 10.5)}{9 \cdot 10^{-3}} = 1.9 \cdot 10^5 \frac{\text{Дж}}{\kappa z}.$$
 (9)

Отметим, что в данном случае на графике явно видно, что плавление льда началось «со второй точки», где график резко пошел вниз. Таким образом, оказывается, что удельная теплота плавления льда в соленой воде значительно меньше, чем в пресной.

Часть 3. Сравнение процесса плавления в пресной и соленой воде.

- 3.1 Основными причинами возникновения погрешностей измерения удельной теплоты плавления являются:
- неточность определения массы льда;
- сложность определения начала и окончания плавления (следовательно, и изменения температуры воды).

Остальные причины (погрешности измерения температур и времени, большой шаг времени и т.д.) вносят несущественные поправки.

- 3.2 Скорость плавления льда зависит от многих факторов, главными из которых являются:
- разность температур воды и льда;
- размер кусочка льда (главным образом, площадь его поверхности);
- вязкости жидкости (от нее зависит эффективность перемешивания).

Экспериментальные данные не позволяют утверждать. что в соленой воде лед плавится быстрее – времена плавления оказываются примерно одинаковыми.

3.3 Поэтому основным фактором влияния на процесс плавления является уменьшение удельной теплоты плавления.

Пункт	Содержание	Всего	Баллы
задачи	•	за	
		пункт	
1.1	Рассчитаны объем и масса кусочка льда	0,5	0,25
	•		0,25
1.2	Построение графика:	3	
	Оси подписаны и оцифрованы;		0,5
	Нанесены все точки в соответствии с таблицей;		2
	Проведена сглаживающая линия.		0,5
1.3	Правильно указаны временной диапазон плавление льда	0,5	0,25
			0,25
1.4	Значение удельной теплоты:	3	
	Формула;		1
	Численное значение отличие не более 25% (не более		
	40%, более)		2(1;0)
1.5	Правильно указана площадь	1	1
1.6	Правильный расчет удельной теплоты плавления льда,	2	2
	учитывая теплообмен с окружающей средой		
<u>Часть 2</u>	2. Плавление льда в растворе соли.		
2.1	Построение графика:	3	
	Оси подписаны и оцифрованы;		0,5 2
	Нанесены все точки в соответствии с таблицей;		2
	Проведена сглаживающая линия.		0,5
2.2	Определено приближенное значение удельной теплоты	1,5	1,5
	плавления льда в соленой воде, пренебрегая		
	теплообменом.		
3.1	По 0,25 балла за каждую правильно названные факторы	0,5	0,25*2
3.2	По 0,25 балла за каждую правильно названные факторы	1,0	0,25*4