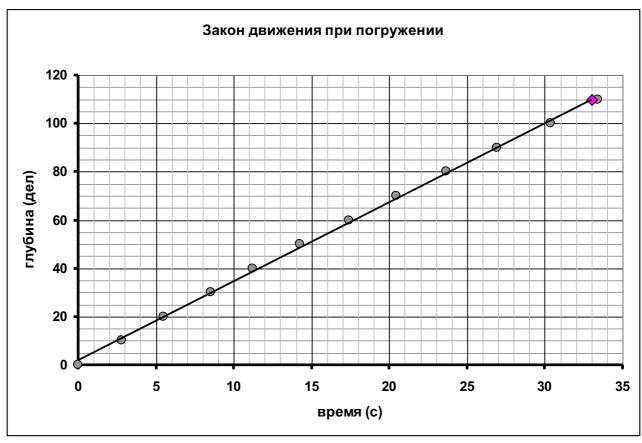
11 класс. «Неньютоновская жидкость»


Часть 1. Закон движения при погружении.

1.1 Приведены результаты трех измерений закона движения, проведено усреднение времен $\langle t \rangle$.

Таблица 1

<i>h</i> , дел.	<i>t</i> ₁ , c	t_2 , c	t_2 , c	$\langle t \rangle$, c	$V, \frac{\partial e \pi}{c}$
0	0	0,00	0,00	0,00	
10	3,03	2,68	2,75	2,82	3,63
20	5,53	5,63	5,36	5,51	3,51
30	8,21	9,04	8,31	8,52	3,50
40	10,45	12,12	11,09	11,22	3,47
50	13,2	15,39	14,24	14,28	3,24
60	15,95	19,08	17,17	17,40	3,24
70	18,87	21,88	20,58	20,44	3,18
80	21,83	25,12	24,10	23,68	3,07
90	24,45	28,48	27,96	26,96	2,99
100	27,6	31,70	31,85	30,38	3,11
110	30,61	33,63	35,95	33,40	

График полученной зависимости глубины от времени показан на рисунке.

1.2 Средняя скорость рассчитывается как отношение всего пройденного пути ко времени:

$$\langle V \rangle = \frac{S}{t} = \frac{110}{33.40} \approx 3,29 \frac{\partial e\pi}{c}.$$
 (1)

Погрешность определения скорости определяется погрешностью измерения времени, которая может быть оценена различными способами. например, как среднеквадратичная

$$\Delta t = \sqrt{\frac{\sum_{k} (t_k - \langle t \rangle)^2}{3}} \approx 2c.$$
 (2)

Тогда погрешность определения скорости равна

$$\Delta V = \langle V \rangle \frac{\Delta t}{\langle t \rangle} \approx 0.2 \frac{\partial e \pi}{c}.$$
 (3)

Окончательный результат расчета средней скорости

$$\langle V \rangle = (3.3 \pm 0.2) \frac{\partial e_{\pi}}{c}.$$
 (4)

1.3 В данном эксперименте основную погрешность привносят измерения времени, поэтому при использовании МНК следует искать параметры зависимости

$$t = ah + b. (5)$$

Расчеты по МНК дают следующие значения параметров:

$$a = (0,3050 \pm 0,006) \frac{c}{\partial e^{\pi}}.$$

$$b = (-0,6 \pm 0,4)c$$
(6)

Скорость в равномерном приближении принимает значение

$$\begin{cases} V = \frac{1}{a} = 3,279 \\ dV = V \frac{\Delta a}{a} = 0,067 \end{cases} \Rightarrow V = (3,28 \pm 0,07) \frac{\partial e \pi}{c}$$
 (7)

1.4 Расчет скоростей может быть проведен по данным Таблицы 1. Скорость в момент времени t_{ν} рассчитывается по симметричной формуле

$$V_k = \frac{h_{k+1} - h_{k-1}}{t_{k+1} - t_{k-1}}. (8)$$

Результаты таких расчетов приведены в последнем столбце Таблицы 1. График зависимости скорости от времени показан на рисунке.

1.5 Отклонение точек от прямой достаточно существенно, что связано с большой погрешностью расчета скорости на каждом интервале. Но четко наблюдается тенденция к уменьшению скорости по мере погружения, то есть отклонения не случайны.

Часть 2. Подъем шарика.

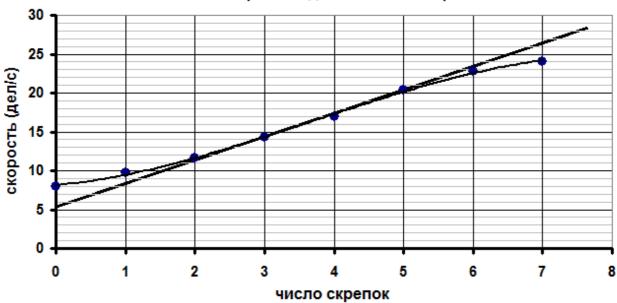

2.1 Таблица 2 результатов измерений времен погружения при разном числе скрепок приведена ниже. Последний столбец — средние скорости движения, рассчитанные по понятной формуле $V = \frac{h}{\sqrt{t}}$.

Таблица 2.

n	t_1 , c	t_2 , c	t_2 , c	$\langle t \rangle$, c	$V, \frac{\partial e \pi}{c}$
0	13,23	13,92	14,07	13,74	8,01
1	11,47	11,1	11,22	11,26	9,77
2	9,25	9,59	9,48	9,44	11,65
3	7,79	7,59	7,74	7,71	14,27
4	6,88	6,37	6,15	6,47	17,01
5	5,53	5,47	5,23	5,41	20,33
6	4,76	4,73	5,01	4,83	22,76
7	4,55	4,51	4,65	4,57	24,07

График зависимости скорости подъема шарика от числа добавленных скрепок показан на рисунке. На нем же показана прямая, проходящая через средние точки зависимости.

Зависимость скорости подъема от числа скрепок

- 2.2 Хорошо видно. что экспериментальный данные систематически отклоняются от проведенной прямой, поэтому эти отклонению не могут быть объяснены погрешностями измерений.
- 2.3 Возможными причинами наблюдаемых нелинейностей являются свойства самой жилкости:
- неизвестная зависимость силы сопротивления от скорости обусловленная вязкостью жидкого мыла;
- наличие присоединенной массы (слоя жидкости, увлекаемого в движение шариком).

Пункт	Содержание	Всего за	Баллы
задачи	П	пункт	
1.1	Построение графика:	1	0.5
	- оси подписаны и оцифрованы;		0,5
	- нанесены все точки в соответствии с таблицей;		0,5
1.0	- график зависимости времени от глубины	2	(-1)
-	Расчет средней скорости:	3	0.5
	- формула для расчета (1)		0,5
	(другие не оцениваются);		0.5
	- численное значение;		0,5
	- случайная погрешность измерения времени (2);		0,5
	(или другой метод для случайной погрешности)		
	- формула для погрешности скорости (3);		0,5
	- численное значение погрешности;		0,5
	- правильно округленный результат;		0,5
	Приближение равномерного движения:	5,5	
	- расчет по зависимости $t(h)$;		0,5
	- расчет коэффициентов по МНК;		1,5
	- численные значения коэффициентов;		0,25+0,25
	- погрешность коэффициента наклона;		0,5
	- формула для погрешности скорости;		0,5
	- расчет погрешности скорости;		0,5
	- расчет координат двух точек;		1
	- нанесена прямая на график		0,5
1.4	Расчет скоростей:	2,5	
	- формула для расчета (можно не симметрично);	,-	0,5
	- проведен расчет всех скоростей;		1
	- построение графика (оси подписаны и оцифрованы;		_
	нанесены все точки, проведена сглаживающая линия);		0,5
	- получена убывающая зависимость (по		3,2
	сглаживающей линии);		0,5
1.5	Причины:	0,5	0,5
1.0	- пузырьки воздуха;	0,0	0,25
	-стенки.		0,25
Часть 2	г. Подъем шарика <u>.</u>		0,23
2.1	Построение графика (оси подписаны и оцифрованы;	1,0	0,5
2.1	нанесены все точки, проведена сглаживающая линия);	1,0	0,5
	Получена возрастающая нелинейная зависимость (по		0,5
	сглаживающей линии)		0,5
2.2		1	
2.2	Отклонения от линейной зависимости	1	0.5
	систематические;		0,5
	Обоснование показано систематическое отклонение от		0,5
2.2	прямой, которая проведена на графике.	0.7	
	Возможные причины: нелинейная зависимость силы	0,5	2.2.
	от скорости;		0,25
	Присоединенная масса.		0,25