Решение задач. 10 класс.

Задача 1. «Солянка» (10.0 балла)

Эта задача состоит из трех независимых частей.

Часть 1.1 (4.0 балла)

В начальный момент времени система приходит в движение, причем скорости первого и второго шариков всегда равны в силу нерастяжимости нити

$$v_1 = v_2 = u. ag{1}$$

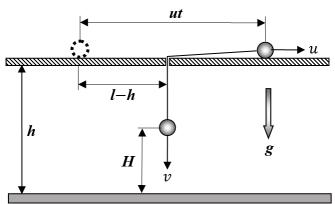
Непосредственно перед ударом шарика 2 о нижнюю плоскость, скорости шариков определяются законом сохранения энергии

$$m_2 g h = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2. \tag{2}$$

Из уравнений (1) и (2) определяем скорости обоих шариков перед ударом шарика 2 о нижнюю плоскость в виде

$$u = \sqrt{\frac{2m_2gh}{(m_1 + m_2)}}. (3)$$

Дальнейшее движение происходит следующим образом. Шарик 1 скользит по верхней плоскости с постоянной скоростью u. Шарик 2 отскакивает от нижней плоскости с той же по модулю, но направленной вверх скоростью u. Нитка при этом становится не натянутой. В дальнейшем описанная в условии задачи ситуация возможно только для случая, изображенного на рисунке.



Именно, достигнув максимальной высоты, шарик 2 начинает опускаться вниз до тех пор, пока не достигнет скорости, определяемой уравнением

$$m_2 v = m_1 u. (4)$$

Только при соблюдении этого условия вновь натянутая нить сможет загасить скорости обоих шаров.

Время, прошедшее между столкновением шарика 2 с нижней плоскостью и моментом натяжения нити, определяется выражением

$$t = \frac{u+v}{q},\tag{5}$$

при этом высота шарика 2 над нижней плоскостью составляет

$$H = \frac{u^2 - v^2}{2g}. (6)$$

Очевидно, что за время, прошедшее между столкновением шарика 2 с нижней плоскостью и моментом натяжения нити, шарик 1 пройдет расстояние

$$s = ut. (7)$$

В момент, когда нить снова натянется, ее длина вновь должна стать равной l, поэтому из рисунка получаем

$$s - (l - h) + h - H = l. (8)$$

Решая совместно систему уравнений (3)-(8), получаем

$$\frac{m_1}{m_2} = 2\frac{l}{h} - 3. \tag{9}$$

Содержание	Баллы
Формула (1): $v_1 = v_2 = u$	0,3
Формула (2): $m_2gh = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$	0,3
Формула (3): $u = \sqrt{\frac{2m_2gh}{(m_1+m_2)}}$	0,3
Формула (4): $m_2 v = m_1 u$	0,6
Формула (5): $t = \frac{u+v}{g}$	0,3
Формула (5): $t = \frac{u+v}{g}$ Формула (6): $H = \frac{u^2-v^2}{2g}$	0,3
Формула (7): $s = ut$	0,3
Формула (8): $s - (l - h) + h - H = l$	0,6
Формула (9): $\frac{m_1}{m_2} = 2\frac{l}{h} - 3$	1,0
Итого	4,0

Часть 1.2 (3.0 балла)

Во внешнем электрическом поле E_0 на поверхности шара индуцируются заряды, электрическое поле которых компенсирует внешнее электрическое поле в объеме проводника. Очевидно, что поверхностная плотность заряда в каждой точке шара пропорциональна внешнему электрическому полю и не зависит от его радиуса

$$\sigma \sim E_0$$
. (1)

При выключении электрического поля выделится тепло Q, запасенное в энергии взаимодействия индуцированных зарядов между собой W, то есть

$$Q = W. (2)$$

Разобьем поверхность сферы на очень маленькие участки, тогда энергия взаимодействия двух таких произвольных участком, расположенных на расстоянии r_{12} друг от друга, равна

$$\delta W = k\sigma_1 \sigma_2 \frac{\delta S_1 \delta S_2}{r_{12}},\tag{3}$$

где $\delta S_1 \delta S_2$ – площади участков с поверхностными зарядами σ_1 , σ_2 соответственно.

Полная энергия W является суммой по всевозможным таким участкам

$$W = \Sigma \delta W. \tag{4}$$

Увеличим радиус сферы в n раз, а разбиение на участки оставим тем же. Тогда поверхностные заряды в соответствии с (1) не изменятся, а площади участком возрастут как

$$\delta S_{1,2} \sim n^2, \tag{5}$$

а расстояние между ними увеличится как

$$r_{12} \sim n$$
. (6)

Из формул (3)-(6) следует, что энергия взаимодействия индуцированных зарядов

$$V \sim n^3$$
, (7)

поэтому получаем окончательный ответ

$$Q = n^3 Q_0 = 8Q_0. (8)$$

Содержание	Баллы
Формула (1): $\sigma \sim E_0$	0,5
Формула (2): $Q = W$	0,5
Формула (3): $\delta W = k\sigma_1\sigma_2\frac{\delta S_1\delta S_2}{r_{12}}$	0,5
Формула (4): $W = \Sigma \delta W$	0,2
Формула (5): $\delta S_{1,2} \sim n^2$	0,3
Формула (6): $r_{12} \sim n$	0,2

Формула (7): $W \sim n^3$	0,3
Формула (8): $Q = n^3 Q_0 = 8Q_0$	0,5
Итого	3,0

Часть 1.3 (3.0 балла)

Пусть линза является рассеивающей, тогда изображение в нем источника является мнимым, при этом очевидно, что минимальный размер пятна достигается тогда, когда расстояние от линзы до экрана должно быть как можно меньше, то есть

$$d_{min} = l. (1).$$

Аналогичная ситуация наблюдается для случая собирающей линзы с $F \ge l$, так как в этом случае изображение в линзе также является мнимым, то есть

$$d_{min} = l. (2).$$

Рассмотрим отдельно случай собирающей линзы с F < l. Предположим, что изображение источника на экране можно сфокусировать в точку, тогда должна выполняться формула линзы

$$\frac{1}{d} + \frac{1}{l-d} = \frac{1}{F},$$
 откуда получаем квадратное уравнение для

$$d^2 - ld + Fl = 0, (4)$$

решение которого имеет вид

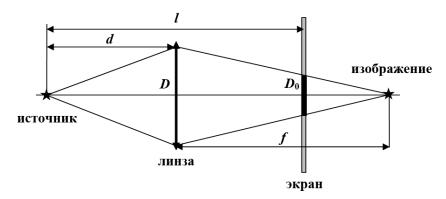
$$d_{1,2}=rac{l\pm\sqrt{l(l-4F)}}{2}.$$
 (5) Из формулы (5) следует, что изображение в виде точки можно получить на экране только

тогда, когда

$$F < \frac{l}{4},\tag{6}$$

при этом в решении (6) возможны оба знака, то есть $d_{min} = d_{1,2}$.

Наконец рассмотрим случай собирающей линзы, у которой $\frac{l}{4} < F < l$. В этом случае получается сходящийся пучок лучей (смотрите рисунок), который нельзя сфокусировать в точку.



В соответствии с формулой линзы

$$\frac{1}{d} + \frac{1}{f} = \frac{1}{F}. (7)$$

Из подобия треугольников на рисунке заключаем, что диаметр пятна на экране D связан с

диаметром линзы
$$D_0$$
 пропорцией
$$\frac{D}{D_0} = \frac{f - (l - d)}{f}. \tag{8}$$
 Из (7) и (8) после преобразований получаем

$$\frac{D}{D_0} = 2\sqrt{\frac{l}{F}} - \frac{l}{F} + \left(\sqrt{\frac{l}{d}} - \sqrt{\frac{d}{F}}\right)^2. \tag{9}$$

Из формулы (9) заключаем, что размер пятна будет минимальным, когда выражение в круглых скобках правой части (9) обратится в ноль, то есть

$$d_{min} = \sqrt{lF}. (10)$$

Содержание	Баллы
Рассеивающая линза и формула (1): $d_{min} = l$	0,2
Собирающая линзы с $F \geq l$ и формула (2): $d_{min} = l$	0,2
Формула (3): $\frac{1}{d} + \frac{1}{l-d} = \frac{1}{F}$	0,2
Формула (4): $d^2 - ld + Fl = 0$	0,3
Формула (5): $d_{min} = \frac{l \pm \sqrt{l(l-4F)}}{2}$	0,3
Собирающая линза при условии в формуле (6): $F < \frac{l}{4}$	0,3
Формула (7): $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$	0,3
Формуле (8): $\frac{D}{D_0} = \frac{f - (l - d)}{f}$	0,3
Формуле (9): $\frac{D}{D_0} = 2\sqrt{\frac{l}{F}} - \frac{l}{F} + \left(\sqrt{\frac{l}{d}} - \sqrt{\frac{d}{F}}\right)^2$	0,3
Формуле (10): $d_{min} = \sqrt{lF}$	0,3
При условии: $\frac{l}{4} < F < l$	0,3
Итого	3,0

Задача 2. Пар против воздуха (10.0 балла)

2.1 До начала нагревания с одной стороны поршня имеется воздух, а с другой – насыщенный водяной пар. При нагревании системы вода начинает испаряться, давление насыщенных паров возрастает и поршень приходит в движение, так как зависимость давления воздуха определяется уравнением идеального газа, а давление насыщенных водяных паров зависит только от их температуры. Понятно, что движение поршня полностью прекратится в тот момент, когда вся вода в системе полностью испарится, так как в этот момент с обоих сторон поршня окажутся только газы, подчиняющиеся уравнению Менделеева-Клайперона.

Начальное и конечное состояния воздуха связаны соотношением

$$\frac{p_0 V_0}{2T_0} = \frac{p V_0}{4T}.$$
 (1)

$$\frac{1}{2T_0} - \frac{1}{4T}$$
.

Для пара в начальный момент времени уравнение состояния идеального газа имеет вид
$$p_0 \frac{V_0}{2} = \frac{m_0}{\mu_w} R T_0,$$
2. В момент прекрамения испарация

а в момент прекращения испарения
$$p\frac{3V_0}{4} = \frac{m_0 + m}{\mu_W} RT. \tag{3}$$
 Решая совместно системы уравнений (1)-(3), находим

$$m_0 = \frac{m}{2} = 2.0 \text{ r.}$$
 (4)

2.2 С одной стороны давление насыщенных водяных паров в начальный момент времени определяется приведенным в условии графиком зависимости, а с другой стороны оно описывается уравнением состояния идеального газа

$$p = \frac{m_0}{\mu_W} \frac{2R}{V_0} T. \tag{5}$$

$$p = \frac{m_0}{\mu_W} \frac{2R}{V_0 \cdot 10^5} (t + 273.15),\tag{6}$$

Таким образом, на приведенном в условии графике зависимости надо построить прямую $p = \frac{m_0}{\mu_W} \frac{2R}{V_0 10^5} (t + 273.15), \tag{6}$ пересечение которой с графиком давления насыщенных водяных паров определяет начальную температуру системы

$$t_0 = 1.4 \cdot 10^2 \,^{\circ}\text{C}.$$
 (7)

2.3 Из графика зависимости давления насыщенных паров от температуры получаем начальное давление в системе

$$p_0 = 3.8 \cdot 10^5 \,\mathrm{\Pi a.}$$
 (8)

2.4 Аналогично 2.2, с одной стороны давление насыщенных водяных паров в начальный момент времени определяется приведенным в условии графиком зависимости, а с другой стороны оно описывается уравнением состояния идеального газа

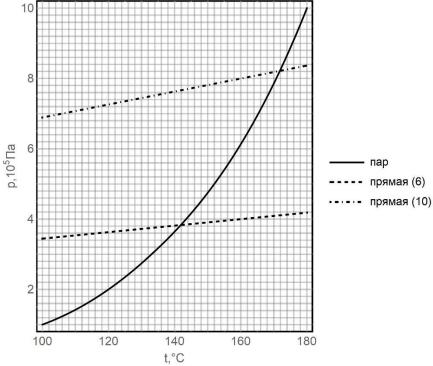
$$p = \frac{m_0 + m}{\mu_w} \frac{4R}{3V_0} T. (9)$$

Таким образом на приведенном в условии графике зависимости надо построить прямую
$$p = \frac{m_{0+m}}{\mu_{w}} \frac{4R}{3V_{0}10^{5}} (t + 273.15), \tag{10}$$

пересечение которой с графиком давления насыщенных водяных паров определяет конечную температуру системы

$$t = 1,7 \cdot 10^2 \,^{\circ}\text{C}. \tag{11}$$

Все указанные построения показаны на рисунке ниже.



2.5 Масса воздуха определяется уравнением состояния и равна
$$M = \frac{\mu_a p_0 V_0}{2RT_0} = 3.2 \text{ г.} \tag{12}$$

2.6 Пусть объем, занимаемый воздухом, равен V, тогда пар занимает объем $V_0 - V$. Для воздуха справедливо уравнение идеального газа, которое может быть записано в форме

$$\frac{p_0 V_0}{2T_0} = \frac{pV}{T}.\tag{13}$$

В свою очередь для пара также справедливо уравнение состояния Менделеева-Клайперона
$$p(V_0-V)=\frac{m}{\mu_w}RT. \tag{14}$$

С другой стороны, давление насыщенного водяного пара определяется графиком, который формально можно записать как некоторую зависимость давления от температуры

$$p = p(T). (15)$$

Удельная теплота парообразования включает в себя все возможные вклады, которые включают изменение внутренней энергии при фазовом превращении, а также работу против внешнего давления, поэтому количество теплоты записывается в виде

$$\delta Q = r \delta m, \tag{16}$$

откуда теплоемкость вычисляется по формуле

$$C_v = r \frac{\delta m}{\delta T}.\tag{17}$$

Формула (17) означает, что для вычисления теплоемкости пара с водой необходимо определить скорость испарения воды при изменении температуры. Из выражения (14) находим

$$\delta m = \frac{\mu_w(V_0 - V)}{RT} \delta p - \frac{\mu_w p}{RT} \delta V - \frac{\mu_w p(V_0 - V)}{RT^2} \delta T.$$
 (18)
Давление в системе определяется также воздухом, поэтому из (13) следует

$$\frac{p_0 V_0}{2T_0} \delta T = V \delta p + p \delta V. \tag{19}$$

Наконец, так как давление в целом определяется насыщенным паром, то из (15) получаем $\delta p = \alpha \delta T$, (20)

в котором параметр α определяется из приведенного в условии графика по коэффициенту наклона и равен

$$\alpha = 1.0 \cdot 10^4 \, \text{\Pia/K} \tag{21}$$

для определенных в 2.2 и 2.3 начальных условий

$$p = p_0, T = T_0, V = \frac{1}{2}V_0. \tag{22}$$

Собирая вместе соотношения (16)-(22), окончательно получаем

$$C_v = r \frac{\mu_W V_0}{2RT_0} \left(3\alpha - \frac{p_0}{T_0} \right) = 3.5 \cdot 10^2 \,\text{Дж/К}.$$
 (23)

2.7 Воздух представляет собой двухатомный газ, молярная теплоемкость которого при постоянном объеме равна

$$C_V = \frac{5}{2}R,\tag{24}$$

так что изменение внутренней энергии газа равно

$$dU = \frac{M}{\mu_0} C_V \delta T. \tag{25}$$

Работа, совершаемая газом равна

$$\delta A = p \delta V, \tag{26}$$

а первое начало термодинамики дает

$$\delta Q = dU + \delta A. \tag{27}$$

С учетом выражений (19) и (20), окончательно находим

$$C_a = \frac{M}{\mu_a} C_V + \frac{V_0}{2} \left(\frac{p_0}{T_0} - \alpha \right) = -7.1 \,\text{Дж/К}.$$
 (28)

	Содержание	Балль	J
2.1	Формула (1): $\frac{p_0 V_0}{2T_0} = \frac{p V_0}{4T}$	0,3	
	Формула (1): $\frac{p_0V_0}{2T_0} = \frac{pV_0}{4T}$ Формула (2): $p_0\frac{V_0}{2} = \frac{m_0}{\mu_W}RT_0$	0,3	
	Формула (2): $p_0 = \frac{1}{2} = \frac{1}{\mu_W} R T_0$ Формула (3): $p = \frac{3V_0}{4} = \frac{m_0 + m}{\mu_W} R T$ Формула (4): $m_0 = \frac{m}{2}$	0,3	1.5
	Формула (4): $m_0 = \frac{m}{2}$	0,3	
	Численное значение в формуле (4): $m_0 = 2.0$ г	0,3	
2.2	Формула (5): $p = \frac{m_0}{\mu_W} \frac{2R}{V_0} T$ Формула (6): $p = \frac{m_0}{\mu_W} \frac{2R}{V_0 10^5} (t + 273.15)$	0,3	
	Формула (6): $p = \frac{m_0}{\mu_W} \frac{2R}{V_0 \cdot 10^5} (t + 273.15)$	0,5	1,0
	Численное значение в формуле (7): $t_0 = 1.4 \cdot 10^2$ °C	0.2	
2.3	Численное значение в формуле (8): $p_0 = 3.8 \cdot 10^5$ Па		0,2
2.4	Формула (9): $p = \frac{m_0 + m}{\mu_W} \frac{4R}{3V_0} T$	0.3	
	Формула (9): $p = \frac{\mu_W}{\mu_W} \frac{3V_0}{3V_0} I$ Формула (10): $p = \frac{m_{0+m}}{\mu_W} \frac{4R}{3V_0 10^5} (t + 273.15)$	0.5	1,0
	Численное значение в формуле (11): $t = 1,7 \cdot 10^{2}$ °C	0.2	
2.5	Формула (12): $M = \frac{\mu_a p_0 V_0}{2RT_0} = 3.2 \ \Gamma$	0.3	0,5
	Численное значение в формуле (12): $M = 3.2 \text{ г}$	0.2	

	Формула (13): $\frac{p_0 V_0}{2T_0} = \frac{pV}{T}$	0,3	
	Формула (14): $p(V_0 - V) = \frac{m}{\mu_{yy}} RT$	0,3	
	Формула (15): $p = p(T)$	0,3	
	Формула (16): $\delta Q = r \delta m$	0,3	
2.6	Формула (17): $C_v = r \frac{\delta m}{\delta T}$	0,3	
	Формула (18): $\delta m = \frac{\mu_W(V_0 - V)}{RT} \delta p - \frac{\mu_W p}{RT} \delta V - \frac{\mu_W p(V_0 - V)}{RT^2} \delta T$	0,4	4,0
	Формула (19): $\frac{p_0V_0}{2T_0}\delta T = V\delta p + p\delta V$	0,4	
	Формула (20): $\delta p = \alpha \delta T$	0,4	
	Численное значение в формуле (21): $\alpha = 1.0 \cdot 10^4 \text{Па/К}$	0.4	
	Формула (21): $p = p_0$, $T = T_0$, $V = \frac{1}{2}V_0$	0,3	
	Формула (22): $C_v = r \frac{\mu_w V_0}{2RT_0} \left(3\alpha - \frac{p_0}{T_0} \right)$	0,3	
	Численное значение в формуле (22): $C_v = 3.5 \cdot 10^2 \text{Дж/К}$	0,3	1
	Формула (24): $C_V = \frac{5}{2}R$	0,3	
	Формула (24): $C_V = \frac{5}{2}R$ Формула (25): $dU = \frac{M}{\mu_a}C_V\delta T$	0,3	
2.7	Формула (26): $\delta A = p \delta V$	0,3	1,8
2.1	Формула (27): $\delta Q = dU + \delta A$	0,3	1,0
	Формула (28): $C_a = \frac{M}{\mu_a} C_V + \frac{V_0}{2} \left(\frac{p_0}{T_0} - \alpha \right)$	0,3	
	Численное значение в формуле (28): $C_a = -7.1 \text{Дж/K}$	0,3	
Итого			10,0