Республиканская олимпиада. Теоретический тур, 9 класс. Талдыкорган, 2013

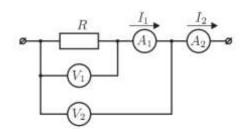
Задача 1 (9.5 балла)

Эта задача состоит их трех независимых частей.

Часть А (5.5 балла)

Объект массой m покоится на северном краю неподвижной карусели радиусом R. Карусель начинает вращаться по часовой стрелке (если смотреть сверху) с постоянным угловым ускорением β . Коэффициент трения покоя между объектом и поверхностью карусели равен μ_{ς} .

- а) В какой момент времени t_0 от начала запуска карусели объект начнет проскальзывать относительно нее?
- а) Получите выражение для величины скорости объекта v в момент, когда он начинает скользить по поверхности карусели.
- б) Предположим, что $\mu_s = 0.50$, $\beta = 0.20\,c^{-2}$, $R = 4.0\,\text{м}$. Под каким углом α , измеряемым по часовой стрелке от севера, направлена скорость объекта и каково ее численное значение в момент, когда объект начинает скользить?

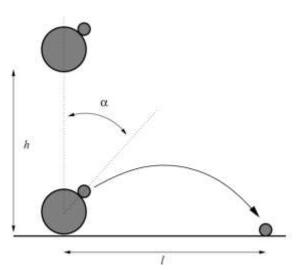

Ускорение свободного падения равно $g = 9.8 \text{ m/c}^2$.

Часть Б (1.5 балла)

Для измерения температуры воды в нее погрузили термометр, который показал температуру $t_1 = 50^{\circ}C$. Перед погружением термометр показывал температуру помещения $t_0 = 18^{\circ}C$. Опыт повторяют снова, но вместо одного термометра используют два точно таких же. Их показания оказываются равными $t_2 = 40^{\circ}C$. Найдите начальную температуру воды θ .

Часть В (2.5 балла)

В электрическую схему, изображенную на рисунке, включены по два одинаковых вольтметра и амперметра. Показания измерительных приборов оказались следующими: $V_1=10.0B$, $V_2=10.5B$, $I_1=50$ мA, $I_2=70$ мA. Определите сопротивление резистора R.

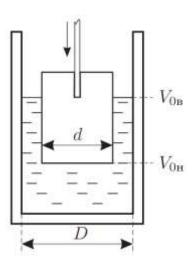


Задача 2 (11.0 балла)

Шар для боулинга массы M и мяч для гольфа массы m сбрасываются одновременно на горизонтальную поверхность с высоты h из начального положения, показанного на рисунке.

Прямая, соединяющая центры шара и мяча, составляет угол α с вертикалью. Шар для боулинга и мяч для гольфа оба имеют радиусы, значительно меньшие h. Дальнейшее движение происходит следующим образом. Шар для боулинга сначала сталкивается с поверхностью, а сразу после этого происходит его столкновение с мячом для гольфа. Все столкновения считайте абсолютно упругими, трением и сопротивлением воздуха пренебрегайте. Ускорение свободного падения равно g.

- а) Чему равны скорости шара для боулинга $^{\rm V_1}$ и мяча для гольфа $^{\rm V_2}$ перед первым столкновением? Куда они направлены?
- б) Чему равны скорости шара для боулинга u_1 и мяча для гольфа u_2 перед вторым столкновением? Куда они направлены?
- в) Чему равны скорости шара для боулинга W_1 и мяча для гольфа W_2 после второго столкновения?



Республиканская олимпиада. Теоретический тур, 9 класс. Талдыкорган, 2013

- г) На каком расстоянии l от точки столкновения с шаром для боулинга упадет мяч для гольфа?
- д) Пусть теперь M=m . Каково максимальное возможное значение l и при каком угле α оно достигается?

Задача 3 (5.5 балла)

Деревянный цилиндр диаметром d плавает в мерном стакане, внутренний диаметр которого равен D. При этом нижний край цилиндра находится на уровне отметки $V_{0\mu} = 70 \text{мл}$, нанесенной на шкале мерного стакана, а уровень воды в стакане соответствует объему $V_{0s} = 120$ мл. Цилиндр плавно погружают в воду очень тонкой спицей так, что его ось все время остается вертикальной. При этом измеряют уровень воды V_{a} в мерном стакане и положение V_{μ} нижнего края цилиндра по шкале, нанесенной стакане. на мерном Экспериментальные данные, полученные с некоторой погрешностью, не превышающей 1мл, представлены в виде следующей таблицы.

Таблица экспериментальных данных

$V_{_{\scriptscriptstyle H}}$, мл	70	60	50	40	30	20	10	0
$V_{_{\! arepsilon}}$, мл	120	127	134	140	147	150	150	150

- а) Определите плотность дерева, из которого изготовлен цилиндр.
- б) Найдите отношение диаметров D/d.
- в) Определите объем воды в стакане до погружения в нее деревянного цилиндра.

Считайте плотность воды известной и равной $\rho_0 = 1000 \kappa z / M^3$

Задача 4 (4.0 балла)

Нить лампы накаливания мощностью P представляет собой цилиндр длины L и радиуса a. Необходимо спроектировать новую лампу накаливания, которая имела бы нить цилиндрической формы и была изготовлена из того же материала. При этом требуется, чтобы спектр излучения лампы не изменился, и она имела бы мощность nP, где n — некоторое число. Какими должны быть радиус a_n и длина L_n новой нити? Считайте, что лампа теряет энергию только на излучение.