
Республиканская олимпиада. Теоретический тур, 10 класс. Талдыкорган, 2013

Задача 1 (8.0 балла)

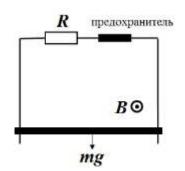
Тонкая доска массы M и длины L может вращаться вокруг горизонтальной оси, проходящей через ее центр. Тело массой m << M скользит по верхней части доски. Трение отсутствует. В начальном положении доска составляет угол θ_0 с горизонтом, тело находится у верхнего края доски, а система в целом покоится. На протяжении всей задачи считайте, что $\theta << 1$, размерами тела можно пренебречь, ускорение свободного падения равно g.

Пусть x — смещения тела вдоль доски, измеряемое от ее центра, θ — угол между доской и горизонталью. Считайте, что центростремительное ускорение тела пренебрежимо мало по сравнению с линейным ускорением тела при его движении вверх и вниз по доске.

- а) Для некоторого значения θ_0 во все время движения оказывается, что $x = k\theta$, где k-1 некоторая постоянная. Найдите θ_0 .
- б) Считая, что θ_0 принимает значение из пункта а), определите период колебаний системы.
- г) Считая, что θ_0 принимает значение из пункта а), найдите k.
- в) Определите максимальное значение отношения центростремительного и линейного ускорений тела и покажите корректность использованного приближения.

Задача 2 (5.5 балла)

Закрытая с одного конца цилиндрическая труба содержит подвижный поршень, под которым находится 2 моля воздуха. Первоначально, воздух в трубе имеет давление в одну атмосферу, объем V_0 , и температуру $T_0=298\,K$. С воздухом производят следующие процессы. Процесс А: воздух в цилиндре сжимается при постоянной температуре до объема $V_0/4$. Процесс Б: воздуху позволяют расшириться адиабатически до объема $V=15\,n$. Процесс В: поршень выдвигают, позволяя воздуху расшириться до первоначального объема V_0 при постоянной температуре. Процесс Г: при фиксированном объеме воздух доводят до исходной температуры T_0 . Считайте воздух двухатомным идеальным газом, а 1 $amm=1.01\times10^5\,$ Πa . Универсальная газовая постоянная равна $R=8.31\,$ Джс / (моль · K).


- а) Нарисуйте *P-V* диаграмму процесса в целом.
- б) Какая работа совершается над газом во время процесса А?
- в) Какова температура воздуха в конце процесса В?
- г) Чему равно минимальное давление газа p_{\min} за весь круговой процесс.

Задача 3 (9.5 балла)

Одна пара концов двух длинных, параллельных проводов соединена между собой резистором с сопротивлением $R=0.25\,\mathrm{Om}$ и предохранителем, который перегорает мгновенно, если сила текущего через него тока превосходит I=5A. Другая пара концов остается не замкнутой. По

Республиканская олимпиада. Теоретический тур, 10 класс. Талдыкорган, 2013

проводам может скользить без трения проводящий стержень массы m. Провода находятся на расстоянии l=30cm друг от друга. Вся система помещается в однородное постоянное магнитное поле с индукцией $B=1.2\,T_{I\!\! /}$, как показано на рисунке. Сопротивлением стержня и проводов можно пренебречь, ускорение свободного падения равно $g=9.8m/c^2$

Стержень отпускают и он падает под действием силы тяжести, но никогда не теряет контакта с проводами.

- а) С какой минимальной скоростью $^{V_{min}}$ должен двигаться стержень для того, чтобы предохранитель перегорел?
- б) При какой наименьшей массе стержня m_{\min} предохранитель перегорает?
- в) Найдите аналитическую зависимость скорости стержня v(t) от времени t. Предохранитель изготовлен из цилиндрического провода длиной L, радиусом r << L и удельным сопротивлением ρ_f . Предположим, что через предохранитель протекает однородный по сечению электрический ток силой I.
 - г) Какова величина и направление электрического поля на поверхности провода, из которого изготовлен предохранитель?
 - д) Какова величина и направление магнитного поля на поверхности провода, из которого изготовлен предохранитель?

Количество электромагнитной энергии, протекающей через единицу площади поверхности в единицу времени, определяется вектором Пойнтинга S, который перпендикулярен электрическому и магнитному полю и равен по модулю $S = EB \sin \alpha / \mu_0$, где E — вектор напряженности электрического поля, B — вектор магнитной индукции, а α — угол между ними (смотрите рисунок справа).

е) Найдите величину и направление вектора Пойнтинга на поверхности провода предохранителя.

Предохранитель перегорает, если он достигает точки плавления. Известно, что нагретый объект излучает энергию, мощность которой определяется законом $P = \sigma A T^4$, где T- температура в градусах Кельвина, A- площадь поверхности, а $\sigma=5.67\times 10^{-8}\,Bm/(m^2\cdot K^4)-$ постоянная Стефана-Больцмана. Если $T=500\,K-$ температура плавления материала предохранителя, имеющего удельное сопротивление $\rho=120\,HOM\cdot M$, а сила тока, при которой предохранитель перегорает, равна $I=5\,A$.

ж) Каким должен быть радиус провода, из которого изготовлен предохранитель?

Задача 4 (7.0 балла)

Сферическая оболочка, имеющая внутренний радиус a и внешний радиус b, изготовлена из материала с удельным сопротивлением ρ . Точечный заряд q_0 расположен в центре оболочки. В начальный момент времени t=0 весь материал оболочки является электрически нейтральным, включая внутреннюю и внешнюю поверхности. Магнитными эффектами и излучением можно пренебречь.

- а) Найдите напряженность электрического поля E_0 внутри сферической оболочки спустя очень большое время.
- б) Найдите напряженность электрического поля вне сферической оболочки вблизи ее внутренней E_{in} и внешней поверхностей E_{out} спустя очень большое время.

Республиканская олимпиада. Теоретический тур, 10 класс. Талдыкорган, 2013

- в) Найдите поверхностную плотность заряда σ_{out} на внешней поверхности оболочки спустя очень большое время.
- r) Найдите полный заряд на внешней поверхности оболочки q(t) как функцию времени t?