Юниорская республиканская олимпиада по физике

7 класс

Решение и разбалловка Общий 30 балл 28 октября 2020

1. Закон Архимеда или нет? [5 балл]

Закон Архимеда можно объяснить как следствие разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость. Используя эту информацию, решите настоящую задачу. Дано прямоугольное тело высотой h=30 см, длиной a=40 см и шириной b=20 см. Плотность тела в два раза больше плотности воды ($\rho=2\rho_0$). Тело лежит на дне водоема. Глубина воды в 3 раза больше длины (H=3a). Атмосферное давление примите равным $P_0=100$ кПа. Ускорение свободного падения равен g=10 м/с². Плотность воды $\rho_0=1$ г/см³.

- 1.1 Найдите силу давления тела на дно водоема, когда вода не проникает под его нижную грань.
- 1.2 Найдите силу давления тела на дно водоема, если вода может просачиваться между его нижней гранью и дном.

Решение:

1.1 Когда вода не проникает под нижную грань тела, снизу не действует гидростатическое давление воды:

$$m = 2\rho_0 abh \tag{1}$$

$$P_1 = P_0 + \rho_0 g H \tag{2}$$

 P_1 – давление на верхную грань тела со стороны воды

$$F = P_1 S + mg \tag{3}$$

Вставив уравнения (1) и (2) в уравнение (3) находим силу давления:

$$F = P_0 ab + \rho_0 g 3a^2b + 2\rho_0 abhg$$

$$F = 9440 \text{ H}$$
(4)

1.2 Когда вода просачивается под нижную грань тела, сила Архимеда действует на тело:

$$P_2 = P_0 + \rho_0 g(H + h) \tag{5}$$

 P_2 – давление на нижную грань тела со стороны воды

$$F_a = (P_2 - P_1)S$$
 или $F_a = \rho_0 gSh$ (6)

$$F = mg - F_a \tag{7}$$

Вставив уравнения (1), (2), (5), (6) в уравнение (7) находим силу давления:

$$F = \rho_0 gabh$$

$$F = 240 \text{ H}$$
(8)

	Содержание	Балль	I
1.1	Формула (1): $m=2\rho_0abh$	0,5	
	Формула (2): $P_1 = P_0 + \rho_0 gH$	0,5	2.5
	Формула (3): $F = P_1 S + mg$	1,0	2,5
	Численное значение в формуле (4): $F = 9440 \text{ H}$	0,5	

	Формула (5): $P_2 = P_0 + \rho_0 g(H + h)$	0,5	
1.0	Формула (6): $F_a = (P_2 - P_1)S$ или $F_a = \rho_0 gSh$	0,5	
1.2	Формула (7): $F = mg - F_a$	1,0	2,5
	Численное значение в формуле (8): $F = 240 \text{ H}$	0,5	
Итого			5,0

2. Тело и пружина [6 балл]

Кубическое тело с плотностью (($\rho=3\rho_0$) втрое больше плотности воды ставят на невосомую пружину. Нижняя грань тела находится на высоте $h_1=20$ см от нижнего конца пружины. Потом пружинку делят на две равные части и на одну из них вешают тело. В этом случае нижняя грань тела находится на расстоянии $h_2=40$ см от точки подвеса. Известно что длина ребра тела ($a=l_0/2$) два раза меньше длины недеформированной пружины. Пружина удлиняется по закону Гука (F=kx). Ускорение свободного падения равен g=10 м/с².

- 2.1 Найти длину недеформированной пружины l_0 .
- 2.2 Найти жесткость пружины k.
- 2.3 Найти массу тела m_1 которое при подвешивании разорвет половину пружины, если пружина разрывается при удлинении ($l = 3l_0$) в три раза.

Решение:

2.1

$$m = 3\rho_0 a^3 \tag{1}$$

Когда тело ставят на пружину:

$$mg = k(l_0 - h_1) \tag{2}$$

Жесткость пружины обратно пропорционально длине, поэтому:

$$k' = 2k \tag{3}$$

Когда тело вешают на половине пружины:

$$mg = k'(h_2 - l_0 - a) (4)$$

Из уравнения (1)-(4) находим длину недеформированной пружины l_0 :

$$mg = 2k(h_2 - 1.5l_0) = k(l_0 - h_1)$$

$$l_0 = \frac{2h_2 + h_1}{4} \tag{5}$$

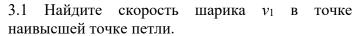
 $l_0 = 25 \text{ cm}$

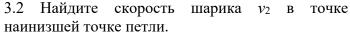
2.2

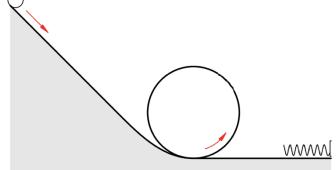
$$k = \frac{3\rho_0 g(2h_2 + h_1)^3}{128(2h_2 - 3h_1)} \tag{6}$$

k = 1172 H/m

2.3


$$m_1 g = 2k(3l_0/2 - l_0/2)$$
 (7)
 $m_1 = 58.6 \text{ K}\Gamma$


	Содержание	Баллы	
2.1	Формула (1): $m = 3\rho_0 a^3$	0,5	4.0
	Формула (2): $mg = k(l_0 - h_1)$	1,0	4,0


	Формула (3): $k' = 2k$	0,5	
	Формула (4): $mg = k'(h_2 - l_0 - a)$	1,0	
	Формула (5): $l_0 = \frac{2h_2 + h_1}{4}$	0,5	
	Численное значение в формуле (5): $l_0 = 25$ см	0,5	
2.2	Формула (6): $k = \frac{3\rho_0 g(2h_2 + h_1)^3}{128(2h_2 - 3h_1)}$	0,5	1,0
	Численное значение в формуле (6): $k = 1172 \text{ H/м}$	0,5	1,0
2.3	Формула (7): $m_1g = k(3l_0 - l_0)$	0,5	1.0
	Численное значение в формуле (7): $m_1 = 58,6$ кг	0,5	1,0
Итого			6,0

3. Шарик проходит круг [6 балл]

Шарик (с размером намного меньше размера круга) массой m = 20 кг проходит круг радиуса R= 5 м, соскальзывая без начальной скорости с высоты H = 18 м (см. рисунок). Трением пренебречь. Ускорение свободного падения равен 10 m/c^2 .

3.3 После прохождения петли на сколько Δx сжимается пружина, если жесткость пружины k = 400 H/m?

Решение:

3.1

Закон сохранения энергии:

$$mgH = mg2R + \frac{mv_1^2}{2}$$

$$v_1 = \sqrt{2g(H - 2R)}$$
(1)
(2)

$$v_1 = \sqrt{2g(H - 2R)} \tag{2}$$

$$v_1 = 12,6 \text{ m/c}$$

Закон сохранения энергии:

$$mgH = \frac{mv_2^2}{2} \tag{3}$$

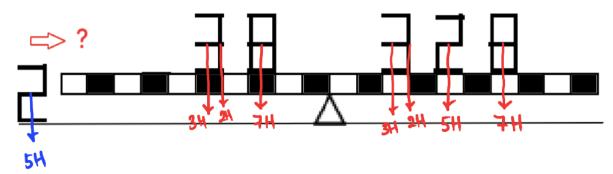
$$v_2 = \sqrt{2gH} \tag{4}$$

$$v_2 = 19,0 \text{ m/c}$$

Закон сохранения энергии:

$$mgH = \frac{k\Delta x^2}{2} \tag{5}$$

$$mgH = \frac{k\Delta x^2}{2}$$


$$\Delta x = \sqrt{\frac{2mgH}{k}}$$
(5)

	Содержание	Баллы	J
	Формула (1): $mgH = mg2R + \frac{mv_1^2}{2}$	1,0	
3.1	Формула (2): $v_1 = \sqrt{2g(H - 2R)}$	0,5	2,0
	Численное значение в формуле (2): $v_1 = 12,6 \text{ м/c}$	0,5	
	Формула (3): $mgH = \frac{mv_2^2}{2}$	1,0	
3.2	Формула (4): $v_2 = \sqrt{2gH}$	0,5	2,0
	Численное значение в формуле (4): $v_2 = 19.0 \text{ м/c}$	0,5	
	Формула (5): $mgH = \frac{k\Delta x^2}{2}$	1,0	
3.3	Формула (6): $\Delta x = \sqrt{\frac{2mgH}{k}}$	0,5	2,0
	Численное значение в формуле (6): $\Delta x = 4.2 \text{ м}$	0,5	
Итого			6,0

4. Равновесие числа [6 балл]

У нас имеются шесть чисел. Все они сделаны из одинаковой проволоки. Масса двойки $m=500~\rm r$. Высота двойки $b=50~\rm cm$. Массой рычага и толщинами чисел пренебречь. Высота верхней поверхности рычага находится на высоте $h=40~\rm cm$. Ускорение свободного падения равен $g=10~\rm m/c^2$.

- 4.1 На какую (или какие) ячейку рычага от опоры надо поставить двойку чтобы установилась равновесие.
- 4.2 Какую минимальную работу надо совершить, чтобы поставить все числа на рычаг? Предположите, что рычаг все время был в горизонтальном положении. Вначале все числа лежали на земле.

Решение:

4.1

Если масса двойки m = 500 г, тогда:

каждая сторона чисел
$$m/5 = 100$$
 г (1)

Уравнение равновесия:

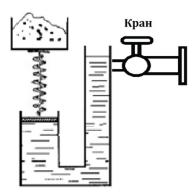
$$5x + 3 \cdot 4,5 + 2 \cdot 4 + 7 \cdot 2,5 = 3 \cdot 2,5 + 2 \cdot 3 + 5 \cdot 4,5 + 7 \cdot 6,5 \tag{2}$$

x = 8,5 (значит 9-ячейка)

4.2

Работа:

$$A = \Delta E_{\Pi} \tag{3}$$


$$A = 2 \cdot mg(h + b/2) + 2 \cdot mg(h + b/2) + 2 \cdot (7m/5)g(h + b/2)$$

$$A = 22.1 \text{ H}$$
(4)

	Содержание	Баллы	
4.1	Формула (1): каждая сторона чисел $m/5 = 100$ г	0,5	
	Формула (2): $5x + 3 \cdot 4.5 + 2 \cdot 4 + 7 \cdot 2.5 = 3 \cdot 2.5 + 2 \cdot 3 + 5 \cdot 4.5 + 7 \cdot 6.5$	1,5	3,0
	Численное значение в формуле (2): $x = 8,5$ (значит 9-ячейка)	1,0	
	Формула (3): $A = \Delta E_{\Pi}$	1,0	
4.2	Формула (4): $A = 2 \cdot mg(h+b/2) + 2 \cdot mg(h+b/2) + 2 \cdot (7m/5)g(h+b/2)$	1,0	3,0
	Численное значение в формуле (4): $A = 22,1 \text{ H}$	1,0	
Итого			6,0

5. Гидравлика [7 балл]

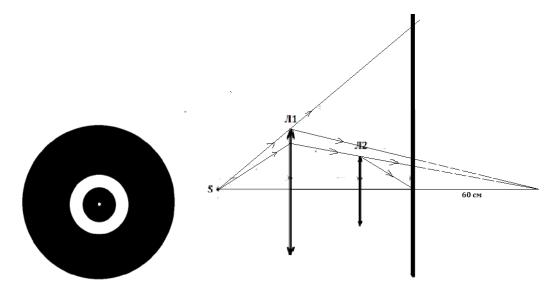
В один из сообщающихся сосудов, площадью $S_1=150~{\rm cm}^2$ заливают воду с скоростью $q=0,5~{\rm n/c}$. Второй сосуд плотно закрыт подвижным поршнем площади $S_2=250~{\rm cm}^2$. На нём на жёсткой пружине устойчиво закреплён сосуд , в который засыпают песок. При этом высота уровня дна сосуда с песком относительно дна сосудов с водой в течение наблюдаемого промежутка времени не меняется. Найдите скорости подьёма v_1, v_2 уровней воды в обоих сосудах, а также скорость наполнения сосуда песком μ (кг/с). Ускорение свободного падения равен $10~{\rm m/c}^2$. Плотность воды $1~{\rm r/cm}^3$.

5.Гидравлика (7 баллов)

1. Длина пружины (1): $l = l_0 - \frac{g}{k}(m_0 + \mu t)$	0.5
2. Высота ящика с песком над дном сосуда (2): $h = h_{02} + v_2 t + l $	0.8

$v_2 t + l_0 - \frac{g}{h} (m_0 + \mu t)$	
Скорость движения ящика (3): $v = v_2 - \frac{g\mu}{r} = 0$	
$3. (4): q = \frac{\Delta V}{\Delta t} = \frac{S_1 \Delta h_1 + S_2 \Delta h_2}{\Delta t} = S_1 v_1 + S_2 v_2$	1.8
4. (5): $\frac{(m_0 + \mu t)g}{S_2} = \rho g(h_1 - h_2) = \rho g(h_{01} - h_{01}) + \rho g(v_1 - v_2)t$	1.5
$(6): \frac{\mu g}{S_2} = \rho g(v_1 - v_2)$	
 Совместным решением (3), (4) и (5): 	2.4=(0.8*3)
(6): $\mu = \frac{q}{\frac{1}{\rho} + (S_1 + S_2)\frac{g}{k}} = 0.36 \text{ kg/c}$, (7) $v_2 = \frac{g\mu}{k} = 3.6 \text{ mg/c}$, $v_1 = \mu \left(\frac{1}{\rho S_1} + \frac{g}{k}\right) = 0.36 \text{ kg/c}$	
17,8 мм/с	

1.Гидравлика (7 баллов)


1. Длина пружины (1): $l=l_0-rac{g}{k}(m_0+\mu t)$	0.5
2. Высота ящика с песком над дном сосуда (2): $h=h_{02}+v_2t+l=h_{02}+v_2t+l_0$	0.8
$\frac{g}{k}(m_0 + \mu t)$	
Скорость движения ящика (3): $v = v_2 - \frac{g\mu}{k} = 0$	
3. (4): $q = \frac{\Delta V}{\Delta t} = \frac{S_1 \Delta h_1 + S_2 \Delta h_2}{\Delta t} = S_1 v_1 + S_2 v_2$	1.8
4. (5): $\frac{(m_0 + \mu t)g}{S_2} = \rho g(h_1 - h_2) = \rho g(h_{01} - h_{01}) + \rho g(v_1 - v_2)t$	1.5
(6): $\frac{\mu g}{S_2} = \rho g(v_1 - v_2)$	
5. Совместным решением (3), (4) и (5):	2.4=(0.8*3)
(6): $\mu = \frac{q}{\frac{1}{\rho} + (S_1 + S_2)\frac{g}{k}} = 0.36 \text{ kg/c}$, (7) $v_2 = \frac{g\mu}{k} = 3.6 \text{ mg/c}$, $v_1 = \mu \left(\frac{1}{\rho S_1} + \frac{g}{k}\right) = 17.8 \text{ mg/c}$	

2.Нагревательные элементы (7 баллов)

1. (1) $mc\Delta T = Q$; (2) $Q = N\Delta t = \frac{U^2}{R} \Delta t = \frac{U^2}{\rho l/S} \Delta t = \frac{SU^2 \Delta t}{\rho l}$; (3) $mc\Delta T = dSlc\Delta T$	2
$2. (4) l = \frac{U}{\sqrt{\rho dc \frac{\Delta T}{\Delta t}}}$	1
3. $\frac{\Delta T}{\Delta t}$ постоянно для каждого резистора в данном процессе	2
$(5) \left(\frac{\Delta T}{\Delta t}\right)_1 = \frac{250^{\circ}C}{8 \text{ мин}} = 0.52 \frac{^{\circ}C}{c}$; $(6) \left(\frac{\Delta T}{\Delta t}\right)_2 = \frac{400^{\circ}C}{8 \text{ мин}} = 0.83 \frac{^{\circ}C}{c}$	
$4.(7)\frac{l_2}{l_1} = \sqrt{\frac{\rho_1 d_1 c_1 \left(\frac{\Delta T}{\Delta t}\right)_1}{\rho_2 d_2 c_2 \left(\frac{\Delta T}{\Delta t}\right)_2}} = 0,6$	2

3.Игра света и тени

Картина на экране и некоторые важные для её построения лучи. Масштаб не соблюден.

1.Внешний диаметр внешнего тёмного круга (1): $d_3 = D_1 \frac{x_1 + x_2 + x_3}{x_1}$ =50 см	1
2. Внутренний диаметр второго тёмного круга (2): $d_2 = D_1 \frac{f - x_2 - x_3}{f} = 8$ см	2
где $f=120$ см — расстояние от линзы до изображения, есть решение уравнения (3): $\frac{1}{x_1}$ +	
$\left \frac{1}{f} = \frac{1}{F_1} \right $	
3. Диаметр внутреннего тёмного круга (4): $d_2 = D_2 \frac{f - x_2 - x_3}{f - x_2} = 4$ см	2
4. Так как на вторую линзу падает сходящийся пучок лучей, координата источника в	3
формуле тонкой линзы будет задана отрицательной величиной (5) $x = x_2 - f = -90$ см.	
Сама формула запишется в виде: (6) $\frac{1}{x} + \frac{1}{y} = \frac{1}{F_2}$. Решение уравнения - расстояние до	
изображения $y=30\mathrm{cm}$ справа от второй линзы - то есть на экране. Таким образом,	
последний элемент картины – светлое пятно в центре кругов.	

4. Механика конденсаторов

	•		
4.1.1. (1) $P=rac{F}{S}=rac{qE}{2S}$. F — сила, действующая на одну из	$P = \frac{F}{S} = \frac{qE}{2S}$	0,3	1,8
обкладок. Коэффициент ½ возникает ввиду того что половина поля создается самой этой обкладкой и на нее	Коэффициент ½	0,3	
саму не действует.	$q_0 = C_0 U_0 = \frac{\varepsilon_0 \varepsilon S}{d_0} U_0$ $E = \frac{U_0}{d_0}$	0,3	
$(2)q_0=C_0U_0=rac{arepsilon_0arepsilon S}{d_0}U_0pprox 880$ нКл . Напряженность поля в прослойке конденсатора (3) $E=rac{U_0}{d_0}$. НО! Обкладки	$E = \frac{U_0}{d_0}$	0,3	
находятся снаружи диэлектрика, и на них действует	напряжённость в $arepsilon$ раз большая	0,3	
напряжённость в ε раз большая. С учётом всего этого (4): $P=rac{arepsilon_0 arepsilon^2 U_0^2}{2d_0} pprox 440~\Pi a.$	$P = \frac{\varepsilon_0 \varepsilon^2 U_0^2}{2d_0} \approx 440 \text{ Па}$	0,3	
4.1.2 Конденсатор может быть представлен в виде последовательных конденсаторов с ёмкостями (5): $C_1 = \frac{\varepsilon_0 \varepsilon S}{2}$ (6) $C_2 = \frac{\varepsilon_0 S}{2}$ (7) $C_3 = \frac{\varepsilon_0 S}{2} = 43$ пФ	$P = \frac{\varepsilon_0 \varepsilon^2 U_0^2}{2d_0} \approx 440 \text{ Па}$ $C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$ $C = \frac{\varepsilon_0 S}{d - d_0 + \frac{d_0}{\varepsilon}} = 43 \text{ пФ}$	0,5	1,2
$\frac{\varepsilon_0 \varepsilon S}{d_0}, (6) C_2 = \frac{\varepsilon_0 S}{d - d_0}. (7) C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = \frac{\varepsilon_0 S}{d - d_0 + \frac{d_0}{\varepsilon}} = 43 \text{ m}\Phi$	$C = \frac{\varepsilon_0 S}{d - d_0 + \frac{d_0}{\varepsilon}} = 43 \text{ п}\Phi$	0,7	
4.1.3 На этот раз (8) $q = CU_0 = 22$ нКл. Напряженность поля вне диэлектрика найдётся из условия (9): $U =$	$q = CU_0 = 22$ нКл	0,3	1,6
$E(d-d_0)+rac{E}{arepsilon}d_0$, то есть напряжение складывается из двух составляющих — в диэлектрике и в воздухе.(10) $E=rac{U}{d-d_0+rac{d_0}{arepsilon}}=240rac{ ext{KB}}{ ext{M}}=240rac{ ext{KH}}{ ext{Kn}}$. (11) $F=rac{qE}{2}=0$,27 мН	$U = E(d - d_0) + \frac{E}{\varepsilon} d_0$ $E = \frac{U}{d - d_0 + \frac{d_0}{\varepsilon}} = 240 \frac{\text{KB}}{\text{M}}$	1,0	
	$F = \frac{qE}{2} = 0,27 \text{ MH}$ $q = const$	0,3	
4.2.1 Заряд неизменен и равен. Из (7) и (9) получаем	q = const	0,4	1,6
вне диэлектрика (12) $\mathrm{E}=rac{q}{arepsilon_0 S}=const.$ Напряжение в	$E = \frac{q}{\varepsilon_0 S} = const$	0,6	

начале и в конце(13) $U_1=rac{E}{\varepsilon}d_0$; (14) $U_2=E(d-d_0+d_0)$	$\frac{U_2}{U_2} = \frac{\varepsilon d}{dz} + 1$	$-\varepsilon = 41$	0,4	
$\left(rac{d_0}{arepsilon} ight)$;(15) $rac{U_2}{U_1}=rac{arepsilon d}{d_0}+1-arepsilon=41$. Сила также неизменна	$F = \frac{qE}{2} = q$		0,4	
$(16) F = \frac{qE}{2} = const$	$F = \frac{1}{2} = const$			
4.2.2 Благодаря некому перераспределению зарядов	$F_{\rm cp}a = \Delta W$	0,6		1,8
пластины между ней и обкладками конденсатора				
возникает сила притяжения. Соответственно, чтобы вытащить пластину необходимо приложить внешнюю				
силу.	ΔW	0,6		
л Предполагая ее постоянной запишем (17):	$=\frac{q_0^2}{2C'}-\frac{q_0^2}{2C}$			
$F_{\rm cp}a=\Delta W$,	2C' 2 <i>C</i>			
где $a=\sqrt{S}=10$ см, сторона квадрата и расстояние на	$C' = \frac{\varepsilon_0 S}{d}$	0,3		
которое смещают пластину чтобы вывести её из	$d = 29 \Pi\Phi$			
конденсатора. $a_{s}^{2} = a_{s}^{2}$	$= 29 \text{H}\Phi$			
$(18)\Delta W = \frac{q_0^2}{2C'} - \frac{q_0^2}{2C} =$	$F_{\rm cp} = \frac{\Delta W}{a}$	0,3		
где (19) С $'=rac{arepsilon_0 S}{d}=29~\pi\Phi$, ёмкость конденсатора после	OU .			
извлечения пластины.	= 4,33 мН			
(20) $F_{\rm cp} = \frac{\Delta W}{a} = 4{,}33 \text{ MH}$				