
NBPHO‐2022 SOLUTıONſ

1. EſCAPE (8 points) — Solution by Päivo Sim­
son.

i) Let’s denote the diving angle by ϕ, the
magnitude of the trust force by T and the
magnitude of the lift force by L. As we can
see below, the later is not needed in the solu‐
tion. The Forces acting on the ariplane dur‐
ing a dive are shown in the figure below.

For the level flight ϕ = 0, and we have, by
balancing the horizontal forces

Fd = kv20 = T.

For the dive we have, by balancing the forces
acting parallel to the trajectory,

Fd = kv2 = T +mg sinϕ.

By eliminating T from the above equations
we get

v2 = v20

(
1 +

mg

kv20
sinϕ

)
.

Themaximumangle is obtained from the last
equation by equating v = c and solving for ϕ:

ϕmax = arcsin
(
k ·
(
c2 − v20

)
mg

)
.

Grading:
• Correct force equations (0.5 pts)
• Correct expression for v or v2 (0.3 pts)
• Expressing the final answer (0.2 pts)

ii) The propagation speed of the radiation
can be considered infinite compared to the
speed of the airplane. Therefore, the radi‐
ation burst hits the plane at the same instant
when the bomb detonates. The time it takes

for the bomb to drop from altitude H to h,
without air resistance, is obtained from

H − h = g
t2

2
.

By solving for t we have

t =

√
2(H − h)

g
≈ 41.6 s.

Grading:
• Understanding that the propagation speed
of the radiation can be considered infin‐
ite compared to the speed of the plane
(0.3 pts)

• Correct free fall equation (0.2 pts)
• Correct formula for t (0.3 pts)
• Correct numerical answer (0.2 pts)

iii) The forces acting perpendicular to the
plane’s trajectory during a turn are shown in
the figure below.

Here

Fc = m
v2

R

is the centripetal force, and R is the
curvature radius of the trajectory. From the
figure we get

L cosα = mg; L sinα = m
v2

R
.

Since themaximumallowed lift‐to‐weight ra‐
tio is n = 2.5, we have for this case

L =
mg

cosα = nmg.

By solving the above equations with respect
toR andα, we get the following values for the

minimal curvature radius and for the corres‐
ponding bank angle of the airplane:

R =
v2

g tanα
=

v2

g
√
n2 − 1

=

= 1606.0m ≈ 1.6 km;

α = arccos
(
1

n

)
≈ 66.4◦.

Grading:
• Correct force equations (0.3 pts)
• Correct understanding and use of n
(0.1 pts)

• Correct formula for R (0.2 pts)
• Correct formula for α (0.2 pts)
• Correct numerical value for R (0.1 pts)
• Correct numerical value for α (0.1 pts)

iv) As the problem text states, the air res‐
istance acting on the bomb can be neglected.
This means that the bomb’s horizontal speed
is always the same as the speed of the plane,
v = 190 m/s. If the airplane keeps travel‐
ling straight after releasing the bomb, it will
end up directly above the detonation point
by the time the bomb explodes, leaving only
the distance H − h = 8.5 km between the
bomb and the airplane. Hypothetically, the
best way to get as much distance between
the bomb and the airplane would be if the
plane turned around instantly and kept fly‐
ing straight after that. This is clearly not pos‐
sible, but it gives us the clue that the plane
should start turning immediately after re‐
leasing the bomb, and the turn should be as
sharp as possible, leaving us with the previ‐
ously found curvature radius R = 1.6 km.
After the turn, it shouldfly straight so that the
detonation point is directly behind it. The
geometric construction of this trajectory is
shown in the figure below.

In the figure, d is the horizontal distance
the bomb travels before detonation,

d = vt = v

√
2(H − h)

g
= 7909.4m ≈ 7.9 km,

and β is the total turning angle. From the
right triangle shown in the figure, we get

β = 2 arctan
(
d

R

)
≈ 157◦.

Grading:
• Good andwell explained overall analysis of
the problem (even if it contains some mis‐
taken assumptions and the suggested tra‐
jectory ends up being incorrect) (0.6 pts)

• Realising that the plane has to start turn‐
ing immediately with the previously found
turning radius R (0.2 pts)

• Correct trajectory (0.6 pts)
• Good justification for the correct trajectory
(0.5 pts)

• Correct formula for d (0.2 pts)
• Correct numerical value for d (0.2 pts)
• Correct formula for β (0.5 pts)
• Correct numerical value for β (0.2 pts)

v) Solution 1. Let D be the distance from
the detonation point to the airplane at the
moment when the shockwave hits it, and let
z = H − h = 8500 m. We can divide the ho‐
rizontal distance from the detonation point
to the plane into three parts as shown in the
figure below.

In the figure, s is the distance the plane
files straight after the turn and before the
bomb detonates,

s = v · (t− tturn) = d−Rβ = 3507.3m,

and x is the distance it flies straight while the
shockwave travels. If the travelling time is t0,
then x = vt0 and D = ut0. Eliminating t0
from these equations gives

x =
v

u
D.



From the Pythagorean theorem we have

D2 = (d+ s+ x)2 + z2,

or
D2 =

(
a+

v

u
D
)2

+ z2,

where we have eliminated x and denoted a =
d + s = 2d − Rβ for simplicity. The dis‐
tanceD is obtained by solving this quadratic
equation. The solution corresponding to our
problem is

D =
au

v
·
1 +

√
1 +

(
u2

v2 − 1
) (

z2

a2 + 1
)

u2

v2 − 1
≈

≈ 27.9 km.

Since the safe distancewas 25 km, we can say
that the airplane can escape the explosion.

Additional numerical values to help with the
grading. Lenght of the turn: Rβ = 4.4 km;
the time required to make the turn: tturn =
Rβ/v = 23.2 s; the time to travel the distance
s: t − tturn = 41.6 − 23.2 = 18.4 s; distance
x: x = vt0 = 15.1 km; total time from re‐
leasing the bomb to getting hit by the shock‐
wave: t + t0 = 121.3 s; Total horizontal dis‐
tance: d+ s+ x = 26.5 km; the parameter a:
a = d+ s = 2d−Rβ = 11.4 km.

Grading:
• Correct understanding of the problem and
correctly breaking it into smaller parts
(even if the detailed calculations are incor‐
rect) (0.2 pts)

• Correct expression and/or value for the dis‐
tance s (0.4 pts)

• Correct expression relating x and D
(0.4 pts)

• Correct Pythagorean equation or analog‐
ous equation for the suggested trajectory
(even if the trajectory found before was in‐
correct) (0.4 pts)

• Correct solution of the Pythagorean or cor‐
responding equation (0.4 pts)

• Correct valueD = 27.9 km (0.2 pts)
• Vertical distance z is not taken into account
when calculatingD (‐0.3 pts)
Solution 2. The beginning is the same as

in Solution 1. Instead of directly calculating
D, we can first calculate the travelling time
t0 of the shockwave. We have

x = vt0 = 190t0; D = ut0 = 350t0;

d = 7909.4m; s = 3507.3m.

Inserting these into the Pythagorean the‐
orem and simplifying, we get a quadratic
equation for t0:

t20 − 50.2t0 − 2344.8 = 0.

The positive solution is t0 = 79.65 s and

D = ut0 ≈ 27.9 km.

Grading:
• Correct understanding of the problem and
correctly breaking it into smaller parts
(even if the detailed calculations are incor‐
rect) (0.2 pts)

• Correct expression and/or value for the dis‐
tance s (0.4 pts)

• Correct expressions for x andD (0.4 pts)
• Correct equation for shockwave travelling
time t0 for the suggested trajectory (even if
the trajectory found before was incorrect)
(0.4 pts)

• Correct expression and/or value for t0 for
the suggested trajectory (0.4 pts)

• Correct numerical value D = 27.9 km or
close to it if approximations were used
(0.2 pts)

• Vertical distance z is not taken into account
when calculatingD (‐0.3 pts)
Solution 3. Same as Solution 1. but

solving the Pythagorean equation approxim‐
ately. For the first approximationwe can take
z = 0. This gives us a simple linear equation
forD1:

D1 = a+
v

u
D1

with a = d+ s = 2d−Rβ = 11.4 km, and the
solution

D1 =
a

1− v
u

= 25.0 km.

The second approximation is

D2 =

√(
a+

v

u
D1

)2
+ z2 = 26.4 km.

This is enough to see that the plane is able to
escape the explosion. The third approxima‐
tion would be

D3 =

√(
a+

v

u
D2

)2
+ z2 = 27.1 km.

Grading:

• Correct understanding of the problem and
correctly breaking it into smaller parts
(even if the detailed calculations are incor‐
rect) (0.2 pts)

• Correct expression and/or value for the dis‐
tance s (0.4 pts)

• Correct expression relating x and D
(0.4 pts)

• Correct Pythagorean equation or analog‐
ous equation for the suggested trajectory
(even if the trajectory found before was in‐
correct) (0.4 pts)

• Correct approximate solution method of
the Pythagorean or corresponding equa‐
tion (0.4 pts)

• Correct valueD = 26...28 km (0.2 pts)
• Vertical distance z is not taken into account
when calculatingD (‐0.3 pts)

2. GAſ (6 points) — Solution by Jaan Kalda.
i) (2 points) Immediately after stopping, all
the gas molecules move with the speed v.
In the box’s frame, the total energy of the
molecules is conserved, so the average en‐
ergy of each of the molecules is conserved,
too: ⟨T ⟩ = mv2/2. On the other hand, after
thermalisation, this will be equal to 3

2kT ,
hence T = 1

3mv2/k = 1
3µv

2/R.
Grading: relating final average energy

of the molecules to the initial energy in the
box’s frame or in another way showing that
this energy gives rise to the temperature: 1
pt; relating this to the internal energy of
monomolecular gas: 0.5 pt; expressing final
answer: 0.5 pt. Solutions which used 1

2kT or
kT instead of 3

2kT as the internal energy but
otherwise correct get 1.5 pts.
ii) (2 points) Immediately after stopping, all
the molecules move towards the wall with
the same speed v. Hence, during time inter‐
val t, the molecules inside the near‐wall re‐
gion of thickness vt and volume W = Avt
(where A stands for the area of the wall) are
hitting the wall. There are N = νNaW/V =
νNaAvt/V suchmolecules. After hitting, the
molecules depart from the wall with the op‐
posite velocity, hence each of them trans‐
fers momentum ∆p0 = 2mv to the wall.
So, the total transferred momentum is ∆p =
N∆p0 = 2νNaAmv2t/V which corresponds
to the pressure P = ∆p/At = 2νNamv2/V =
2νµv2/V .

Grading: expressing the number of mo‐
lecules hitting a wall during time period t:
0.5 pts; finding the momentum transferred
by each molecule: 0.5 pts; expressing the
pressure in terms of the transferred mo‐
mentum: 0.5 pts; bringing all these compon‐
ents together to get the final answer: 0.5 pts.
Solutions that forget that particles obtain a
velocity −v after bouncing on the wall that
are otherwise correct get 1.5 pts in total.
iii) (2 points)Fast molecules escape the trap‐
ping region, only molecules whose x‐, y‐
, and z‐components of velocity are smaller
by modulus than u = 1

2V
1/3/τ = 100 m/s

get trapped. This is much smaller than the
thermal speed vT =

√
RT/µ ≈ 790 m/s. In

that range of velocities, the Maxwell distri‐
bution is almost constant, hence we may as‐
sume that the trapped molecules have velo‐
city components evenly distributed from −u
to u. Hence,

⟨
v2x
⟩
=

1

u

∫ u

0

u2du =
1

3
u2,

so that the total average kinetic energy is
1
2m(v2x+v2y+v2z) =

1
2mu2. On the other hand,

this is equal to 3
2kT , hence T = 1

3mu2/k =
1
3µu

2/R ≈ 1.6 K.
Grading: realising that only slow mo‐

lecules get trapped: 0.3 pts; finding the
maximal velocity projection of trapped mo‐
lecules: 0.3 pts; noting that velocity distribu‐
tion function of trapped molecules is a con‐
stant: 0.3 pts; finding

⟨
v2x
⟩
: 0.3 pts; express‐

ing hence the kinetic energy: 0.2 pts; relating
this to 3

2kT : 0.3 pts bringing all these com‐
ponents together to get the final answer: 0.3
pts.
3. ROCĸET (5 points) — Solution by Jaan
Kalda.
i) (1 point) Momentum of the reflected
photons was p0 = W/c = αM0c, and be‐
comes after reflection opposite, p1 = −p0 =
−αM0c, hence themomentum transferred to
the rocket∆p = 2αM0c. Due to the conserva‐
tion of the total momentum, the momentum
of the rocket M0v = ∆p = 2αM0c, hence
v = 2αc.



Grading: relationship p0 = W/c: 0.3 pts;
∆p = 2p0: 0.2 pts; M0v = ∆p: 0.4 pts; final
answer: 0.1 pts.
ii) (2 points) Let the final relativistic mass of
the rocket be M , and the momentum — p,
and let the total mass of photons after reflec‐
tion be µ. For convenience, we’ll be using
units by which c = 1. Then we have the re‐
lativistic invariant for the 4‐momentum

p2 +M2
0 = M2.

As the rest mass of photons is zero, the time‐
and space components of their 4‐momentum
are equal, hence the momentum of the
photons P = µ. The momentum conserva‐
tion is written as

p = M0 + µ;

the energy conservation law is written as

M + µ = 2M0.

The last two equations yield p = 3M0 − M .
Upon taking this equation into square and
combining with the first equation, we obtain
M = 5

3M0, hence µ = 2M0 −M = 1
3M0, and

p = M0 + µ = 4
3M0. Therefore, the speed of

the rocket v = p/M = 4
5 . Returning to the SI

system of units, this corresponds to v = 4
5c.

Grading: Correctly written conservation
laws (momentum, energy): 0.5 pts each; re‐
lativistic invariant for the rocket: 0.3 pts;
equality p = µ: 0.3 pts; solving the obtained
set of equations to find the relativistic mass
(energy) of the rocket: 0.1 pts; and express‐
ing the final answer for the speed: 0.3 pts.
Partial credit if the speedhas not been found:
0.2 pts for expressing v = p/M .
iii) (2 points) The perceived acceleration is
proportional to the transfer rate of the mo‐
mentum, from photons to the rocket, in the
rocket’s frame. This transfer rate is inversely
proportional to the time interval between
two subsequent photons, and to the mo‐
mentum of each of the photons. Due to the
Doppler shift, both get longer with the in‐
creasing speed by the Doppler factor

k =

√
1 + v

1− v
.

Hence, the perceived acceleration is propor‐
tional to k−2. When the rocket is still at rest,
this factor is equal to 1; at the end of the pro‐
cess, it is equal to

1− v

1 + v
=

1

9
.

Therefore, the acceleration is reduced 9
times.

Grading: Stating the two reasons why ac‐
celeration becomes smaller: 0.4 pts each.
Using the Doppler effect formula for finding
the red shift of the photons in the rocket’s
frame: 0.4 pts; using the Doppler effect for‐
mula for finding the time delay between two
subsequent photons: 0.6 pts; expressing the
final answer: 0.2 pts.
4. AC FıLTER (5 points) — Solution by Jaan
Kalda.
i) (2 points) The output voltage Vout is the
difference of the voltages on the capacitors.
Hence, for Vout to become infinite, one of
the currents must become infinite. This is
possible only if the impedance of the lower
branch becomes zero:

1

iω0C0
+ iω0L = 0,

hence ω0 = 1/
√
LC0.

Grading: Concluding that the impedance
of the lower branchmust be zero: 0.8 pts; ex‐
pressing this impedance: 1 pt; finding the fi‐
nal answer: 0.2 pts.
ii) (3 points)Let us draw a phasor for this cir‐
cuit. As compared with ω = ω0, the ratio of
the impedances on the inductor and on a ca‐
pacitor is increased four‐fold. For the lower
branch, these two impedances were equal
previously, hence now the impedance of the
inductor is four times bigger than the imped‐
ance of the capacitor; the same applies to the
corresponding voltages: VL = 4VC0. The two
voltage vectors are antiparallel andmust add
up to the input voltage V0, hence VL − VC0 =
V0, hence VC0 = V0/3 and VL = 4

3V0. The
voltage vectors on C1 and R are perpendicu‐
lar to each other and must add up also to the
input voltage V0, hence these three voltage
vectors form a right triangle. According to
the Thales theorem, the right angle must lie

on a circle, with the input voltage being a dia‐
meter of this circle. This is depicted in the
figure below where the voltage vectors are
color‐couded as follows: output — black; ca‐
pacitor C1 — cyan; capacitor C0 — blue; in‐
ductor — red; resistor — green. Radius of the
circle is shown in purple.

From this figure, it becomes obvious that the
phase shift φ is maximal when the output
voltage vector is tangent to the circle, hence

φ = arcsin V0/2

VL − V0/2
=

3

5
,

and
Vout =

V0/2

tanφ
=

2

3
V0.

Alternatively, the problem can be solved
using the standard impedance‐based ap‐
proach, but this will be mathematically sig‐
nificantly more technical.

Grading: Concluding that VC0 = V0/3
and VL = 4

3V0: 0.5 pts; concluding that the
potential of the upper output node draws a
circle (applying the Thales theorem): 1 pt;
noting that phase shift is maximal when the
output voltage vector is tangent to the circle:
1 pt; finding the phase shift: 0.2 pts; finding
Vout: 0.3 pts.
5. FERROMAGNETıC ſTRıPE (12 points) —
Solution by Jaan Kalda.
i) (0.5 points) We measure E = 3.15 V. Any
value above 3.20 V or 3.00 Vwill give 0 points.
Missing units: subtract 0.2 points.
ii) (1.5 points)We turn the dot on the sensor
pointing up, and measure V1 = 1.4 mV;
then turn it pointing down and measure
V2 = −3.8 mV. (0.2 pts)

(No points are awarded if only one of the
voltages V1 or V2 are measured or voltages
readings are incorrect. Reading is judged
to be incorrect if the corresponding vertical
magnetic field (when calculated correctly)
would be greater than 80μT.)

The voltage is affected by the offset
voltage and the Earth’s magnetic field BEz.
The Earth’s magnetic field influences the
reading by a voltage offset VEz = BEz/a,
where a is a constant. We know that if
the battery voltage were to be 3 V, then
each millivolt is 10μT. Our battery in‐
creases the scaling by a factor of E/3 V.
In other words, to convert from volts to mi‐
croteslas, wemultiply our voltage through by
a = 10μT/mV·3 V/E = 9.5μT/mV. (0.1 pts)

Taking all this together, we have V1 =
V0 + BEz/a and V2 = V0 − aBEz and so
V0 = (V1 + V2)/2, (0.2 pts)

BEz = (V1 − V2)a/2. (0.2 pts)

Numerically we get V0 = −1.3 mV, (0.1 pts)

BEz = (V1 − V2)a/2 = 50μT. (0.1 pts)

For this magnetic field value, no points
are given if its calculation has mistakes (i.e.
it does not correspond to the reported voltage
values). If a = 10.0μT/V was used even
though the voltage was not 3.00 V, 0.2 point
will be subtracted.

Now we can also measure the horizontal
component of the magnetic field. To that
end, we turn the sensor horizontally, and
turn it in horizontal plane so as to maximise
the reading V3 = 0.2 mV; then the horizontal
component can be found as
BEh = (V3 − V0)a ≈ 14μT. (0.2 pts)

Deduce 0.2 pts if the offset is not subtracted,
and 0.1 if the scaling factor a is not applied.

The magnetic field strength can be found
as BE =

√
B2

Eh +B2
Ez, (0.1 pts)

numerically ≈ 52μT. (0.1 pts)

alternatively, one can turn the sensor in 3D
so as to maximize the reading Vmax = 1.6 mV
resulting in BE = (Vmax − V0)a ≈ 52μT.

The angle between the vertical direc‐
tion and the magnetic field is found as
θ = arctanBEh/BEz, (0.1 pts)



numerically ≈ 16° (0.1 pts)

iii) (2.5 points) We perform the measure‐
ments in the sameway as before, butweneed
to keep in mind to subtract not only the off‐
set, but the contribution of the Earth’s mag‐
netic field. The easiest way to do this is to
subtract from all the readings the voltage V1

which includes both the contribution from
the Earth’s field, and the offset.

y/mm/ V /mV/ Bz(y)/μT/
‐15 36.5 333
‐10 33.2 302
‐5 30.6 277
0 22.6 201
5 22.6 201
10 24.9 223
15 29.3 265

Each data point from third to seventh, with
reasonable values (from 140μT to 400μT:
0.3 pts.
Failure to subtract V1: deduce 0.1 pts from
each data point; failure to apply the scaling
factor a: deduce 0.1 pts from each data point.

Notice that the data are asymmetric with
respect to y = 0, this is due to inhomogen‐
eity of the stripe. The field values near the
edge of the stripe should be higher than at
the middle; if this is not observed, subtract
0.3 pts for any subscore not smaller than 0.3
pts.

The average value can be calculat‐
ing by numerical integration (e.g. by us‐
ing the trapezoidal or Simpson’s rule):
⟨B⟩ =

∫
Bzdy/w, (0.2 pts)

where the stripe’swidthw = 30 mm. (0.2 pts)

Numerical integration yields
∫
Bzdy ≈

752μT cm,
hence ⟨B⟩ ≈ 252μT. (0.4 pts)

Only 0.2 pts are given if this result is smal‐
ler than 200μT or bigger than 300μT; no
points are given if it is smaller than 120μT
or bigger than 400μT.

Finally, using the numbers given above,
we obtain κ = 0.80. (0.2 pts)

Points are given only if the result is
between 0.6 and 1.
iv) (3.5 points) We proceed similarly to the
previous task, except that now we need to
subtract also the field of the permanentmag‐
net (previousy the distance from the magnet
was so big that the field of the magnet was
neglibly small). To that end, we repeat ex‐
periment with the magnet only, by moving
stripe away as far as possible.

x/cm/ V /mV/ Vm/mV/ Bz(x)/μT/
3 640 450 1900
4 434 200 2340
5 256 108 1480
6 154 63.5 905
7 116 39.7 763
10 68 13.5 545
15 36 3.4 326
20 29 1.4 276
30 22 0.5 215
40 16.5 0.2 163
50 14.5 0.1 144
60 16.5 0.1 164
70 17 0 180

Up to the third data point in the range
3 cm ≤ x < 8 cm, for each one 0.3 pts.
No marks here if the field of the permanent
magnet is not subtracted.

Up to the third data point in the range
8 cm ≤ x < 35 cm, for each one 0.3 pts.
Subtract 0.2 pts from the score of each data
point if the field of the permanent magnet is
not subtracted.

Up to the third data point in the range
35 cm ≤ x < 67 cm, for each one 0.3 pts.
Subtract 0.1 pts from the score of each data
point if the offset voltage and the Earth’s field
are not subtracted.

If no units, but the units can be guessed:
subtract 0.1 for missing voltage units, 0.1 for
missing distance units, and 0.1 for missing
magnetic field units.
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For correct plotting: 0.5 pts.
Missing units on graph: subtract 0.1 pts for
each. Graph fills less than one third of the
graph area: subtract 0.1 pts.
Magnetic field at small x is around 10 times
bigger than at moderate values of x: 0.3 pts.
v) (2.5 points) Magnetic flux is “attracted”
into ferromagnetic materials (minimising
this way the energy of the magnetic field
by a fixed magnetic flux). However, ferro‐
magnetic will attract the field only until a
saturation is reached from which point this
is no longer energetically favourable. For
our soft ferromagnetic µ ≫ 1, hence the
magnetisation J⃗ = B⃗/µ0 − H⃗ ≈ B⃗/µ0. This
means that all we need to do is to determine
the field B⃗ = Bxx̂ attracted into the ferro‐
magnetic stripe: µ0J = Bx. (0.5 pts)

Due to the Gauss law for the magnetic
field, Bx(x = a)wt = 2wκ

∫ L

a
Bzdx, 1 point.

Here a = 3 cm stands for the point at which
we calculate the B‐field. At even smaller val‐
ues of x, the magnetisation is slightly larger,
but the difference is not big (it can be estim‐
ated through the magnetic flux leakage from
x = 0 to x = a). The factor two stands for
the fact that themagnetic flux exits the stripe
both through the top surface, and the bottom
surface. If factor 2 is missing, subtract 0.3
pts.

We can integrate numerically using
trapezoidal or Simpson’s rule to obtain∫ L

a
Bzdx ≈ 79 mT · cm (0.7 pts)

This subscore is given only if the numerical
integration is preformed with a relative error
less than 10% (from the Simpson’s rule res‐
ult).

Finally, we obtain µ0Js = 2
∫ L

a
Bzdx/t ≈

2.5 T. (0.3 pts)

This subscore is given only if the result is
from 1.6 to 3.2 T.
vi) (1.5 points) In principle, there are two
ways to show that the saturation is reached.

The first method is to estimate the total
magnetic field flux Φ ≈ πB0d

2/4 sent by
the permanent magnet to the ferromagnetic
stripe, where B0 is an estimate for the mag‐
netic field strength at the circular face of the
magnet, and d ≈ 1 cm denotes the diameter
of the magnet. If this flux is bigger than the
flux Φs = 2wκ

∫ L

a
Bzdx then the saturation

has been reached. (0.5 pts)

From the results above we find
Φs79 mT · cm · w ≈ 0.24 T · cm2. (0.2 pts)

The value of B0 can be estimated by
extrapolating the field measurement data
along the axis of the magnet using the dipole
field dependence B ∝ l−3, where l denotes
the distance to the centre of the magnet.
(0.5 pts)

The result is B0 ≈ 0.7 T, and Φ ≈
0.5 T · cm2. This is bigger than Φs, but not
much bigger, so the calculations need to be
accurate. (0.3 pts)

The second way is to put the magnet to
the centre of the stripe and repeat the mag‐
netic field measurements along the stripe as
was done in task iv. (0.5 pts)

It turns out that the field strength as a
function of distance from the magnet is the
same as it was before. (0.5 pts)

This means that now the magnet sends
twice as big flux into the sheet, from the
centre towards the both ends of the stripe.
Hence, previously the stripe had a capacity
to conduct only half or less of the full flux of
the magnet. (0.5 pts)



6. LıFE HACĸſ (6 points) — Solution by Taavet
Kalda.
i) (1 point) A healthy eye can see from a0 =
0.25 m to b0 = ∞. The images formed by
the two limit points through the contact lens
define the range (a1, b1) the nearsighted eye
can focus. For this, we use the Lens’ formula:

1

a0
+

1

a1
= D0,

1

b0
+

1

b1
= D0 =

1

b0
,

whereD0 = −6 dptr. This yields

a1 =
1

D0 − 1/a0
= −10.0 cm,

b1 = − 1

D0
= −16.7 cm.

Because of the sign convention in the Lens
formula, the clear‐vision range without con‐
tact lenses is from −a1 = 10.0 cm to −b1 =
16.7 cm.

Grading:
• Correct understanding of the optical setup
(0.5 pts)

• Lens equation (0.3 pts)
• Expressing the final answer (0.2 pts)
ii) (2 points) The setup is the same, only that
the lens moves a distance L = 2.00 cm away
from the eye. Since both of the locations
of the limit points and their images must
stay the same relative to the eye, both the
limit points and their images are shifted re‐
lative to the glass lens by L. Taking care with
the signs, this translates to the required lens
power for the limit points to be

1

a1 + L
+

1

a0 − L
= −8.15 dptr,

1

b1 + L
+

1

b0 − L
= −6.82 dptr.

The minimal required glass lens power D1

is the higher (in absolute value) of the two
values, hence D1 = −8.15 dptr. We can in‐
deed check that this focuses infinity, as infin‐
ity gets focused to a distance of−1/D1+L =
14.2 cm from the eye, safely in (a1, b1).

Grading:

• Understanding that the limit points and
their images stay the same relative to the
eye (1.0 pts)

• Correct formulation of the lens equations
(0.5 pts)

• Choosing the correct value for the lens
power (0.3 pts)

• Expressing the final answer (0.2 pts)
iii) (3 points) Let the distance between the
front and back wheels be 2a, and the height
of the centre of mass from the bottom of the
car h.

In the case of the car blocking all the
wheels, the car acts as one solid body, i.e.
the slipping condition can be written as µ =
tanα0 = tan 45° = 1.

The acceleration of a front‐wheel‐drive
car is limited by the grip of its front wheels
(i.e. friction with the ground) with the back
wheels rolling frictionlessly. In total, there
are four forces acting on the car, but the nor‐
mal and friction forces acting on the front
wheel canbe coupled into one resultant force
F⃗f acting at an angle of β = arctanµwith re‐
spect to the surface normal. There is further
the normal force of the back wheels, N⃗b, and
finally the gravitational force mg⃗ applied on
the centre of mass of the car. The forces are
shown on the figure below

At the critical angle α1 = 22°, the forces
are in equilibrium. This condition can be
solved in multitude of ways, either by brute
force (1 rotational and 2 translational force
balance equations) or geometrically by not‐

ing that the three forces in equilibriummust
all intersect in one point. This can be proven
by contradiction by observing the torque
around any intersection of two of the forces.
With the geometrical approach, wemake use
of the fact that mg⃗ is vertical, N⃗b is perpen‐
dicular to the surface (so at an angle α1 w.r.t.
mg⃗) and F⃗f at an angle β w.r.t. the surface
normal. The intersection condition is then
most conveniently written by expressing the
distance of the intersection point from the
surface, y, in two different ways:

y =
2a

tanβ
=

a

tanα1
− h.

Hence,

h

a
=

1

tanα1
− 2

tanα0
.

We can proceed exactly the same way for the
case of the car backing up at the other, yet
unknown, critical angle α2, illustrated be‐
low.

We proceed to write down the equilib‐
rium condition the same way as before, by
expressing the distance of the intersection
point from the surface in two different ways:

y =
2a

tanβ
=

a

tanα2
+ h.

Hence,

tanα2 =

(
2

tanα0
− h

a

)−1

=

(
4

tanα0
− 1

tanα1

)−1

and so α2 = 33.3°.
Grading:

• Understanding the dynamics of a front‐
wheel‐drive car; identifying the four forces
acting on the car (0.8 pts)

• Solving the case with brakes blocking all
wheels (0.4 pts)

• Writing down the equilibrium condition
for going uphill (0.8 pts)

• Writing down the equilibrium condition
for reversing uphill (0.8 pts)

• Expressing the final answer (0.2 pts)
7. ELECTRONſ ıN MAGNETıC FıELD (9 points)
— Solution by Taavet Kalda.
i) (2 points) Due to Lorentz force not acting
along the direction that’s parallel to B, the
condition for electrons to stay the same dis‐
tance along that axis becomes simply that
their velocity components alongB are equal.
We will henceforth only consider the motion
on the plane that’s perpendicular to B.

Neglecting electrostatic interactions,
electrons move on circular trajectories of
frequency ω given by the right hand rule,
found from the centrifugal and Lorentz force
balance:

mv2

R
= mvω = veB,

hence ω0 = eB/m. In other words, the angu‐
lar frequency for both electrons is the same
and independent of their speeds. We also get
an expression for the radius of the circular
trajectory: R = v/ω0 = mv/(eB).

An important consequence is that the
angle between the velocities of the two elec‐
trons stays constant in time. Hence, the re‐
lative velocity between the two electrons is
also constant in magnitude (and not zero!)
and rotating with ω0. For the relative velocity
to keep the distance between electrons con‐
stant, the distance vector between the two
electrons must be perpendicular to the rel‐
ative velocity and hence also rotate with an‐
gular speed ω0. This is enough to conclude



that the only way this is satisfied is when the
two electrons move on concentric circular
trajectories.

The condition for the relative velocity to
be perpendicular to the distance vector gives
us that the speed of the other electron is u =
v/ cosα. The radii of the two circles are then
R1 = v/ω0 and R2 = v/(cosαω0). The tra‐
jectories are illustrated below.

Grading:
• Finding the cyclotron frequency and radius
of curvature from force balance (0.5 pts)

• Showing that the two orbits must be con‐
centric, of which
– deducing that the angle between velocit‐

ies is constant (0.3 pts)
– showing that the displacement traject‐

ory rotates with ω0 on a circular traject‐
ory (0.4 pts)

– concluding that the orbits are concentric
(0.2 pts)

• Correct sketch of the trajectories (0.3 pts)
• Correct expression for the speed of the
other electron (0.3 pts)

ii) (1 point) The class of solutions we found
in the previous part does not cover the case
where the two trajectories intersect. How‐
ever, the previous part assumed that α ̸= 0.
Hence, for the trajectories to intersect, we
need α = 0 and u = v. In other words, u⃗ = v⃗.
This leaves us complete freedom in the loca‐
tions of the centres of the two trajectories, as
long as they intersect. A sketch of a potential
trajectory is shown below

Grading:
• Deducing that α = 0 and u = v (0.4 pts)
• Concluding that u⃗ = v⃗ (0.3 pts)
• Sketch (0.3 pts)
iii) (2 points) The frequency of the periodic
motion is 2π/T = eB/(3m) = ω0/3, i.e.
a third of the cyclotron frequency. Now,
it’s clear that a simple solution that can sat‐
isfy the electrons being equidistant and with
equal speeds is simply the one where they
move on the same circular trajectory, but in
the opposite phase. We proceed to reason
why this is the only potential solution.

The net force on any of the electronsmust
be perpendicular to the velocity of the said
electron (otherwise v ̸= const). The Lorentz
force is automatically perpendicular to the
velocity, and hence we need the Coulomb
force to also be perpendicular to the velo‐
city. This means that the displacement vec‐
tor has to be perpendicular to the velocities
and this, combined with the electrons being
equidistant, gives us the aforementioned cir‐
cular solution.

The radial force balance equation reads

mω2l

2
= evB − ke

l2
,

where negative sign points outward (Lorentz
force must be positive signed for the elec‐
trons not to repulse each‐other). Using v =
ωl/2 and substituting ω, we get

e2B2l

18m
=

e2B2l

2m
− ke2

l2

and so

l =
3

√
9km

4B2
.

Grading:
• Showing that the electrons must be orbit‐
ing each‐other on a circular orbit (0.7 pts)

• Radial force balance (0.8 pts)
• Final answer (0.5 pts)
iv) (2 points)In order to analyse the trajector‐
ies given on the figure, we need some basic
understanding of their underlying dynam‐
ics. As compared to the previous task, the
condition for the centre of mass to be at rest
is now relaxed. We start in the most general
form andwrite down the forces acting on the
two electrons, 1 and 2:

m ˙⃗v1 = −ke2

l2
l̂ + ev⃗1 × B⃗

m ˙⃗v2 =
ke2

l2
l̂ + ev⃗2 × B⃗,

where l⃗ = r⃗2 − r⃗1 is the displacement vector
from 1 to 2 and l̂ is the corresponding unit
vector. We can cancel out the Coulomb force
by adding the two equations together:

m( ˙⃗v1 + ˙⃗v2) = e(v⃗1 + v⃗2)× B⃗.

This canbe further simplifiedby substituting
the centre ofmass velocity v⃗CM = (v⃗1+v⃗2)/2:

m ˙⃗vCM = ev⃗CM × B⃗.

This mirrors exactly the equation of motion
of a single electron, meaning the centre of
mass moves on a circular trajectory with fre‐
quency ω0, even in the presence of the Cou‐
lomb force.

We proceedwith a similar analysis for the
difference of velocities:

m( ˙⃗v1 − ˙⃗v2) = −2
ke2

l2
l̂ + e(v⃗1 − v⃗2)× B⃗.

Substituting in the velocity of 1 w.r.t. CM
∆v⃗1 = v⃗1 − v⃗CM = (v⃗1 − v⃗2)/2 we get

m∆ ˙⃗v1 = −ke2

l2
l̂ + e∆v⃗1 × B⃗

which, once again, mirrors the equation of
motion of the previous sub‐task. Explicitly,
the EoM of the previous part was

m ˙⃗v = −ke2

l2
l̂ + ev⃗ × B⃗.

Therefore, ∆v⃗1 rotates with an angular fre‐
quency ω that’s smaller than ω0.

In conclusion, the motion of an electron
is the superposition of the circular trajectory
of the centre of mass of radius |R⃗1| = R1 and
frequency ω0 and the circular motion of the
electron of radius |R⃗2| = R2 and frequency
ω < ω0 around the centre of mass. The other
electron is diametrically opposite around the
centre of mass, separated by a distance R2

from the first electron. R1, R2 and ω are free
parameters.

We finally continue with the graph given
in the statement. Since the trajectory makes
one hoop in a full period, ω0 must be an in‐
teger multiple of ω. If this wasn’t the case,
both R⃗1 and R⃗2 must make more than one
full rotation in a period and the result would
be a hoop that goes around itself more than
once (possibly self‐intersecting in the pro‐
cess). Thus, ω0 = Nω, where N ∈ {2, 3, . . .}
(N = 1 gives a circle).

For the next step, let’s consider the ef‐
fect of radius of curvature, an easily observ‐
able property of the trajectory. In general,
the bigger the speed, the bigger the radius
of curvature (Coulomb force gives a constant
contribution to the radial force, and Lorentz
force has a monotonously increasing rela‐
tion between R and v). Hence, the point
on the trajectory with the biggest radius of
curvature has the highest speed (marked on
the figure with B), and vice‐versa (marked
with A). Further, the biggest speed happens
when R⃗1 and R⃗2 are parallel, and the smal‐
lest when they’re antiparallel (having speeds
ω0R1 + ωR2 and |ω0R1 − ωR2| respectively).
Now, in a full period, R⃗2 goes around once,
and R⃗1 goes around N times. Therefore, R⃗1

overtakes R⃗2 a total of N − 1 times and we
expect to see N − 1 occurrences of maximal
speed, i.e. maximal radius of curvature. Be‐
cause we see this happen once, N = 2. This
immediately gives the period of the motion
to be T = 2π/ω = 4π/ω0 = 4πm/(eB).

From the previous theory, |AB| = 2R2,
and the centre point O1 between A and B

is where R⃗1 intersects with the axis of sym‐
metry. The other point where R⃗1 intersects
with the axis is when R⃗1 and R⃗2 are per‐



pendicular. This can be found by finding
the points (using a ruler) which are |AB|/2
away from the principal axis (we mark these
by C and D). There are two solutions, the
right one of which is unphysical (as can be
seen by the following constructions breaking
down). Having found the other intersection
pointO2 (which happens to coincidewithA),
we can fully reconstruct R⃗1 (colored blue)
and from there it’s easy to find the centre
of mass corresponding to the marked elec‐
tron (by finding the point on R⃗1 which is a
distance R2 from the marked point using a
compass) and hence the location of the other
electron (by mirroring the marked electron
w.r.t. the centre of mass), marked cyan.

Alternative solution.
An alternative solution with simpler geo‐

metric operations, but more complex al‐
gebra would follow a similar line of reas‐
oning until N = 2. After that, one
can show that the two electrons follow
the same orbit by expressing the locations
of the two electrons via complex numbers
z± = R1 exp(2iωt) ± R2 exp(iωt). This is
a commonly deployed method to simplify
vector operations. The real part of the
complex number is the x‐coordinate, and
the imaginary the y‐coordinate. Now, if
we apply a phaseshift of π to ωt, z+ be‐
comes z− and vice‐versa. This is because
exp(2i(ωt+ π)) = exp(2iωt) · exp(2πi) =

exp(2iωt) and exp(iωt+ iπ) = − exp(iωt).
Hence, z+ and z− follow the same trajectory
butwith aπ phaseshift, exactly aswewanted.

Now, the location of the other electron
can be simply found by drawing a circle of
radius |AB| from the first electron and see‐
ing where it intersects with the trajectory.

Grading:
• Analysis of the dynamics of the system, of
which:
– Equations of motions for both electrons
(0.4 pts)

– Deducing that the centre of mass moves
on a circular orbit of frequency ω0

(0.3 pts)
– Deducing that the electrons orbit centre

of mass with frequency ω < ω0. (0.4 pts)
If the student implicitly assumes ω > ω0

but does the rest correctly (including the
constructions), award a maximum of 1.5
points.

• Analysing the trajectory to show that ω =
ω0/2. (0.3 pts)

• Using points A and B to get 2R2 (0.3 pts)
• UsingC andD to findR1 andhence the loc‐
ation of the other electron (alternatively us‐
ing |AB| and reasoning that the electrons
must share a trajectory) (0.3 pts)

v) (2 points) Based on the previous reason‐
ing, we see that the trajectory has two points
withmaximal radius of curvature, and hence
N = 3, i.e. the same as in part iii). Now, the
first electron is at the inflection point where
it’s momentarily at rest (before being pushed
into motion by Coulomb force). Also, since
it’s the point with highest curvature, we have
v1 = |ω0R1 − ωR2| = 0 so ω0R1 = ωR2. Be‐
cause the other electron is diametrically op‐
posite w.r.t. centre ofmass, it’s at the point of
highest speed, i.e. v2 = ω0R1+ωR2 = 2ωR2.

Now, because the equation of motion de‐
fining R2 is the same as in part iii) (as high‐
lighted in the previous subtask), we can reuse
the result form that part to get

R2 =
l

2
=

3

√
9km

32B2

and so

v2 = 2ωR2 =
2eB

3m
R2 = e

3

√
kB

12m2
.

Grading:
• Deducing thatω = ω0/3 (the toolset for this
should’ve been developed in the previous
part) (0.3 pts)

• Finding that the highlighted electron is at
rest (0.3 pts)

• Rest condition ω0R1 = ωR2 (0.3 pts)
• Expressing the speed of the other electron
as 2ωR2 (0.3 pts)

• Solving the force balance equation for
R2 (or reusing the result from part iii))
(0.7 pts)

• Final expression (0.1 pts)
8. PLANETſ (9 points) — Solution by Taavet
Kalda.
i) (0.7 points)A waxing crescent moon can be
seen immediately after sunset, illustrated be‐
low

Grading:
• Figure with Moon between Earth and Sun
(0.3 pts)

• All rotation directions consistent (0.1 pts)
• Correct answer A (0.3 pts)
ii) (1.2 points) Zenith in Tallinn forms an
angle φ = 59.5° with the celestial equator.
During a winter solstice, the Sun is ε =
23.5° below the celestial equator. Since full
moon occurs when it’s opposite to the Sun,
Moon must be ε above the celestial equator.
Further, the Moon is at its highest when it
crosses the plane formed by the centre of
Earth, the north pole (marked NP) and the
ray pointing towards the zenith in Tallinn. A
convenient way to imagine this is how dur‐
ing one day, stars and planets (alongside the
Moon) stay roughly the same relative to each‐
other in the sky, but the sky as a whole ro‐
tates around the axis formed by the centre
of Earth and north pole. This is depicted in
the figure below, alongside with the celes‐

tial equator. From the figure, we can now
read that the Moon is an angle φ−ε from the
zenith and hence the maximal culmination
angle is 90°− φ+ ε = 54.0°.

Grading:
• Understanding of the positions of Tallinn,
Earth and Moon at the maximum point
(0.5 pts)

• Correct final expression (0.6 pts)
• Correct numerical value 54.0° (0.1 pts)
• Expression and value to Zenith 36.0° given
instead (0.5 pts)

iii) (1.2 points)The flux of an object drops in‐
verse squared to the distance from the said
object.

Mars is closest/farthest to Earth when it
alignswith the line formed by Earth and Sun.
In both cases, Mars is at full phase. At its
closest, Mars is d− = R♂ − R⊕ from Earth,
and its farthest, d+ = R♂ + R⊕. In both
cases, the same amount of sunlight reaches
the Mars surface (because we assume Mars
to always be R♂ from the Sun). This, com‐
bined with phases being the same, gives us
the ratio of illuminances to be

Imax
Imin

=
d2+
d2−

=

(
R♂ +R⊕

R♂ −R⊕

)2

= 25.

Grading:
• Noting I ∝ 1/r2 (0.2 pts)
• Notingminimum/maximum correspond to
R♂ ±R⊕ (0.2 pts)

• Noting Mars is at full phase in both posi‐
tions (0.2 pts)

• Correct final expression (0.5 pts)
• Correct numerical value 25 (0.1 pts)



iv) (1.2 points) Looking from the Sun, the
separation between Earth and Mars must
change from 0 to π between the two de‐
scribed situations. The relative angular
speed of the two planets is ∆ω = 2π/T⊕ −
2π/T♂. Mars’ period can be found from
Kepler’s III law as T♂ = T⊕

√
(R♂/R⊕)3. The

time taken is thus

t =
π

∆ω
=

T⊕

2

1

1− (R⊕/R♂)3/2
= 1.1 yrs.

Grading:
• Expressing the relative angular speed ∆ω
(0.3 pts)

• Solving T♂ in terms of T⊕ and orbital radii
(0.3 pts)

• Correct final expression for half a period
(0.5 pts)

• Correct numerical value 1.1 yrs (0.1 pts)
v) (1.2 points) The maximal angular separa‐
tion between Sun and Venus, as seen from
Earth, can be found as the angle between
Earth‐Sun ray and the ray that goes through
Earth and is tangent to the orbit of Venus.
From the right angled triangle, we get the
seperation to be α = arcsin(R♀/R⊕) = 46.1°.
We therefore see Venus for a duration of

1 day · α

2π
= 11 050 s = 3hrs 4min.

Grading:
• Angular separation is the angle between
the Earth‐Sun and Earth‐Venus rays
(0.2 pts)

• Expressing time as a ratio to a full rotation
of the Earth (0.2 pts)

• Maximal when tangent to orbit (0.4 pts)
• Correct expression for α (0.3 pts)
• Correct numerical value for time 11 050 s =
3hrs 4min (0.1 pts)

vi) (2.5 points) As discussed in part iii), the
luminosity of a planet is the product of its
phase, φ (the fraction of its area which is il‐
luminated), and the inverse squared distance
to Earth. In other words,

I

I0
=

φ

L2
.

In the figure below, the phase is simply
the ratio of the lengths of the “visible” to the
“dark” part.

From the geometry, we see that this is (1 +
cosβ)/2, where β is the angle between the
Sun, Venus, and Earth. From cosine law, we
get

R2
⊕ = R2♀ + L2 − 2R♀L cosβ

so

1 + cosβ = 1 +
R2♀ −R2

⊕ + L2

2R♀L .

Hence,

I

I0
=

R2♀ −R2
⊕

2R♀L3
+

1

L2
+

1

2R♀L

= −
R2

⊕ −R2♀
2R♀ x3 + x2 +

1

2R♀x,

where we set x = L−1.
Grading:

• Realizing I/I0 is dependent on what frac‐
tion of Venus is illuminated from Earth’s
view (0.4 pts)

• Dependency of the form φ/L2 (0.4 pts)
• Realizing illuminated area is proportional
to 1 + cosβ (0.8 pts)

• Expressing β using the cosine law (0.2 pts)
• Correct final expression (0.7 pts)
vii) (1 point)Our goal is to maximise I(x)/I0
in the range x ∈ [1/(R⊕ +R♀), 1/(R⊕ −R♀)].
I(x) is a cubic that starts off from 0 at x = 0
and extends all the way to negative infinity at
x −→ ∞. We find the extrema by setting the
derivative to zero

d
dx

(
I

I0

)
= 0 = −3

R2
⊕ −R2♀
2R♀ x2 + 2x+

1

2R♀ .

This is a quadratic whose solutions are

x± =
2R♀ ±

√
3R2

⊕ +R2♀
3(R2

⊕ −R♀)2 .

The negative solution is smaller than 0, and
hence doesn’t interest us. Now, the positive
solutionmust correspond to amaximumdue
to the function tending to negative infinity
at big values. After careful rearranging, the
positive solution simplifies to

1/x+ = −2R♀ +
√

3R2
⊕ +R2♀ = 0.436 AU,

which safely falls in the range of [R⊕ −
R♀, R⊕ + R♀] and hence is the distance of
maximal intensity, L0 = 1/x+ = 0.436 AU.

We find the maximal angular distance
between the Sun and Venus using cosine law
as

α0 = arccos
(
R2

⊕ + L2
0 −R2♀

2L0R⊕

)
= 39.6°.

Grading:
• Noting maxima occurs at zero of derivative
(0.5 pts)

• Correct final expression for L (0.2 pts)
• Correct numerical value for L (0.1 pts)
• Numerical answer within range
[0.28 au,1.72 au] (0.1 pts)

• Correct numerical value for the angular
distance 39.6° (0.1 pts)

9. MAGNET ıN GLAſſ (12 points) — Solution
by Jaan and Taavet Kalda.
i) (1 point)The height is best measured using
a caliper by either making markings on the
surface of the cylinder corresponding to the
perpendiculars of the ends of the magnet, or
by measuring it from far away. Either way,
the goal is to remove the effects of parallax
when measuring the height of the cylinder.
The following measurements were made

i h(mm)
1 9.7
2 9.5
3 9.4

1 measurement (0.3/0.5 pts)
2 measurements (0.4/0.5 pts)

3 or more measurements (0.5/0.5 pts)

The average height is found to be h =
9.5(2)mm.

value within [9.1 mm, 10.0 mm] (0.3 pts)
error (0.2 pts)

ii) (3 points)Note that if the solid cylinder and
the cylinder with a magnet were to roll down
on the same slope of angle α, the former
will roll slower because it has relatively lar‐
ger moment of inertia. One can easily de‐
rive a formula for the acceleration by rolling:
a = g sinα/(1 + κ). For cylinder, κc = 1

2 ,
hence, for the cylinder with magnet, κ > 1

2 .

Correct formula for a (0.4 pts)

This observation brings us to the idea
about how to perform the experiment: we
need to build two slopes side‐by‐side, with
slightly different slope angles, so that the two
cylinders were to roll down with exactly the
same speed.

This idea (0.6 pts)

If we release cylinders simultaneously,
we can easily detect by eye if one of them
is faster. We need to perform many experi‐
ments, though, because the release is some‐
times unsuccessful, and one of the cylin‐
ders will obtain a slight head‐start. Also, we
need to make many experiments to reduce
the statistical uncertainty.

It is convenient to build the sightly differ‐
ent slopes by supporting the two boards from
one end on the same brick, but displacing
one of them by a certain distance s.

With board length L = 60 cm and brick
height h = 56 mm, we build slopes so that
the brick is supporting the boards near their
end.

i s(mm)
1 50
2 55
3 44
4 60
5 51
6 48
7 58

This means that in average, s ≈ 52 mm



Each measurement up to the 7th
(0.1/0.7 pts)

Measuring L (0.2 pts)
Measuring h (0.2 pts)

Based on the formula for a, we obtain
(1+κ) sinα = 3

2 sin(α+∆) fromwhere from
where

κ =
3

2

sin(α+∆)

sinα
− 1,

Relating κ to∆ (0.2 pts)

Meanwhile, sinα = h
L and sin(α+∆) =

h
L−s , hence

sin(α+∆)

sinα
=

L− s

L
.

Bringing all together,

κ =
3

2

L− s

L
− 1 =

1

2
− 3s

L
.

Numerically we obtain κ ≈ 0.24.

Relating κ to the directly measured
quantities (0.2 pts)

Numerical values from 0.2 to 0.3
(0.5/0.5 pts)

From 0.15 to 0.2 and from 0.3 to 0.4
(0.2/0.5 pts)

iii) (2.5 points) A potential method would be
to observe the light ray that barely touches
the edge of the magnet, (0.5 pts)
and make markings where the ray enters
and exits the cylinder. This works, because
the markings define a chord whose distance
from the centre is the radius of the magnet
r = d/2. Hence, the distance between the
markings a relates to r and R via Pythagoras
theorem via r =

√
R2 − a2/4 or in other

words,

d =
√
4R2 − a2. (0.7 pts)

We start by using the caliper to measure
the base diameter 2R ≈ 25.1 mm. (0.2 pts)

Wemake the followingmeasurements for
a:

i a(mm)
1 22.2
2 22.5
3 21.8

1 measurement (0.3/0.5 pts)
2 measurements (0.4/0.5 pts)

3 or more measurements (0.5/0.5 pts)

This yields a = 22.2(3)mm such that d =
12.0(7)mm.

value within [11.0 mm, 13.0 mm] (0.4 pts)
error (0.2 pts)

iv) (2.5 points)Themost direct method would
be tomeasure howmuch themagnet appears
to be bigger than its actual width.

Showing or stating the method or idea in text or
graphically (0.5 pts)

The optics of this is shown on figure 2.
On the figure, r′ is the apparent radius of the
magnet when the cylinder is observed from

far away. In practice, one could measure the
apparent diameter d′ = 2r′ using a caliper
and a marker.

Carrying out the method or idea correctly
(0.25pts)

From the figure, we work out from Snell’s
law that sinα = no sinβ, but from right tri‐
angles sinβ = r/R and sinα = r′/R. Hence,
no = r′/r = d′/d.

Stating and applying Snell’s law correctly
(0.5 pts)

Tabulated measurements of the apparent
width are shown below

i d′(mm)
1 18.3
2 18.5
3 18.8

3 or more measurements (0.3 pts)
with units (0.2 pts)

Averaging, d′ = 18.5(4)mm

average value of d with errors (0.25pts)

and so no = 1.54 with an associated error of
∆no = 0.09.

value within [1.50, 1.58] (0.25pts)
error (0.25pts)

v) (3 points)We repeat what we did by part iii:
we mark a point A on the cylinder, turn the
cylinder until the point A, as seen through
the cylinder, is barely seen through the outer
part, and just disappearing behind the inter‐
face between the inner and outer parts, and
make marking B at that point on the front
surface were the image of A is seen, cf. the
figure below. Then we continue turning the
cylinder until point A appears again, now at
point C and is seen through the inner re‐
gion of the cylinder. The corresponding ray
undergoes refraction at 90‐degree incidence
angle at point M , hence cos γ = no/nc, see
the figure.

It can be seen that ̸ BOC = 2γ. We can
measure the distance between the markings
|BC| ≈ 5.3 mm using the caliper. Then we
can express sin γ = |BC|/2R ≈ 0.211. Fi‐
nally, nc = no/ cos γ = no/

√
1− sin2 γ ≈

1.58.

A

C
B

O
γ

2γ
M

N

Idea of this method (0.8 pts)
Formula for relating |BC| to γ (0.8 pts)

Measuring |BC| (0.4 pts)
Formula for relating nc to γ (0.4 pts)

Obtaining final result for nc which is from 1%
to 4% bigger than no (0.6 pts)


