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Planetary Physics (10 points)
This problem consists of two independent problems related to the interior of planets. The effects of the
surface curvature of the planets can be neglected. You might need to use the formula

(1 + 𝑥)𝜀 ≈ 1 + 𝜀𝑥, when |𝑥 | ≪ 1. (1)

Part A. Mid-ocean ridge (5.0 points)
Consider a large vessel of water that is situated in a uniform gravitational field with free-fall acceleration
𝑔. Two vertical rectangular plates parallel to each other are fitted into the vessel so that the vertical edges
of the plates are in a tight gap-less contact with the vertical walls of the vessel. Length ℎ of each plate is
immersed in water (Fig. 1). The width of the plates along the 𝑦-axis is 𝑤, water density is 𝜌0.

Figure 1. Parallel plates in water.

Oil of density 𝜌oil (𝜌oil < 𝜌0) is poured into the space between the plates until the lower level of the oil has
reached the lower edges of the plates. Assume that plates and vessel edges are high enough for oil not
to overflow them. Surface tension and mixing of fluids can be neglected.

A.1 What is the 𝑥-component of the net force 𝐹𝑥 acting on the right plate (magnitude
and direction)?

0.8pt

Fig. 2 shows a cross-section of a mid-ocean ridge. It consists of overlaying layers of mantle, crust and
ocean water. The mantle is composed of rocks that we assume can flow in geological timescales and
therefore, in this problem will be treated as a fluid. The thickness of the crust is much smaller than the
characteristic length scale in the 𝑥-direction, hence, the crust behaves as a freely bendable plate. To high
accuracy, such a ridge can be modeled as a two-dimensional system, without any variation of variables
along the 𝑦-axis, which is perpendicular to the plane of Fig. 2. Assume that the ridge length 𝐿 along the
𝑦-axis is much larger than any other length introduced in this problem.

At the centre of the ridge the thickness of the crust is assumed to be zero. As the horizontal distance 𝑥
from the centre increases, the crust gets thicker and approaches a constant thickness 𝐷 as 𝑥 → ∞. Corre-
spondingly, the ocean floor subsides by a vertical height ℎ below the top of the ridge O, which we define
as the origin of our coordinate system (see Fig. 2). Water density 𝜌0 and temperature 𝑇0 can be assumed
to be constant in space and time. The same can be assumed for mantle density 𝜌1 and its temperature 𝑇1.
The temperature of the crust 𝑇 is also constant in time but can depend on position.
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It is known that, to high accuracy, the crustal material expands linearly with temperature 𝑇 . Since water
and mantle temperatures are assumed to be constant, it is convenient to use a rescaled version of the
thermal expansion coefficient. Then 𝑙(𝑇 ) = 𝑙1 [1 − 𝑘𝑙 (𝑇1 − 𝑇 ) /(𝑇1 − 𝑇0)], where 𝑙 is the length of a piece
of crustal material, 𝑙1 is its length at temperature 𝑇1, and 𝑘𝑙 is the rescaled thermal expansion coefficient,
which can be assumed to be constant.

Figure 2. Mid-ocean ridge. Note that the 𝑧-axis is pointing downwards.

A.2 Assuming that the crust is isotropic, find how its density 𝜌 depends on its tem-
perature 𝑇 . Assuming that |𝑘𝑙 | ≪ 1, write your answer in the approximate form

𝜌(𝑇 ) ≈ 𝜌1

[
1 + 𝑘

𝑇1 − 𝑇

𝑇1 − 𝑇0

]
, (2)

where terms of order 𝑘2𝑙 and higher are neglected. Then, identify constant 𝑘.

0.6pt

It is known that 𝑘 > 0. Also, thermal conductivity of the crust 𝜅 can be assumed to be constant. As a
consequence, very far away from the ridge axis the temperature of the crust depends linearly with depth.

A.3 By assuming that mantle and water each behave like an incompressible fluid at
hydrostatic equilibrium, express the far-distance crust thickness 𝐷 in terms of ℎ,
𝜌0, 𝜌1, and 𝑘. Any motion of the material can be neglected.

1.1pt

A.4 Find, to the leading order in 𝑘, the net horizontal force 𝐹 acting on the right half
(𝑥 > 0) of the crust in terms of 𝜌0, 𝜌1, ℎ, 𝐿, 𝑘 and 𝑔.

1.6pt

Suppose that crust is thermally isolated from the rest of the Earth. As a result of heat conduction, the
temperatures of the upper and lower surfaces of the crust are going to get closer to each other until the
crust reaches thermal equilibrium. Specific heat of the crust is 𝑐 and can be assumed to be constant.
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A.5 By using dimensional analysis or order-of-magnitude analysis, estimate the char-
acteristic time 𝜏 in which the difference between the upper and lower surface
temperatures of the crust far away from the ridge axis is going to approach zero.
You can assume that 𝜏 does not depend on the two initial surface temperatures
of the crust.

0.9pt

Part B. Seismic waves in a stratified medium (5.0 points)
Suppose that a short earthquake happens at the surface of some planet. The seismic waves can be as-
sumed to originate from a line source situated at 𝑧 = 𝑥 = 0, where 𝑥 is the horizontal coordinate and 𝑧
is the depth below the surface (Fig. 3). The seismic wave source can be assumed to be much longer than
any other length considered in this question.

As a result of the earthquake, a uniform flux of the so-called longitudinal P waves is emitted along all the
directions in the 𝑥-𝑧 plane that have positive component along the 𝑧-axis. Since the wave theory in a solid
is generally complicated, in this problem we neglect all the other waves emitted by the earthquake. The
crust of the planet is stratified so that the P-wave speed 𝑣 depends on depth 𝑧 according to 𝑣 = 𝑣0(1+𝑧/𝑧0),
where 𝑣0 is the speed at the surface and 𝑧0 is a known positive constant.

Figure 3. Coordinate system used in part B.

B.1 Consider a single ray emitted by the earthquake that makes an initial angle 0 <
𝜃0 < 𝜋/2 with the 𝑧-axis and travels in the 𝑥-𝑧 plane. What is the horizontal
coordinate 𝑥1(𝜃0) ≠ 0 at which this ray can be detected at the surface of the
planet? It is known that the ray path is an arc of a circle. Write your answer in
the form 𝑥1(𝜃0) = 𝐴 cot(𝑏𝜃0), where 𝐴 and 𝑏 are constants to be found.

1.5pt

If you were unable to find 𝐴 and 𝑏, in the following questions you can use the result 𝑥1(𝜃0) = 𝐴 cot(𝑏𝜃0) as
given. Suppose that total energy per unit length of the source released as Pwaves into the crust during the
earthquake is 𝐸. Assume that waves are completely absorbed when they reach the surface of the planet
from below.

B.2 Find how the energy density per unit area 𝜀(𝑥) absorbed by the surface depends
on the distance along the surface 𝑥. Sketch the plot of 𝜀(𝑥).

1.5pt
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From now on, assume that the waves are instead fully reflected when reaching the surface. Imagine a
device positioned at 𝑧 = 𝑥 = 0 that has the same geometry as the previously considered earthquake
source. The device is capable of emitting P waves in a freely chosen angular distribution. We make the
device emit a signal with a narrow range of emission angles. In particular, the initial angle the signalmakes
with the vertical belongs to the interval [𝜃0 − 1

2𝛿𝜃0, 𝜃0 +
1
2𝛿𝜃0], where 0 < 𝜃0 < 𝜋/2, 𝛿𝜃0 ≪ 1 and 𝛿𝜃0 ≪ 𝜃0.

B.3 At what distance 𝑥max along the surface from the source is the furthest point
that the signal does not reach? Write your answer in terms of 𝜃0, 𝛿𝜃0 and other
constants given above.

2.0pt
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Electrostatic lens (10 points)
Consider a uniformly charged metallic ring of radius 𝑅 and total charge 𝑞. The ring is a hollow toroid of
thickness 2𝑎 ≪ 𝑅. This thickness can be neglected in parts A, B, C, and E. The 𝑥 𝑦 plane coincides with the
plane of the ring, while the 𝑧-axis is perpendicular to it, as shown in Figure 1. In parts A and B you might
need to use the formula (Taylor expansion)

(1 + 𝑥)𝜀 ≈ 1 + 𝜀𝑥 + 1
2
𝜀(𝜀 − 1)𝑥2, when |𝑥 | ≪ 1.

Figure 1. A charged ring of radius R.

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 Calculate the electrostatic potentialΦ(𝑧) along the axis of the ring at a 𝑧 distance
from its center (point A in Figure 1).

0.3pt

A.2 Calculate the electrostatic potential Φ(𝑧) to the lowest non-zero power of 𝑧, as-
suming 𝑧 ≪ 𝑅.

0.4pt

A.3 An electron (mass 𝑚 and charge −𝑒) is placed at point A (Figure 1, 𝑧 ≪ 𝑅). What
is the force acting on the electron? Looking at the expression of the force, deter-
mine the sign of 𝑞 so that the resulting motion would correspond to oscillations.
The moving electron does not influence the charge distribution on the ring.

0.2pt

A.4 What is the angular frequency 𝜔 of such harmonic oscillations? 0.1pt

Part B. Electrostatic potential in the plane of the ring (1.7 points)
In this part of the problem you will have to analyze the potential Φ(𝑟) in the plane of the ring (𝑧 = 0)
for 𝑟 ≪ 𝑅 (point B in Figure 1). To the lowest non-zero power of 𝑟 the electrostatic potential is given by
Φ(𝑟) ≈ 𝑞(𝛼 + 𝛽𝑟2).
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B.1 Find the expression for 𝛽. You might need to use the Taylor expansion formula
given above.

1.5pt

B.2 An electron is placed at point B (Figure 1, 𝑟 ≪ 𝑅). What is the force acting on the
electron? Looking at the expression of the force, determine the sign of 𝑞 so that
the resulting motion would correspond to harmonic oscillations. The moving
electron does not influence the charge distribution on the ring.

0.2pt

Part C. The focal length of the idealized electrostatic lens: instantaneous charging
(2.3 points)
One wants to build a device to focus electrons—an electrostatic lens. Let us consider the following con-
struction. The ring is situated perpendicularly to the 𝑧-axis, as shown in Figure 2. We have a source that
produces on-demand packets of non-relativistic electrons. Kinetic energy of these electrons is 𝐸 = 𝑚𝑣2/2
(𝑣 is velocity) and they leave the source at precisely controlled moments. The system is programmed so
that the ring is charge-neutral most of the time, but its charge becomes 𝑞 when electrons are closer than
a distance 𝑑/2 (𝑑 ≪ 𝑅) from the plane of the ring (shaded region in Figure 2, called “active region”). In
part C assume that charging and de-charging processes are instantaneous and the electric field ”fills the
space” instantaneously as well. One can neglect magnetic fields and assume that the velocity of electrons
in the 𝑧-direction is constant. Moving electrons do not perturb the charge distribution on the ring.

Figure 2. A model of an electrostatic lens.

C.1 Determine the focal length 𝑓 of this lens. Assume that 𝑓 ≫ 𝑑. Express your
answer in terms of the constant 𝛽 fromquestion B.1 and other known quantities.
Assume that before reaching the ”active region” the electron packet is parallel to
the 𝑧-axis and 𝑟 ≪ 𝑅. The sign of 𝑞 is such so that the lens is focusing.

1.3pt

In reality the electron source is placed on the 𝑧-axis at a distance 𝑏 > 𝑓 from the center of the ring.
Consider that electrons are no longer parallel to the 𝑧-axis before reaching the ”active region”, but are
emitted from a point source at a range of different angles 𝛾 ≪ 1 rad to the 𝑧-axis. Electrons are focused
in a point situated at a distance 𝑐 from the center of the ring.
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C.2 Find 𝑐. Express your answer in terms of the constant 𝛽 from question B.1 and
other known quantities.

0.8pt

C.3 Is the equation of a thin optical lens

1
𝑏
+ 1
𝑐
=
1
𝑓

fulfilled for the electrostatic lens? Show it by explicitly calculating 1/𝑏 + 1/𝑐.

0.2pt

Part D. The ring as a capacitor (3 points)
The model considered above was idealized and we assumed that the ring charged instantaneously. In
reality charging is non-instantaneous, as the ring is a capacitor with a finite capacitance 𝐶. In this part we
will analyze the properties of this capacitor. You might need the following integrals:∫

d𝑥
sin 𝑥

= − ln
����cos 𝑥 + 1

sin 𝑥

���� + const

and ∫
d𝑥

√
1 + 𝑥2

= ln
���𝑥 +

√
1 + 𝑥2

��� + const.

D.1 Calculate the capacitance 𝐶 of the ring. Consider that the ring has a finite width
2𝑎, but remember that 𝑎 ≪ 𝑅.

2.0pt

When electrons reach the “active region”, the ring is connected to a source of voltage 𝑉0 (Figure 3). When
electrons pass the “active region”, the ring is connected to the ground. The resistance of contacts is 𝑅0
and the resistance of the ring itself can be neglected.

Figure 3. Charging of the electrostatic lens.
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D.2 Determine the dependence of the charge on the ring as a function of time, 𝑞(𝑡),
and make a schematic plot of this dependence. 𝑡 = 0 corresponds to a time
moment when electrons are in the plane of the ring. What is the charge on the
ring 𝑞0 when the absolute value 𝑞(𝑡) is maximal? The capacitance of the ring is
𝐶 (i.e., you do not have to use the actual expression found in D.1).
Remark: the drawn polarity in Figure 3 is for indicative purposes only. The sign
should be chosen so that the lens is focusing.

1.0pt

Part E. Focal length of a more realistic lens: non-instantaneous charging (2 points)
In this part of the problem, we will consider the action of this more realistic lens. Here we will again
neglect the width of the ring 2𝑎 and will assume that electrons travel parallel to the 𝑧-axis before reaching
the ”active region”. However, the charging of the ring is no longer instantaneous.

E.1 Find the focal length 𝑓 of the lens. Assume that 𝑓 /𝑣 ≫ 𝑅0𝐶, but 𝑑/𝑣 and 𝑅0𝐶 are
of the same order of magnitude. Express your answer in terms of the constant
𝛽 from part B and other known quantities.

1.7pt

E.2 You will see, that the result for 𝑓 is similar to that obtained in part C, whereby the
value 𝑞 is substituted with 𝑞eff . Find the expression for 𝑞eff in terms of quantities
given in formulation of the problem.

0.3pt
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Particles and Waves (10 points)
Wave–particle duality, which states that each particle can be described as a wave and vice versa, is one
of the central concepts of quantum mechanics. In this problem, we will rely on this notion and just a few
other basic assumptions to explore a selection of quantum phenomena covering the two distinct types of
particles of the microworld—fermions and bosons.

Part A. Quantum particle in a box (1.4 points)
Consider a particle of mass𝑚moving in a one-dimensional potential well, where its potential energy𝑉 (𝑥)
is given by

𝑉 (𝑥) =
{
0, 0 ≤ 𝑥 ≤ 𝐿;
∞, 𝑥 < 0 or 𝑥 > 𝐿.

(1)

While classical particle can move in such a potential having any kinetic energy, for quantum particle only
some specific positive discrete energy levels are allowed. In any such allowed state, the particle can be
described as a standing de Broglie wave with nodes at the walls.

A.1 Determine the minimal possible energy 𝐸min of the quantum particle in the well.
Express your answer in terms of 𝑚, 𝐿, and the Planck’s constant ℎ.

0.4pt

The particle’s state with minimal possible energy is called the ground state, and all the rest allowed states
are called excited states. Let us sort all the possible energy values in the increasing order and denote them
as 𝐸𝑛, starting from 𝐸1 for the ground state.

A.2 Find the general expression for the energy 𝐸𝑛 (here 𝑛 = 1, 2, 3, ...). 0.6pt

A.3 Particle can undergo instantaneous transition from one state to another only by
emitting or absorbing a photon of the corresponding energy difference. Find the
wavelength 𝜆21 of the photon emitted during the transition of the particle from
the first excited state (𝐸2) to the ground state (𝐸1).

0.4pt

Part B. Optical properties of molecules (2.1 points)
In this part, we will study several optical properties of the cyanine Cy5 molecule—a widely used dye
molecule, schematically shown in Fig. 1a. Its optical properties are determinedmainly by the carbon back-
bone, composed of the alternating single and double bonds between carbon atoms, shown in Fig. 1b,
while the influence of the rings at the molecule’s ends as well as radicals R is much smaller. Three of the
four valence electrons of each C atom (and of N atoms) in the backbone form the chemical bonds, while
the remaining valence electrons are “shared” and can move along the whole backbone. The net potential
energy of each such electron is shown with oscillating thin line in Fig. 1c, with minima corresponding to
the positions of the C and N atoms.
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Figure 1. (a) Chemical structure of the cyanine Cy5 molecule (for simplicity, hydrogen atoms
are not shown, and R denote some radicals). (b) The backbone of the Cy5 molecule, with mean
inter-atomic distance 𝑙 . (c) Potential energy of the electron along the backbone (thin line) and
its approximation by the step function given by Eq. 1 (thick line).

For simplicity, we will approximate this potential energy profile by a simple function given in Eq. 1 with
the width 𝐿 = 10.5𝑙 (see thick line in Fig. 1c), here 𝑙 = 140 pm is the mean inter-atomic distance (see also
Fig. 1b). As a result, we obtain the “electronic gas” composed of 10 electrons (7 from C atoms, 2 from the
N atom, and 1 from the N+ ion), moving in a one-dimensional potential well discussed in part A. In our
evaluation, we can neglect the mutual interaction of these electrons; however, we should account for the
fact that electrons are fermions and thus obey the Pauli exclusion principle. We also neglect the influence
of other electrons as well as motion of the nuclei.

B.1 Evaluate the largest wavelength 𝜆 of the photon that can be absorbed by the
Cy5 molecule assuming that the electron system is initially in its ground state.
Express your answer in terms of 𝑙 , physical constants and some numerical pref-
actor, and calculate the numerical value.

0.8pt

B.2 Another dye molecule Cy3 has similar structure, but its backbone is shorter by
2 carbon atoms. Is its absorption spectrum shifted to the bluer or to the redder
spectral region compared to the Cy5 molecule? Evaluate numerically the magni-
tude Δ𝜆 of this spectral shift. You can assume that removing two carbon atoms
doesn’t change themolecule shape and onlymakes the backbone length shorter
by two interatomic distances.

0.4pt

Being in the excited state, molecule can undergo a spontaneous transition to the ground state while emit-
ting photon. The mean rate 𝐾 of such events (i.e. the relative decrease of the molecules being in the
excited state, d𝑁/𝑁 , over time d𝑡, 𝐾 = 1

𝑁
d𝑁
d𝑡 ) is determined by the wavelength 𝜆 of the emitted photon,

the transition electrical dipole moment 𝑑 (which is of the order of 𝑑 ' 𝑒𝑙 , here 𝑒 is elementary charge) as
well as vacuum permittivity 𝜀0 and Planck’s constant ℎ.

B.3 Using dimension analysis, determine the expression for the rate of spontaneous
emission in terms of 𝜀0, ℎ, 𝜆, and 𝑑. The numerical prefactor for your expression
is = 16

3 𝜋
3.

0.7pt
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B.4 For Cy5 molecule, 𝑑 ≈ 2.4 𝑒𝑙. Evaluate the mean fluorescence lifetime of the
lowest excited state of Cy5 molecule, 𝜏Cy5, which is reciprocal to the rate of its
emissive transition to the ground state.

0.2pt

Part C. Bose-Einstein condensation (1.5 points)
This part is not directly related to Parts A and B. Here, we will study the collective behaviour of bosonic par-
ticles. Bosons do not respect the Pauli exclusion principle, and—at low temperatures or high densities—
experience a dramatic phenomenon known as the Bose–Einstein condensation (BEC). This is a phase tran-
sition to an intriguing collective quantum state: a large number of identical particles ‘condense’ into a
single quantum state and start behaving as a single wave. The transition is typically reached by cooling a
fixed number of particles below the critical temperature. In principle, it can also be induced by keeping
the temperature fixed and driving the particle density past its critical value.

We begin by exploring the relation between the temperature and the particle density at the transition. As
it turns out, estimates of their critical values can be deduced from a simple observation: Bose-Einstein con-
densation takes place when the de Broglie wavelength corresponding to the mean square speed of the particles
is equal to the characteristic distance between the particles in a gas.

C.1 Given a non-interacting gas of 87Rb atoms in thermal equilibrium, write the ex-
pressions for their typical linear momentum 𝑝 and the typical de Broglie wave-
length 𝜆dB as a function of atom’smass𝑚, temperature𝑇 and physical constants.

0.4pt

C.2 Calculate the typical distance between the particles in a gas, ℓ, as a function
of particle density 𝑛. Hence deduce the critical temperature 𝑇𝑐 as a function of
atom’s mass, their density and physical constants.

0.5pt

To realize BEC in the lab, the experimentalists have to cool gases to temperatures as low as 𝑇𝑐 = 100 nK.

C.3 What is the particle density of the Rb gas 𝑛𝑐 if the transition takes place at such
a temperature? For the sake of comparison, calculate also the ‘ordinary’ particle
density 𝑛0 of an ideal gas at the standard temperature and pressure (STP), i.e.
𝑇0 = 300 K and 𝑝0 = 105 Pa. How many times is the ‘ordinary’ gas denser? You
may assume that the mass of the atoms is equal to 87 atomic mass units (𝑚amu).

0.6pt

Part D. Three-beam optical lattices (5 points)
The first Bose-Einstein condensates were produced back in 1995, and since then the experimental work
has branched out in diverse directions. In this part, youwill investigate one particularly fruitful idea to load
the condensate into spatially periodic potentials created by interfering a number of coherent laser beams.
Due to the periodic nature of the resulting interference patterns, they are referred to as optical lattices.
The potential energy 𝑉 (®𝑟) of an atom moving in an optical lattice is proportional to the local intensity of
the light, and in your calculations you may assume that

𝑉 (®𝑟) = −𝛼
⟨
| ®𝐸(®𝑟, 𝑡) |2

⟩
. (2)

Here, 𝛼 is a positive constant, and the angle brackets indicate time-averaging which eliminates the rapidly
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oscillating terms. The electric field produced by the i-th laser is described by

®𝐸𝑖 = 𝐸0,𝑖 ®𝜀𝑖 cos( ®𝑘𝑖 · ®𝑟 − 𝜔𝑡), (3)

with the amplitude 𝐸0,𝑖 , the wave vector ®𝑘𝑖 , and the unit-length polarization vector ®𝜀𝑖 .

Figure 2. (a) Three-beam optical lattice: three plane waves with wave vectors ®𝑘1,2,3 intersect
and interfere in the area indicated by the grey circle. (b) Symmetries of a regular hexagon:
solid and dashed lines show two sets of symmetry axes. (c) Saddle point: a point on a surface
where the slopes in orthogonal directions are all zero, but which is not a local extremum of
the plotted function. Travelling along the trajectory marked by the full line one encounters an
apparent minimum. Additional analysis of the perpendicular direction (dashed line) is needed
to distinguish a true minimum from a saddle point (shown).

Your task is to study triangular optical lattices that are produced by interfering three coherent laser beams
of equal intensity. A typical setup is shown in Fig. 2a. Here, all three beams are polarized in the 𝑧 direction,
propagate in the 𝑥 𝑦 plane and intersect at equal angles of 120°. Choose the direction of the 𝑥 axis parallel
to the wave vector ®𝑘1.

D.1 Using Eqs. 2 and 3 obtain the expression for the potential energy𝑉 (®𝑟) as a func-
tion of ®𝑟 = (𝑥, 𝑦) in the plane of the beams.
Hint: the result can be neatly expressed as a constant term plus a sum of three
cosine functions of arguments ®𝑏𝑖 · ®𝑟. Please write your result in this form and
identify the vectors ®𝑏𝑖 .

1.4pt

D.2 The resulting potential energy has a sixfold rotational symmetry axis, i.e., the
potential distribution is invariant with respect to a rotation by a multiple of 60°
around the origin. Provide a simple argument to prove that this is indeed the
case.

0.5pt

The above observation of symmetry simplifies the analysis of the two-dimensional potential distribution
𝑉 (®𝑟). As shown in Fig. 2b, a regular hexagon has symmetry lines that, respectively, connect opposite ver-
tices (solid lines) and midpoints of opposite edges (dashed lines). Therefore, in our situation one does not
need to produce and study two-dimensional potential plots as many insights can be deduced by focusing
on the coordinate axes 𝑥 and 𝑦 that run along the symmetry lines.
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D.3 Derive the behavior of the potential 𝑉 (®𝑟) along the coordinate axes, i.e., deter-
mine the functions 𝑉𝑋 (𝑥) ≡ 𝑉 (𝑥, 0) and 𝑉𝑌 ( 𝑦) ≡ 𝑉 (0, 𝑦). Identify the locations
of the extrema of 𝑉𝑋 (𝑥) and 𝑉𝑌 ( 𝑦) as functions of a single argument. As these
functions are periodic, please include in your lists only one representative from
each family of periodically repeated minima and maxima.

1.2pt

We are interested in determining the locations of so-called lattice sites, i.e., the minima of the full two-
dimensional potential 𝑉 (®𝑟). The obtained minima of single-argument functions 𝑉𝑋 and 𝑉𝑌 identify their
suspected positions but still have to be checked to eliminate the saddle points. As shown in Fig. 2c, when
studied along a single line, saddle points may disguise as minima but they are not.

D.4 Review your results in the previous question to determine actual minima of the
optical lattice: Identify all equivalent minima nearest to (but not coinciding with)
the origin. What is the distance 𝑎 between the nearest minima, in other words—
the lattice constant of our optical lattice? Express the answer in terms of the laser
wavelength 𝜆las.

0.8pt

Charge neutrality of ultracold atoms suggests that their interactions become relevant only when two or
more atoms occupy the same site of an optical lattice. However, experimentalists are also able to explore
setups that sustain long-range atomic interactions. A possible approach relies on creation of the so-called
Rydberg atoms that are physically large and feature other exaggerated properties. Rydberg atoms are
excited atoms with one electron promoted to a state with a very high principal quantum number 𝑛. The
size of a Rydberg atom can be estimated by calculating the radius of the classical circular orbit of that
electron with the orbital angular momentum 𝑛ℏ, here ℏ is the reduced Planck constant.

D.5 Calculate the value of 𝑛 that corresponds to the radius of the Rb Rydberg atom
comparable to the wavelength of laser light 𝜆las = 380 nm. Give your answer in
terms of 𝜆las and physical constants and find its numerical value.
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