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Planetary Physics (10 points)

Part A. Mid-ocean ridge (5.0 points)

A.1 (0.8 points)

Figure 1

Letℎ′ be the height of the column of oil (see Fig. 1). Then pressure at depthℎ below thewater surface
must be 𝑝ℎ = 𝜌0𝑔ℎ = 𝜌oil𝑔ℎ

′, from where ℎ′ = 𝜌0
𝜌oil

ℎ. Horizontal force on the plate 𝐹𝑥 = 𝐹1 − 𝐹0, where

the force due to new fluid is 𝐹1 =
𝜌oil𝑔ℎ

′

2 · ℎ′𝑤 and the force due to water is 𝐹0 =
𝜌0𝑔ℎ
2 · ℎ𝑤.

Combining all the equation above, we get

𝐹𝑥 =

(
𝜌0

𝜌oil
− 1

)
𝜌0𝑔ℎ

2𝑤

2
.

This force acts on the right plate to the right.

A.2 (0.6 points)
Consider a rectangularmass element of the crust. Since relation 𝑙 (𝑇 ) = 𝑙1 [1 − 𝑘𝑙 (𝑇1 −𝑇 ) /(𝑇1 −𝑇0)]
holds for all three dimensions of the solid, its volume 𝑉 satisfies

𝑉 = 𝑉1

(
1 − 𝑘𝑙

𝑇1 −𝑇

𝑇1 −𝑇0

)3
,

where 𝑉1 is the volume at 𝑇 = 𝑇1. If the mass of the element is𝑚, density is then

𝜌 (𝑇 ) = 𝑚

𝑉
=
𝑚

𝑉1

(
1 − 𝑘𝑙

𝑇1 −𝑇

𝑇1 −𝑇0

)−3
= 𝜌1

(
1 − 𝑘𝑙

𝑇1 −𝑇

𝑇1 −𝑇0

)−3
.

Since 𝑘𝑙 � 1, this can be approximated as

𝜌 (𝑇 ) ≈ 𝜌1

(
1 + 3𝑘𝑙

𝑇1 −𝑇

𝑇1 −𝑇0

)
,

so that 𝑘 = 3𝑘𝑙 .
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A.3 (1.1 points)
Since mantle behaves like a fluid in hydrostatic equilibrium, pressure 𝑝 (𝑥, 𝑧) at 𝑧 = ℎ + 𝐷 must be
the same for all 𝑥 . Therefore,

𝑝 (0, ℎ + 𝐷) = 𝑝 (∞, ℎ + 𝐷) .
Similarly, we must have

𝑝 (0, 0) = 𝑝 (∞, 0) .
Hence, the change in pressure between 𝑧 = 0 and 𝑧 = ∞must be the same at both 𝑥 = 0 and 𝑥 = ∞.
At the ridge axis

𝑝 (0, ℎ + 𝐷) − 𝑝 (0, 0) = 𝜌1𝑔 (ℎ + 𝐷) ,
while far away

𝑝 (∞, ℎ + 𝐷) − 𝑝 (∞, 0) = 𝜌0𝑔ℎ +
∫ ℎ+𝐷

ℎ

𝜌 (𝑇 (∞, 𝑧)) 𝑔 d𝑧.

Since the temperature of the crust at 𝑥 = ∞ depends linearly on height, aer applying the relevant
temperature boundary conditions,

𝑇 (∞, 𝑧) = 𝑇0 + (𝑇1 −𝑇0)
𝑧 − ℎ

𝐷
.

From all the equations above and by using the density formula given in the problem text,

𝜌1𝑔 (ℎ + 𝐷) = 𝜌0𝑔ℎ +
∫ ℎ+𝐷

ℎ

𝜌1

(
1 + 𝑘

𝑇1 −𝑇0 − (𝑇1 −𝑇0) 𝑧−ℎ
𝐷

𝑇1 −𝑇0

)
𝑔 d𝑧,

from where we straightforwardly obtain

𝐷 =
2
𝑘

(
1 − 𝜌0

𝜌1

)
ℎ.

A.4 (1.6 points)
The net horizontal force on the half of the ridge is the dierence between the pressure forces acting
at 𝑥 = 0 and 𝑥 = ∞:

𝐹 = 𝐿

∫ ℎ+𝐷

0
𝑝 (0, 𝑧) d𝑧 − 𝐿

∫ ℎ

0
𝑝 (∞, 𝑧) .

From considerations of the previous question, pressure at 𝑥 = 0 is

𝑝 (0, 𝑧) = 𝑝 (0, 0) + 𝜌1𝑔𝑧,

while very far away
𝑝 (∞, 𝑧) = 𝑝 (∞, 0) + 𝜌0𝑔𝑧

The equations above can be combined into

𝐹 = 𝐿

∫ ℎ+𝐷

0
(𝑝 (0, 0) + 𝜌1𝑔𝑧) d𝑧 − 𝐿

∫ ℎ

0
(𝑝 (∞, 0) + 𝜌0𝑔𝑧) d𝑧.
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Aer a straightforward integration and using 𝑝 (0, 0) = 𝑝 (∞, 0),

𝐹 = 𝐿𝑝 (0, 0) 𝐷 + 𝐿𝜌1𝑔
(ℎ + 𝐷)2

2
− 𝐿𝜌0𝑔

ℎ2

2
.

Since 𝑘 � 1, and 𝐷 ∝ 𝑘−1, the term with 𝐷2 ∝ 𝑘−2 is of the leading order, hence, aer substituting
the result of A.3, the required answer is

𝐹 ≈ 2𝑔𝐿ℎ2 (𝜌1 − 𝜌0)2

𝑘2𝜌1
.

A.5 (0.9 points)
Method 1: dimensional analysis. The timescale 𝜏 is expected to depend only on density of the
crust 𝜌1, its specific heat 𝑐 , thermal conductivity 𝜅 and thickness 𝐷 . Hence, we can write

𝜏 = 𝐴𝜌𝛼1𝑐
𝛽𝜅𝛾𝐷𝛿 ,

where 𝐴 is a dimensionless constant. We will obtain the powers 𝛼–𝛿 via dimensional analysis.
Define the symbols for dierent dimensions: L for length, M for mass, T for time and Θ for tem-

perature. Then 𝜏 , 𝜌1, 𝑐 , 𝜅 and 𝐷 have dimensions T, ML−3, L2T−2Θ−1, MLT−3Θ−1 and L, respectively.
The resulting set of linear equations to balance the powers of length, mass, time and temperature,
respectively, is 

0 = −3𝛼 + 2𝛽 + 𝛾 + 𝛿,

0 = 𝛼 + 𝛾,
1 = −2𝛽 − 3𝛾,
0 = −𝛽 − 𝛾 .

This gives 𝛼 = 𝛽 = 1, 𝛾 = −1, 𝛿 = 2. Hence,

𝜏 = 𝐴
𝑐𝜌1𝐷

2

𝜅
.

Method 2: scale analysis. Consider a piece of crust of area 𝑆 . Heat flux that has to be trans-
mied through the crust is of order𝑄 ∼ 𝑐𝜌1𝑆𝐷Δ𝑇 , where Δ𝑇 = 𝑇1 −𝑇0. On the other hand, the law
of thermal conductivity gives that 𝜅 Δ𝑇

𝐷
∼ 𝑄

𝑆𝜏
.

From the two equations, 𝑐𝜌1𝑆𝐷Δ𝑇 ∼ 𝑆𝜏𝜅 Δ𝑇
𝐷
, from where we get that 𝜏 is independent of Δ𝑇 and

𝜏 ∼ 𝑐𝜌1𝐷
2

𝜅
.
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Part B. Seismic waves in a stratified medium (5.0 points)

B.1 (1.5 points)
Seismic waves in this problem can be treated by using ray theory. Namely, their propagation is
described by the Snell’s law of refraction

𝑛 (0) sin𝜃0 = 𝑛 (𝑧) sin𝜃,

where the refractive index is
𝑛 (𝑧) = 𝑐

𝑣 (𝑧) =
𝑐

𝑣0

(
1 + 𝑧

𝑧0

)
and 𝑐 denotes the seismic wave speed in a material with refractive index 𝑛 = 1. From the two
equations above we have

𝑣0

(
1 + 𝑧

𝑧0

)
sin𝜃0 = 𝑣0 sin𝜃 .

Method 1. Since this describes an arc of a circle, we have that at 𝜃 = 𝜋
2 , 𝑧 = 𝑅 − 𝑅 sin𝜃0 (Fig. 2),

giving (
1 + 𝑅 − 𝑅 sin𝜃0

𝑧0

)
sin𝜃0 = 1,

from where the circle radius 𝑅 =
𝑧0

sin𝜃0 . From simple geometry we get

𝑥1 (𝜃0) = 2𝑅 cos𝜃0,

leading to
𝑥1 (𝜃0) = 2𝑧0 cot𝜃0,

i.e. 𝐴 = 2𝑧0 and 𝑏 = 1.

Figure 2
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Method 2. Implicitly dierentiating 𝑣0
(
1 + 𝑧

𝑧0

)
sin𝜃0 = 𝑣0 sin𝜃 gives

d𝑧
𝑧0

sin𝜃0 = cos𝜃 d𝜃 .

An infinitesimal ray path length d𝑙 is related to the change in the vertical coordinate via

d𝑧 = d𝑙 cos𝜃,

giving
d𝑙 =

𝑧0

sin𝜃0
d𝜃 .

This is an equation of an arc of a circle of radius 𝑅 =
𝑧0

sin𝜃0
Alternatively, instead of considering an infinitesimal ray path length d𝑙 , one can obtain the

answer by writing

cot𝜃 =
d𝑧
d𝑥

=
d𝑧
d𝜃

d𝜃
d𝑥

.

The first derivative can be eliminated via Snell’s law, leading to

cot𝜃 =
𝑧0 cos𝜃
sin𝜃0

d𝜃
d𝑥

,

which can be integrated to get

𝑥1 = − 𝑧0

sin𝜃0

∫ end

start
dcos𝜃 =

2𝑧0 cos𝜃0
sin𝜃0

,

where we used Snell’s law again to get that the ray has cos𝜃 = − cos𝜃0 at the point where it reaches
the surface.

B.2 (1.5 points)
In two dimensions, 𝐸

𝜋
d𝜃0 is the energy carried by rays that are emied within interval [𝜃0, 𝜃0 + d𝜃0).

On the other hand, the energy carried by rays that arrive at [𝑥, 𝑥 + d𝑥) is 𝜀 d𝑥 . Therefore,

𝜀 =
𝐸

𝜋

����d𝜃0d𝑥

���� .
Using the result of question B.1,

d𝑥
d𝜃0

= − 𝐴𝑏

sin2 (𝑏𝜃0)
= −𝐴𝑏

(
1 + cot2 (𝑏𝜃0)

)
= −

𝑏
(
𝐴2 + 𝑥2

)
𝐴

.

Hence,

𝜀 (𝑥) = 𝐸𝐴

𝜋𝑏 (𝐴2 + 𝑥2) =
2𝐸𝑧0

𝜋
(
4𝑧20 + 𝑥2

) .
This function is ploed in Fig. 3.
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Figure 3. Plot of the function 𝜀 (𝑥).

B.3 (2.0 points)

Define 𝑥− = 𝑥1

(
𝜃0 − 𝛿𝜃0

2

)
and 𝑥+ = 𝑥1

(
𝜃0 + 𝛿𝜃0

2

)
. To the leading order in 𝛿𝜃0, 𝑥− ≈ 𝑥+ ≈ 𝑥1 (𝜃0).

With each reflection of the signal, the horizontal distance between the points where the edges of
the signal reflect increases by |𝑥+ − 𝑥− | = 𝑥− − 𝑥+. When moving along the positive 𝑥-axis, these
zones get wider until they overlap. If this happens aer 𝑁 reflections, then

𝑁 ≈ 𝑥1 (𝜃0)
𝑥− − 𝑥+

,

where the approximate sign tends to equality as 𝛿𝜃0 → 0.
The position where the zones start to overlap is at 𝑥max = 𝑁𝑥1(𝜃0). Therefore,

𝑥max =
𝑥1(𝜃0)2

𝑥1

(
𝜃0 − 𝛿𝜃0

2

)
− 𝑥1

(
𝜃0 + 𝛿𝜃0

2

) .
Since 𝛿𝜃0 � 𝜃0, we can approximate

𝑥1

(
𝜃0 −

𝛿𝜃0

2

)
− 𝑥1

(
𝜃0 +

𝛿𝜃0

2

)
≈ −d𝑥1(𝜃0)

d𝜃0
𝛿𝜃0 =

𝐴𝑏

sin2 (𝑏𝜃0)
𝛿𝜃0.

Combining the last two equations and substituting the 𝑥1 (𝜃0) expression gives

𝑥max =
𝐴 cos2 (𝑏𝜃0)

𝑏 𝛿𝜃0
=
2𝑧0 cos2 𝜃0

𝛿𝜃0
.
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Electrostatic lens (10 points)

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 (0.3 points)
The linear charge density of the ring is 𝜆 = 𝑞/(2𝜋𝑅). All the points of the ring are situated a distance√
𝑅2 + 𝑧2 away from point A. Integrating over the whole ring we readily obtain:

Φ (𝑧) = 𝑞

4𝜋𝜀0
1

√
𝑅2 + 𝑧2

.

A.2 (0.4 points)
Using an expansion in powers of 𝑧 we obtain:

Φ(𝑧) = 𝑞

4𝜋𝜀0
1

√
𝑅2 + 𝑧2

=
𝑞

4𝜋𝜀0𝑅
1√︃

1 +
(
𝑧
𝑅

)2 ≈ 𝑞

4𝜋𝜀0𝑅

(
1 − 𝑧2

2𝑅2

)
.

A.3 (0.2 points)
The potential energy of the electron is 𝑉 (𝑧) = −𝑒Φ(𝑧). The force acting on the electron is

𝐹 (𝑧) = −d𝑉 (𝑧)
d𝑧

= +𝑒 dΦ
d𝑧

= − 𝑞𝑒

4𝜋𝜀0𝑅3𝑧.

If this is a restoring force, it should be negative for positive 𝑧. Thus, 𝑞 > 0.

A.4 (0.1 points)
The equation of motion for an electron is

𝑚 ¥𝑧 + 𝑞𝑒

4𝜋𝜀0𝑅3𝑧 = 0

(here dots denote time derivatives). We therefore get

𝜔 =

√︂
𝑞𝑒

4𝜋𝑚𝜀0𝑅3 .
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Part B. Electrostatic potential in the plane of the ring (1.7 points)

B.1 (1.5 points)
There are two different ways to solve this problem: (i) using direct integration; (ii) using Gauss’s
law and the result of part A.

Figure 1: Calculating electrostatic potential in the plane of the ring through direct integration.

(i) Direct integration. We will follow the notations of Figure 1. Since the potential has cylin-
drical symmetry, let the point B, where we calculate the potential, be on the 𝑥-axis. Let

|OB| = 𝑟 ; |OC| = 𝑅.

Thus:
|BC|2 = 𝑅2 + 𝑟 2 − 2𝑅𝑟 cos𝜙.

Electrostatic potential created by ring element d𝜙 at the point B:

dΦ =
1

4𝜋𝜀0
𝜆𝑅 d𝜙√︁

𝑅2 + 𝑟 2 − 2𝑅𝑟 cos𝜙
=

1
4𝜋𝜀0

𝜆 d𝜙√︃
1 + 𝑟 2

𝑅2 − 2 𝑟
𝑅
cos𝜙

.

Using the expansion given in the formulation of the problem for 𝜀 = −1/2 we have:

dΦ ≈ 𝜆 d𝜙
4𝜋𝜀0

[
1 − 1

2

(
𝑟 2

𝑅2 − 2
𝑟

𝑅
cos𝜙

)
+ 3
8

(
𝑟 2

𝑅2 − 2
𝑟

𝑅
cos𝜙

)2]
.

Ignoring the terms of the order 𝑟 3 and 𝑟 4 we get:

dΦ ≈ 𝜆 d𝜙
4𝜋𝜀0

[
1 + 𝑟

𝑅
cos𝜙 + 𝑟 2

𝑅2

(
3
2
cos2 𝜙 − 1

2

)]
.

Integrating over all angles we finally obtain:

Φ(𝑟 ) = 𝜆

4𝜋𝜀0

ˆ 2𝜋

0

[
1 + 𝑟

𝑅
cos𝜙 + 𝑟 2

𝑅2

(
3
2
cos2 𝜙 − 1

2

)]
d𝜙.
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Φ(𝑟 ) = 𝑞

4𝜋𝜀0𝑅

(
1 + 𝑟 2

4𝑅2

)
.

From here, comparing with the expression Φ(𝑟 ) = 𝑞(𝛼 + 𝛽𝑟 2), we obtain

𝛽 =
1

16𝜋𝜀0𝑅3 .

(ii) Gauss’s law.

Figure 2: Calculating electrostatic potential in the plane of the ring via Gauss’s law.

Let us analyze a small cylinder of radius 𝑟 . The center of the cylinder coincides with the center
of the ring. In part A we analyzed the potential along the 𝑧-axis, while in this part we analyze the
potential along the radius 𝑟 . For any 𝑧 ≪ 𝑅 and 𝑟 ≪ 𝑅 the potential has an expression:

Φ(𝑧, 𝑟 ) = 𝑞

4𝜋𝜀0𝑅

(
1 − 𝑧2

2𝑅2

)
+ 𝑞𝛽𝑟 2.

The lowest order terms are quadratic in 𝑟 and 𝑧. Due to reflection symmetry the potential does
not contain terms of the type 𝑟𝑧. This, for example, immediately gives us 𝛼 = 1/(4𝜋𝜀0𝑅). Thus, for
small 𝑟 and 𝑧 electric fields in the radial and axial directions are:

E𝑧 (𝑧, 𝑟 ) = + 𝑞

4𝜋𝜀0𝑅3𝑧, E𝑟 (𝑧, 𝑟 ) = −2𝑞𝛽𝑟 .

Applying Gauss’s law to the cylinder we obtain:
˛

®E · d®𝑆 = 0 ⇒
ˆ

side

®E · d®𝑆 +
ˆ

base

®E · d®𝑆 = 0.

The second integral is: ˆ

base

®E · d®𝑆 = 2𝜋𝑟 2E𝑧 (𝑧, 𝑟 ) =
𝑞𝑧𝑟 2

2𝜀0𝑅3 .

The first integral is: ˆ

side

®E · d®𝑆 = 4𝜋𝑟𝑧E𝑟 (𝑧, 𝑟 ) = −8𝜋𝑞𝛽𝑟 2𝑧.
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Gauss’s theorem thus gives:
𝑞𝑧𝑟 2

2𝜀0𝑅3 − 8𝜋𝑞𝛽𝑟 2𝑧 = 0.

This immediately yields

𝛽 =
1

16𝜋𝜀0𝑅3 ,

which agrees with the result obtained via direct integration.

B.2 (0.2 points)
The potential of the electron is 𝑉 (𝑟 ) = −𝑒Φ(𝑟 ). Force acting on the electron in the 𝑥𝑦 plane is

𝐹 (𝑟 ) = −d𝑉 (𝑟 )
d𝑟

= +𝑒 dΦ(𝑟 )
d𝑟

=
𝑞𝑒

8𝜋𝜀0𝑅3𝑟 .

To have oscilations we need the force to be negative for 𝑟 > 0. Thus, 𝑞 < 0.

Part C. The focal length of the idealized electrostatic lens (2.3 points)

C.1 (1.3 points)

Let us consider an electron with the velocity 𝑣 =
√︁
2𝐸/𝑚 at a distance 𝑟 from the “optical” axis

(Figure 2 of the problem). The electron crosses the “active region” of the lens in time

𝑡 =
𝑑

𝑣
.

The equation of motion in the 𝑟 direction:

𝑚¥𝑟 = 2𝑒𝑞𝛽𝑟 .

During the time the electron crosses the active region of the lens, the electron acquires radial ve-
locity:

𝑣𝑟 =
2𝑒𝑞𝛽𝑟
𝑚

𝑑

𝑣
< 0.

The lens will be focusing if 𝑞 < 0. The time it takes for an electron to reach the “optical” axis is:

𝑡 ′ =
𝑟

|𝑣𝑟 |
= − 𝑚𝑣

2𝑒𝑞𝛽𝑑
.

During this time the electron travels in the 𝑧-direction a distance

Δ𝑧 = 𝑡 ′𝑣 = − 𝑚𝑣2

2𝑒𝑞𝛽𝑑
= − 𝐸

𝑒𝑞𝑑𝛽
.

Δ𝑧 does not depend on the radial distance 𝑟 , therefore all electron will cross the “optical” axis (will
be focused) in the same spot. Thus,

𝑓 = − 𝐸

𝑒𝑞𝑑𝛽
.
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C.2 (0.8 points)

Figure 3: Focusing of electrons.

Let us consider an electron emitted an an angle 𝛾 to the optical axis (Figure 3). Its initial velocity in
the radial direction is:

𝑣𝑟 ;0 = 𝑣 sin𝛾 ≈ 𝑣𝛾 ≈ 𝑣
𝑟

𝑏
,

where 𝑟 is the radial distance of the electron when it reaches the plane of the ring. The velocity in
the 𝑧-direction is

𝑣𝑧 = 𝑣 cos𝛾 ≈ 𝑣 .

For small angles 𝛾 the additional velocity in the 𝑟 -direction acquired in the “active region” is the
same as in part C.1. Thus, the radial velocity after crossing the active region is

𝑣𝑟 = 𝑣
𝑟

𝑏
+ 2𝑒𝑞𝛽𝑟

𝑚

𝑑

𝑣
,

where the first term is positive and the second term is negative, since 𝑞 < 0. If the electrons are
focused, then 𝑣𝑟 < 0 (this can be verified after obtaining the final result). The electron will reach
the optical axis in time

𝑡 ′ =
𝑟

|𝑣𝑟 |
= − 𝑟

2𝑒𝑞𝛽𝑟
𝑚

𝑑
𝑣
+ 𝑣 𝑟

𝑏

= − 1
2𝑒𝑞𝛽
𝑚

𝑑
𝑣
+ 𝑣

𝑏

.

During this time it will travel a distance

𝑐 = 𝑡 ′𝑣 = − 1
2𝑒𝑞𝛽
𝑚

𝑑
𝑣2
+ 1

𝑏

= − 1
𝑒𝑞𝛽𝑑

𝐸
+ 1

𝑏

.

C.3 (0.2 pt)
From the previous answer we obtain:

1
𝑏
+ 1
𝑐
= −𝑒𝑞𝛽𝑑

𝐸
.
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Comparing with the answer of C.1 we immediately obtain

1
𝑏
+ 1
𝑐
=

1
𝑓
,

i.e. the equation of a thin optical lens is valid for an electrostatic lens as well.

Part D. The ring as a capacitor (3 points)

D.1 (2.0 points)

Figure 4: Calculation of the capacitance of the ring.

Let us sub-divide the entire ring into two parts: a part corresponding to the angle 2𝛼 ≪ 1, and the
rest of the ring, as shown in Figure 4. While the angle is small in comparison to 1, let us assume
that the length of the first part, 𝛼𝑅, is still large compared to 𝑎 (𝛼𝑅 ≫ 𝑎). Let us calculate the
electrostatic potential Φ at point K. It it a sum of two terms: the first one produced by the cut-out
part with an angle 2𝛼 (contribution Φ1) and the second one originating from the rest of the ring
(contribution Φ2).

Contribution Φ1. Since 𝛼 ≪ 1, we can neglect the curvature of the cylinder that is cut out from
the ring. The linear charge density on the ring is 𝜆 =

𝑞

2𝜋𝑅 . The potential at the center of the cylinder
is then given by an integral:

Φ1 = 2
1

4𝜋𝜀0
𝑞

2𝜋𝑅

ˆ 𝛼𝑅

0

d𝑥
√
𝑥2 + 𝑎2

=
𝑞

4𝜋2𝜀0𝑅

ˆ 𝛼𝑅

0

d(𝑥/𝑎)√︁
1 + (𝑥/𝑎)2

=
𝑞

4𝜋2𝜀0𝑅

ˆ 𝛼𝑅/𝑎

0

d𝑦√︁
1 + 𝑦2

.

Using the integral provided in the description of the problem we get:

Φ1 =
𝑞

4𝜋2𝜀0𝑅
ln

(
𝑦 +

√︁
1 + 𝑦2

)���𝛼𝑅/𝑎
0

=
𝑞

4𝜋2𝜀0𝑅
ln ©«𝛼𝑅𝑎 +

√︄
1 +

(
𝛼𝑅

𝑎

)2ª®¬ .
As 𝛼𝑅 ≫ 𝑎,

Φ1 ≈
𝑞

4𝜋2𝜀0𝑅
ln

(
2𝛼𝑅
𝑎

)
.
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Figure 5: Calculation of the capacitance of the ring

Contribution Φ2. In this case we can neglect the thickness 𝑎. Using the cosine theorem we can
derive the distance between points K and L of Figure 5:

|KL| = 2𝑅 sin
𝜙

2
.

The contribution Φ2 can then be written as an integral:

Φ2 = 2
𝑞

2𝜋
1

4𝜋𝜀0

ˆ 𝜋

𝛼

d𝜙

2𝑅 sin 𝜙

2

=
𝑞

8𝜋2𝜀0𝑅

ˆ 𝜋

𝛼

d𝜙

sin 𝜙

2

=
𝑞

4𝜋2𝜀0𝑅

ˆ 𝜋

𝛼

d
(
𝜙

2

)
sin 𝜙

2

=
𝑞

4𝜋2𝜀0𝑅

ˆ 𝜋/2

𝛼/2

d𝜒
sin 𝜒

.

Using the integral from the formulation of the problem, we calculate:

ˆ 𝜋/2

𝛼/2

d𝜒
sin 𝜒

= − ln
(
cos 𝜒 + 1
sin 𝜒

)����𝜋/2
𝛼/2

= ln
(
cos𝛼/2 + 1
sin𝛼/2

)
≈ ln

(
4
𝛼

)
for 𝛼 ≪ 1. Therefore

Φ2 ≈
𝑞

4𝜋2𝜀0𝑅
ln

(
4
𝛼

)
.

The total potential and capacitance. The total potential is the sum of Φ1 and Φ2:

Φ = Φ1 + Φ2 =
𝑞

4𝜋2𝜀0𝑅
ln

(
2𝛼𝑅
𝑎

)
+ 𝑞

4𝜋2𝜀0𝑅
ln

(
4
𝛼

)
=

𝑞

4𝜋2𝜀0𝑅
ln

(
8𝑅
𝑎

)
.

𝛼 drops out from the expression. From here we obtain the capacitance 𝐶 = 𝑞/Φ :

𝐶 =
4𝜋2𝜀0𝑅

ln
( 8𝑅
𝑎

) .
𝐶 → 0 as 𝑎 → 0.
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D.2 (1.0 point)
Let 𝑞(𝑡) be the charge on the ring at a time 𝑡 . Potential of the disk is thus 𝑞(𝑡)/𝐶 . Voltage drop of
the resistor is 𝑅0𝐼 (𝑡) = 𝑅0 d𝑞/d𝑡 . Therefore for time − 𝑑

2𝑣 < 𝑡 < 𝑑
2𝑣 :

𝑞(𝑡)
𝐶

+ 𝑅0
d𝑞
d𝑡

= 𝑉0.

Integrating this equation and keeping in mind that 𝑞(𝑡) = 0 at 𝑡 = −𝑑/(2𝑣), we get:

𝑞(𝑡) = 𝐶𝑉0

(
1 − e−

𝑑
2𝑣𝑅0𝐶 e−

𝑡
𝑅0𝐶

)
.

The charge attains the largest absolute value at 𝑡 = 𝑑/(2𝑣). The value of the charge at this time is:

𝑞0 = 𝐶𝑉0

(
1 − e−

𝑑
𝑣𝑅0𝐶

)
.

When 𝑡 > 𝑑
2𝑣 , we get:

𝑞(𝑡)
𝐶

+ 𝑅0
d𝑞
d𝑡

= 0.

From here:
𝑞(𝑡) = 𝑞0e

− 𝑡
𝑅0𝐶

+ 𝑑
2𝑣𝑅0𝐶 = 𝐶𝑉0

(
e

𝑑
2𝑣𝑅0𝐶 − e−

𝑑
2𝑣𝑅0𝐶

)
e−

𝑡
𝑅𝐶 .

Therefore, we obtain:

𝑞(𝑡) =


0 for 𝑡 < − 𝑑

2𝑣 ;
𝐶𝑉0

(
1 − e−

𝑑
2𝑣𝑅0𝐶 e−

𝑡
𝑅0𝐶

)
for − 𝑑

2𝑣 < 𝑡 < 𝑑
2𝑣 ;

𝐶𝑉0

(
e

𝑑
2𝑣𝑅0𝐶 − e−

𝑑
2𝑣𝑅0𝐶

)
e−

𝑡
𝑅0𝐶 for 𝑡 > 𝑑

2𝑣 .

For a lens to be focusing we require that charge is negative, therefore 𝑉0 < 0. The dependence
of charge on time is shown in Figure 6.

Figure 6: Charge on the ring as a function of time.
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Part E. Focal length of a more realistic lens (2 points)

E.1 (1.7 points)
Like in part C, the radial equation of motion of an electron is:

𝑚¥𝑟 = 2𝑒𝑞(𝑡)𝛽𝑟,

where in this case 𝑞(𝑡) depends on time. Using the notation 𝜂 = 2𝑒𝛽/𝑚, we obtain:

¥𝑟 − 𝜂𝑞(𝑡)𝑟 = 0.

As 𝑓 /𝑣 ≫ 𝑅0𝐶 , then during charging–decharging the electron does not substantially change its ra-
dial position 𝑟 , and we can assume 𝑟 to be constant during the entire charging–decharging process.
In this case the acquired vertical velocity is

𝑣𝑟 = 𝜂𝑟

ˆ ∞

−𝑑/(2𝑣)
𝑞(𝑡) d𝑡 .

We can use the derived equations for 𝑞(𝑡) and find the integrals. The integral
´ 𝑑/(2𝑣)
−𝑑/(2𝑣) 𝑞(𝑡) d𝑡 is

(using the notation 𝑑/𝑣 = 𝑡0, 𝑅0𝐶 = 𝜏 , 𝐶𝑉0 = 𝑄0):

ˆ 𝑡0/2

−𝑡0/2
𝑞(𝑡) d𝑡 =

ˆ 𝑡0/2

−𝑡0/2
𝑄0

(
1 − e−

𝑡0
2𝜏 e−

𝑡
𝜏

)
d𝑡 = 𝑄0

(
𝑡0 − 𝜏

[
1 − e−𝑡0/𝜏

] )
.

The integral
´ ∞
𝑑/(2𝑣) 𝑞(𝑡) d𝑡 is

ˆ ∞

𝑡0/2
𝑄0

(
e
𝑡0
2𝜏 − e−

𝑡0
2𝜏

)
e−

𝑡
𝜏 d𝑡 = 𝑄0𝜏

[
1 − e−𝑡0/𝜏

]
.

Adding the two integrals we obtain for the final integral:
ˆ ∞

−𝑡0/2
𝑞(𝑡)𝑑𝑡 = 𝑄0𝑡0.

Interestingly, it does not depend on 𝜏 = 𝑅0𝐶 . Therefore, the acquired vertical velocity of the electron
is

𝑣𝑟 = 𝜂𝑟
𝐶𝑉0𝑑

𝑣
=
2𝑒𝛽𝐶𝑉0𝑑𝑟

𝑚𝑣
.

Following the logic similar to part C, we derive the focal length

𝑓 = − 𝐸

𝑒𝐶𝑉0𝑑𝛽
.

E.2 (0.3 points).
Comparing 𝑓 = −𝐸/(𝑒𝐶𝑉0𝑑𝛽) with 𝑓 = −𝐸/(𝑒𝑞𝑑𝛽) from part C we immediataly obtain 𝑞eff = 𝐶𝑉0.
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Particles and Waves (10 points)

Part A. Quantum particle in a box (1.4 points)

A.1 (0.4 points)
The width of the potential well (𝐿) should be equal to the half of the wavelength of the de Broglie
standing wave 𝜆dB = ℎ/𝑝 , here ℎ is the Planck’s constant and 𝑝 is the momentum of the particle.
Thus 𝑝 = ℎ/𝜆dB = ℎ/(2𝐿), and the minimal possible energy of the particle is

𝐸min =
𝑝2

2𝑚
=

ℎ2

8𝑚𝐿2
.

A.2 (0.6 points)

The potential well should fit an integer number of the de Broglie half-wavelengths: 𝐿 = 1
2𝜆

(𝑛)
dB · 𝑛,

𝑛 = 1, 2, . . . . Therefore, particle’s momentum, corresponding to the de Broglie wavelength 𝜆(𝑛)dB is

𝑝𝑛 =
ℎ

𝜆
(𝑛)
dB

=
ℎ𝑛

2𝐿
,

and the corresponding energy is

𝐸𝑛 =
𝑝2𝑛
2𝑚

=
ℎ2𝑛2

8𝑚𝐿2
, 𝑛 = 1, 2, 3, . . . . (1)

A.3 (0.4 points)
The energy of the emitted photon, 𝐸 = ℎ𝑐/𝜆 (here 𝑐 is the speed of light and 𝜆 is the photon’s
wavelength) should be equal to the energy difference Δ𝐸 = 𝐸2 − 𝐸1, therefore

𝜆21 =
ℎ𝑐

𝐸2 − 𝐸1
=
8𝑚𝑐𝐿2

3ℎ
.

Part B. Optical properties of molecules (2.1 points)

B.1 (0.8 points)
Taking into account the Pauli exclusion principle, each energy level 𝐸𝑛 is occupied by two electrons
with spins oriented in the opposite directions. As a results, 10 electrons fill the lowest 5 states,
and the absorption of the photon of the longest wavelength corresponds to the transition of one
electron from the occupied 𝐸5 to the unoccupied 𝐸6 energy state:

ℎ𝑐

𝜆
= 𝐸6 − 𝐸5,
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where 𝐸6 and 𝐸5 can be found from Eq. 1, where𝑚 is replaced with the electron mass𝑚e. Hence
we obtain:

𝜆 =
𝑐 · 8𝑚e𝐿

2

ℎ (62 − 52) =
10.52 · 8

11
𝑚e𝑐𝑙

2

ℎ
=
882
11

𝑚e𝑐𝑙
2

ℎ
≈ 647 nm.

This result correspond precisely to the experimental value the peak position of the Cy5 absorption
spectrum.

B.2 (0.4 points)
In the similar model for the Cy3 molecule, there are 8 electrons in the box of length 𝐿 = 8.5𝑙 ,
thus photon’s absorption corresponds to the 𝐸4 → 𝐸5 transition. Taking into account the result of
question B1, we obtain

𝜆Cy3 =
8.52 · 8
(52 − 42)

𝑚e𝑐𝑙
2

ℎ
≈ 518 nm,

i. e. the absorption spectrum of the Cy3 molecule is shifted by Δ𝜆 ≈ 129 nm to the blue comparing
to that of the Cy5 molecule. The experimental value is 𝜆(exp)Cy3 = 548 nm, so that our model catches
general properties of these dye molecules rather well.

B.3 (0.7 points)
Let us assume

𝐾 = 𝑘𝜀𝛼0ℎ
𝛽𝜆𝛾𝑑𝛿 . (2)

The SI units of the relevant quantities are:

[𝜀0] =
A2 · s4
kg ·m3 , [ℎ] = kg ·m2

s
, [𝜆] = m, [𝑑] = A · s ·m, [𝐾] = s−1.

By plugging these expressions into Eq. 2 we obtain a simple system of linear equations for the
unknown powers 𝛼 , 𝛽 , 𝛾 , and 𝛿 :

2𝛼 + 𝛿 = 0, −𝛼 + 𝛽 = 0, 4𝛼 − 𝛽 + 𝛿 = −1, −3𝛼 + 2𝛽 + 𝛾 + 𝛿 = 0.

By solving this system we get:

𝛼 = 𝛽 = −1, 𝛾 = −3, 𝛿 = 2,

so that the rate of spontaneous emission is

𝐾 =
16𝜋3

3
𝑑2

𝜀0ℎ𝜆3
. (3)

B.4 (0.2 points)
By using the result of question B.2 and expressing transition dipole moment as 𝑑 = 2.4 𝑒𝑙 , we obtain
from Eq. 3:

𝜏Cy5 =
3

16𝜋3
𝜀0ℎ

2.42𝑙2𝑒2
𝜆3 ≈ 3.3 ns.
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Part C. Bose-Einstein condensation (1.5 points)

C.1 (0.4 points)
At temperature 𝑇 , the average kinetic energy of translational motion is 3

2𝑘B𝑇 . Equating this result
to 𝑝2/(2𝑚), we obtain typical momentum 𝑝 =

√
3𝑚𝑘B𝑇 and the de Broglie wavelength

𝜆dB =
ℎ

𝑝
=

ℎ
√
3𝑚𝑘B𝑇

.

C.2 (0.5 points)
The volume per particle 𝑉 /𝑁 is a good estimate for ℓ3. We obtain ℓ = 𝑛−1/3, with 𝑛 = 𝑁 /𝑉 and
equate ℓ = 𝜆dB to express 𝑇𝑐 = ℎ2𝑛2/3/(3𝑚𝑘B).

C.3 (0.6 points)
Using the answer to the previous question, we express𝑛𝑐 = (3𝑚𝑘B𝑇𝑐)3/2/ℎ3. Equation of state for the
ideal gas gives 𝑛0 = 𝑝/(𝑘B𝑇 ). Numerical estimations yield 𝑛𝑐 ≈ 1.59 · 1018m−3 and 𝑛0/𝑛𝑐 ≈ 1.5 · 107.

Part D. Three-beam optical lattices (5.0 points)

D.1 (1.4 points)
We sum the three electric fields (𝑧 components)

𝐸 (®𝑟, 𝑡) = 𝐸0
3∑︁
𝑖=1

cos
(
®𝑘𝑖 · ®𝑟 − 𝜔𝑡

)
, (4)

and square the result

𝐸2(®𝑟, 𝑡) = 𝐸20
3∑︁
𝑖=1

3∑︁
𝑗=1

cos
(
®𝑘𝑖 · ®𝑟 − 𝜔𝑡

)
cos

(
®𝑘 𝑗 · ®𝑟 − 𝜔𝑡

)
=
𝐸20
2

3∑︁
𝑖=1

3∑︁
𝑗=1

{
cos

[(
®𝑘𝑖 − ®𝑘 𝑗

)
· ®𝑟

]
+ cos

[(
®𝑘𝑖 + ®𝑘 𝑗

)
· ®𝑟 − 2𝜔𝑡

]}
.

(5)

Time averaging gives

⟨𝐸2(®𝑟, 𝑡)⟩ =
𝐸20
2

3∑︁
𝑖=1

3∑︁
𝑗=1

cos
[(
®𝑘𝑖 − ®𝑘 𝑗

)
· ®𝑟

]
, (6)
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we analyse the 9 terms and simplify to

⟨𝐸2(®𝑟, 𝑡)⟩ = 𝐸20

(
3
2
+

3∑︁
𝑗=1

cos
(
®𝑏 𝑗 · ®𝑟

))
. (7)

Here
®𝑏1 = ®𝑘2 − ®𝑘3, ®𝑏2 = ®𝑘3 − ®𝑘1, ®𝑏3 = ®𝑘1 − ®𝑘2,

or in terms of the Levi-Civita symbol, ®𝑏𝑘 = 𝜀𝑖 𝑗𝑘 (®𝑘𝑖−®𝑘 𝑗 ). Incidentally, they are known as the reciprocal
lattice vectors.

D.2 (0.5 points)

Argument: Observe that rotation by 60◦ maps the three vectors ®𝑏1,2,3 into the relabelled triplet of
−®𝑏’s.

D.3 (1.2 points)
We find

𝑉 (𝑥,𝑦) = −𝛼𝐸20

{
3
2
+ cos

(
𝑘𝑦

√
3
)
+ cos

(
3𝑘𝑥
2

+ 𝑘𝑦
√
3

2

)
+ cos

(
3𝑘𝑥
2

− 𝑘𝑦
√
3

2

)}
, (8)

and deduce

𝑉𝑋 (𝑥) = −𝛼𝐸20
{
5
2
+ 2 cos

3𝑘𝑥
2

}
. (9)

The potential has a simple cosine form, and the origin in an obvious minimum. Its replica appear at
multiples of Δ𝑥 = 4𝜋/(3𝑘). In the midpoint between any two minima, e.g. at 𝑥 = Δ𝑥/2 = 2𝜋/(3𝑘),
the function 𝑉𝑋 (𝑥) has its maxima.

Concerning the behaviour along the 𝑦 axis, we have

𝑉𝑌 (𝑦) = −𝛼𝐸20
{
3
2
+ cos 2𝜑 + 2 cos𝜑

}
, 𝜑 =

√
3𝑘𝑦/2. (10)

Looking for the extrema, we find the equation

sin 2𝜑 + sin𝜑 = 0. (11)

◦ 𝜑 = 0 (corresponding to 𝑦 = 0) is the ‘deep’ minimum – the lattice site;

◦ 𝜑 = 𝜋 (corresponding to 𝑦 = 2𝜋√
3𝑘
) is the ‘shallow’ minimum (later shown to be a saddle point

of 𝑉 (𝑥,𝑦));

◦ 𝜑 = 2𝜋/3 and 𝜑 = 4𝜋/3 (corresponding to 𝑦 = 4𝜋
3
√
3𝑘

and 𝑦 = 8𝜋
3
√
3𝑘
, respectively) are maxima.
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D.4 (0.8 points)
We review theminima found in the previous question and eliminate the saddle point at (0, 2𝜋/3

√
3𝑘).

The actual minima of the 2D potential landscape 𝑉 (𝑥,𝑦) are:

◦ (0, 0) – at the origin;

◦ (4𝜋/(3𝑘), 0) – nearest to the origin in the positive direction along the 𝑥 axis. On the grounds
of symmetry we argue that there are six equivalent nearest minima in the directions 0◦, ±60◦,
±120◦, and 180◦ with respect to the 𝑥 axis.

Distance between nearest minima (the lattice constant) 𝑎 = 4𝜋/(3𝑘). Given that the laser wave-
length is 𝜆las = 2𝜋/𝑘 , we have 𝑎 = Δ𝑥 = 2𝜆las/3, thus 𝑎/𝜆las = 2/3.

D.5 (1.1 points)
The atom’s core electrons (all but the one promoted to to a state with a high principal quantum
number𝑛) shield the electric field of the nucleus so that the effective potential for the outer electron
resembles that of a hydrogen atom. The attractive force acting on that electron, 𝐹 = 𝑒2/(4𝜋𝜀0𝑟 2),
gives rise to its centripetal acceleration 𝑎 = 𝑣2/𝑟 . Equating 𝐹 = 𝑚e𝑎 and using the expression
for the angular momentum 𝑚e𝑣𝑟 = 𝑛ℏ to eliminate the velocity, we find the quantum number 𝑛
corresponding to the orbit with the radius 𝑟 = 𝜆las:

𝑛 =
𝑒

ℏ

√︄
𝑚e𝜆

4𝜋𝜀0
≈ 85. (12)


