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Planetary Physics (10 points)

Part A. Mid-ocean ridge (5.0 points)

A.1 (0.8 points)

w (normal to the
page)
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Figure 1

Let 4’ be the height of the column of oil (see Fig. 1). Then pressure at depth h below the water surface
must be py = pogh = poilgh’, from where b’ = ﬂh. Horizontal force on the plate F, = F; — Fy, where

the force due to new fluid is F; = p""gh -h'w and the force due to water is Fy = pogh - hw.

Combining all the equation above we get

hz
a—(ﬁi—qu W

Poil 2
This force acts on the right plate to the right.

A.2 (0.6 points)

Consider a rectangular mass element of the crust. Since relation [(T) =, [1 -k (Ty = T) /(T1 — Ty)]
holds for all three dimensions of the solid, its volume V satisfies

T3
V= Vl(l—kl T),
0

where V] is the volume at T = T;. If the mass of the element is m, density is then

m T,-T\ T\
T 1- =pi |1~ .
p(1) =" Vl( szl_To) p( oD To)

Since k; << 1, this can be approximated as

T -T
T) = 1+ 3k ,
p (T) m(*—zn_%)

so that k = 3k;.
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A.3 (1.1 points)

Since mantle behaves like a fluid in hydrostatic equilibrium, pressure p (x, z) at z = h+ D must be

the same for all x. Therefore,
p(0,h+D)=p(co,h+D).

Similarly, we must have
p(0,0) = p(e,0).

Hence, the change in pressure between z = 0 and z = oo must be the same at both x = 0 and x = co.
At the ridge axis
p(0,h+D) - p(0,0) = p1g (h+D),

while far away
h+D
p(oo,h+D)—p(oo,0):pogh+/h p (T (00,2)) gdz.

Since the temperature of the crust at x = co depends linearly on height, after applying the relevant
temperature boundary conditions,

z—h
T (00,2) =Ty + (T = Tp) D

From all the equations above and by using the density formula given in the problem text,

h+D T —-To— (T - To) &2
plg(h+D)=pogh+/ p1|1+k 2| gdz,
h T —To

from where we straightforwardly obtain

A.4 (1.6 points)

The net horizontal force on the half of the ridge is the difference between the pressure forces acting

at x =0 and x = oo:
h+D h
F:L/ p(O,z)dz—L/ p(00,2).
0 0

From considerations of the previous question, pressure at x = 0 is

p(0,2) =p (0,0) + p19z,

while very far away
p (00,2) = p (e0,0) + pogz

The equations above can be combined into

h+D h
Fi [ (p00+pg2) de-L [ (p(0.0)+ puga)
0 0
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After a straightforward integration and using p (0,0) = p (0, 0),

(h+ D)? h?

F=Lp(0.0)D+Lpig———— = Lpog—-

Since k < 1, and D o k™1, the term with D? o< k=2 is of the leading order, hence, after substituting
the result of A.3, the required answer is

Fa 2gLK? (p1 = po)°
k2p1 '

A.5 (0.9 points)

Method 1: dimensional analysis. The timescale 7 is expected to depend only on density of the
crust py, its specific heat ¢, thermal conductivity x and thickness D. Hence, we can write

T= Ap‘f‘cﬂKYD‘S,

where A is a dimensionless constant. We will obtain the powers @-§ via dimensional analysis.
Define the symbols for different dimensions: L for length, M for mass, T for time and © for tem-
perature. Then 7, py, ¢, k and D have dimensions T, ML73, L2T 207!, MLT 30 ! and L, respectively.
The resulting set of linear equations to balance the powers of length, mass, time and temperature,
respectively, is
0=-3a+2f+y+9,

O=a+y,
1=-28-3y,
0=—-f-y.

This givesa = =1,y = -1, = 2. Hence,

cp1D?
T:Apl .
K

Method 2: scale analysis. Consider a piece of crust of area S. Heat flux that has to be trans-

mitted through the crust is of order Q ~ cp;SDAT, where AT = Ty — Ty. On the other hand, the law

. . AT _Q
of thermal conductivity gives that k- ~ 5.

From the two equations, cp; SDAT ~ STK%, from where we get that 7 is independent of AT and

cp D?

~

K
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Part B. Seismic waves in a stratified medium (5.0 points)

B.1 (1.5 points)

Seismic waves in this problem can be treated by using ray theory. Namely, their propagation is
described by the Snell’s law of refraction

n(0)sinfy = n(z) sin 6,

where the refractive index is c c

0@ g (142)

and ¢ denotes the seismic wave speed in a material with refractive index n = 1. From the two
equations above we have

n(z) =

z\ . .
Vo (1 + —) sin By = vy sin 6.
20

Method 1.  Since this describes an arc of a circle, we have that at § = 7, z = R — Rsin 6, (Fig. 2),
giving
( R — Rsin6,
14— 2
20

) sin 6, = 1,

20

from where the circle radius R = . From simple geometry we get

sin 6
x1 (6g) = 2R cos b,
leading to
X1 (9()) = 220 cot 80,
ie. A=2zpand b =1.
/” \\\
/ AN
4 \
7 \
1 \
1
{90 R__~<_ R |
1 - \\‘ 1
B - >
x1(6o) x
\
\
\
\
90\\
\
\
\
\-
v
z

Figure 2
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Method 2. Implicitly differentiating v, (1 + %) sin By = vy sin 0 gives

d
& sin 8y = cos 6 d6.
20

An infinitesimal ray path length dl is related to the change in the vertical coordinate via

dz =dl cos 6,
giving
20
dl = de.
sin 6,

This is an equation of an arc of a circle of radius R = Siioeo

Alternatively, instead of considering an infinitesimal ray path length dl, one can obtain the
answer by writing

(0= dz 3 dz df
T T o
The first derivative can be eliminated via Snell’s law, leading to

3 zocoseﬁ

cot ,
sin 6, dx

which can be integrated to get

20 end 2z cos Oy
xX; = — dcos = ——,
S

sin 0y Jstart sin 6

where we used Snell’s law again to get that the ray has cos § = — cos 6 at the point where it reaches
the surface.

B.2 (1.5 points)

In two dimensions, % d6y is the energy carried by rays that are emitted within interval [0y, 6y + d6y).
On the other hand, the energy carried by rays that arrive at [x, x + dx) is € dx. Therefore,

E |d6,
e=—|—|.
7| dx
Using the result of question B.1,
d Ab b (A% + x?
o> _ —————— = —Ab (1 + cot? (b@o)) = ——( al )
do, sin? (b6,) A
Hence,
EA ZEZ()

e(x) =

b (A% + x2?) - T (423 +x2) '

This function is plotted in Fig. 3.
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s(x)‘

E
21z,

v

Figure 3. Plot of the function &(x).

B.3 (2.0 points)

Define x_ = x1 (6 — % and x; = x1 (6 + %). To the leading order in 66y, x_ =~ x; = x1 (6)).

With each reflection of the signal, the horizontal distance between the points where the edges of

the signal reflect increases by |x; — x_| = x_ — x;. When moving along the positive x-axis, these
zones get wider until they overlap. If this happens after N reflections, then
x1 (6
N0
X_ — Xy

where the approximate sign tends to equality as 66, — 0.
The position where the zones start to overlap is at xmax = Nx1(6p). Therefore,

361(90)2
X1 (90—%) - X1 (90+%).

Xmax =

Since 60y < 6, we can approximate

86y 60, dx1(0o) Ab
Op—— | —-x1 |0+ —| =~ - 66y = 66,.
x1( 0 2 ) x1(o+ 2 ) 6, 0 sinz(beo) 0

Combining the last two equations and substituting the x; (6y) expression gives

N Acos® (b0,) _ 2zq cos’ b,
max b 56, B 50,
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Electrostatic lens (10 points)

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 (0.3 points)
The linear charge density of the ring is A = q/(27R). All the points of the ring are situated a distance
VR? + z2 away from point A. Integrating over the whole ring we readily obtain:

q)(z):i 1

dmeg VRZ + 22

A.2 (0.4 points)

Using an expansion in powers of z we obtain:

477,'50 \/Rz + 22 47T€0R 1+ (2)2 47TEOR 2R? )
V R

A.3 (0.2 points)
The potential energy of the electron is V(z) = —e®(z). The force acting on the electron is

dV(z) e@—— qe ,
dz dz  4meR3T

F(z) = -

If this is a restoring force, it should be negative for positive z. Thus, g > 0.

A.4 (0.1 points)
The equation of motion for an electron is

.. qe
mz + z=0
4megR3

(here dots denote time derivatives). We therefore get

qge
w=,|—.
4rmegR3
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Part B. Electrostatic potential in the plane of the ring (1.7 points)

B.1 (1.5 points)

There are two different ways to solve this problem: (i) using direct integration; (ii) using Gauss’s
law and the result of part A.

Figure 1: Calculating electrostatic potential in the plane of the ring through direct integration.

(i) Direct integration. We will follow the notations of Figure 1. Since the potential has cylin-
drical symmetry, let the point B, where we calculate the potential, be on the x-axis. Let

|OB| = r;|OC| = R.

Thus:
IBC|* = R* + r* — 2Rr cos ¢.
Electrostatic potential created by ring element d¢ at the point B:
1 AR d¢ 1 Ad¢
- dneg VRZ + 712 — 2Rr cos ¢ ~ dzeg \/1 + Ir{_zz _ 2§cos¢.

Using the expansion given in the formulation of the problem for ¢ = —1/2 we have:

Ad 1(r? 3 (r? ?
do ~ ¢ 1-- r——2£cos¢ + - r——2£cos¢ .
4re 2 | R? R 8\R? R

Ignoring the terms of the order r* and r* we get:

do ~ Adg

477.'60 R 2

2 (3 1
1+£cos¢+%(—cos2¢—5)].

Integrating over all angles we finally obtain:

)L 2
471'80 A

2
1+1%cos¢+r—(§cosz¢—%)] d¢.

d(r) = z\3
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2

q r
o(r) = 1+ ).
") 47r£0R( +4R2)

From here, comparing with the expression ®(r) = q(a + fr?), we obtain

_ 1
" 167eR3

p

(ii) Gauss’s law.

Figure 2: Calculating electrostatic potential in the plane of the ring via Gauss’s law.

Let us analyze a small cylinder of radius r. The center of the cylinder coincides with the center
of the ring. In part A we analyzed the potential along the z-axis, while in this part we analyze the
potential along the radius r. For any z < R and r < R the potential has an expression:

d(z,r) = 1 1 z +[3r2
T 4egR Rz | T

The lowest order terms are quadratic in r and z. Due to reflection symmetry the potential does
not contain terms of the type rz. This, for example, immediately gives us @ = 1/(4r&R). Thus, for
small r and z electric fields in the radial and axial directions are:

E,(z,r) = +$OR”Z’ Er(z,r) = —2qpr.

Applying Gauss’s law to the cylinder we obtain:

%é-c@:o = /é-d§+/é-d§:o.

side base

The second integral is:

qzr?

/ E-dS= 2’8, (z,r) = 2l

base

The first integral is:
/ E-dS = 47rzE,(z, 1) = —8mqPriz.

side
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Gauss’s theorem thus gives:

2
qzr 2
26 8mqpProz = 0.
This immediately yields
1
" 167eoRY’

which agrees with the result obtained via direct integration.

B.2 (0.2 points)
The potential of the electron is V(r) = —e®(r). Force acting on the electron in the xy plane is

_dV(r) _+edd>(r) _qe .
dr dr  8meR3

To have oscilations we need the force to be negative for r > 0. Thus, g < 0.

F(r) =

Part C. The focal length of the idealized electrostatic lens (2.3 points)

C.1 (1.3 points)

Let us consider an electron with the velocity v = 4/2E/m at a distance r from the “optical” axis
(Figure 2 of the problem). The electron crosses the “active region” of the lens in time

d
t=—.
0

The equation of motion in the r direction:
mi = 2eqfr.

During the time the electron crosses the active region of the lens, the electron acquires radial ve-
locity:
2eqpPrd
_ 2eqfrd _
m v
The lens will be focusing if ¢ < 0. The time it takes for an electron to reach the “optical” axis is:

0.

oy

LA
|or | 2eqpfd
During this time the electron travels in the z-direction a distance
Az=tv=- - - .
2eqfd eqdf

Az does not depend on the radial distance r, therefore all electron will cross the “optical” axis (will

be focused) in the same spot. Thus,
E

eqdf’

f=
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C.2 (0.8 points)

q

Figure 3: Focusing of electrons.

Let us consider an electron emitted an an angle y to the optical axis (Figure 3). Its initial velocity in
the radial direction is: .
org =vsiny ~ oy ~ vy,
where r is the radial distance of the electron when it reaches the plane of the ring. The velocity in
the z-direction is
U, =0VCOSY X 0.

For small angles y the additional velocity in the r-direction acquired in the “active region” is the
same as in part C.1. Thus, the radial velocity after crossing the active region is
r 2eqfrd

v, =U—+
b m o

where the first term is positive and the second term is negative, since g < 0. If the electrons are
focused, then v, < 0 (this can be verified after obtaining the final result). The electron will reach
the optical axis in time

, r r 1

= — = — = — .
0 2eqpfr d r 2eqBd | v
| r| m v +Ub m v + b

During this time it will travel a distance
" 1 1
CcC = 0 =— = - .
2eqfd , 1 eqfd | 1
m 0?2 b E b

C.3 (0.2 pt)

From the previous answer we obtain:
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Comparing with the answer of C.1 we immediately obtain

1 1 1

b ¢ f

i.e. the equation of a thin optical lens is valid for an electrostatic lens as well.

Part D. The ring as a capacitor (3 points)

D.1 (2.0 points)

20

Figure 4: Calculation of the capacitance of the ring.

Let us sub-divide the entire ring into two parts: a part corresponding to the angle 2o < 1, and the
rest of the ring, as shown in Figure 4. While the angle is small in comparison to 1, let us assume
that the length of the first part, aR, is still large compared to a (@R > a). Let us calculate the
electrostatic potential @ at point K. It it a sum of two terms: the first one produced by the cut-out
part with an angle 2a (contribution ®;) and the second one originating from the rest of the ring

(contribution ®,).

Contribution ®;. Since @ < 1, we can neglect the curvature of the cylinder that is cut out from
the ring. The linear charge density on the ring is A = 5. The potential at the center of the cylinder

is then given by an integral:

g [*_dx/a) ¢
471'80 27rR \/xz Y 47r2£0R J1+ (x/a)  47%gR

Using the integral provided in the description of the problem we get:

‘I)lz

(I)lz

o777

472e)R

As aR > a,

~ n
477.'280R

aR/a q aR - ((xR

dy

\/1+y2'
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Figure 5: Calculation of the capacitance of the ring

Contribution ®,. In this case we can neglect the thickness a. Using the cosine theorem we can

derive the distance between points K and L of Figure 5:
IKL| = 2R sin%.

The contribution @, can then be written as an integral:

cpzzil/”ckﬁ:q/”chﬁ:q/ :q/
2T “onane, J, 2Rsin§ 8712¢0R J, sin% 4m2e0R J, sin% 4m2e0R J,

Using the integral from the formulation of the problem, we calculate:

/2 1 /2
/ fi)( :—ln(COS.X-F ) zln(cosa/2+l)%ln(é)
a2 SINY sin y

a2 sina/2 a
for @ <« 1. Therefore

4
D, ~ 1 In{—].
472e)R a

The total potential and capacitance. The total potential is the sum of ®; and ®,:

2R 4 8R
O=0,+0, = 9 In ¢ + 9 In{—| = El In{—].
42e0R a 42%e0R a 472e0R a

a drops out from the expression. From here we obtain the capacitance C = q/® :

_ 4JT2€0R

(%)

C—>0asa—0.

/2 d)(

2 siny’
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D.2 (1.0 point)

Let q(t) be the charge on the ring at a time ¢. Potential of the disk is thus g(t)/C. Voltage drop of
the resistor is RyI(t) = Ry dgq/dt. Therefore for time —% <t< %:
q(®) , , dq

— +Ry— =V,.
C Odr — °

Integrating this equation and keeping in mind that q(t) = 0 at t = —d/(20), we get:
d t
q(t) =CV (1 - e_We_RO_C) .
The charge attains the largest absolute value at t = d/(2v). The value of the charge at this time is:
__d_
q = CV, (1 —€ UROC) .

When t > 2%, we get:
q®) ., dq
—=+Ry— =0.
c da

From here: .

__t d d _ t
q(t) = goe Rt 2Ry — CV, (CZZJROC —e ZZJR()C) e RC.
Therefore, we obtain:

0 fort < —zi;
0

—_d _ __t
q(t) ={CVy (1 —e RCe ROC) for — % <t< ZiU;

d

—4_ -4\ __t
CVy (eZUROC —e ZUROC) e B¢ fort > .

For a lens to be focusing we require that charge is negative, therefore V;, < 0. The dependence
of charge on time is shown in Figure 6.

q(t)

—d/2v >

Figure 6: Charge on the ring as a function of time.
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Part E. Focal length of a more realistic lens (2 points)

E.1 (1.7 points)
Like in part C, the radial equation of motion of an electron is:
mit = 2eq(t)pr,

where in this case q(t) depends on time. Using the notation n = 2ef8/m, we obtain:

#—nq(t)r =0.

As f /v > RyC, then during charging—decharging the electron does not substantially change its ra-
dial position r, and we can assume r to be constant during the entire charging—decharging process.
In this case the acquired vertical velocity is

oy = nr/ q(t)dt.
—d/(2v)

We can use the derived equations for g(t) and find the integrals. The integral fi{/((zgz) q(t)dt is
(using the notation d/v = ty, RyC = 7, CVy = Qy):

to/2 to/2 " ,
/ q(1) dt:/ Qo (1—6_56_;) dt = Qo (to—r[l—e_“’/f]).
~to/2 —to/2
The integral fdo/o(ZU) q(t)dtis
* o m) oo o)t
Qo lezr —e 2 e rdt =Qpr |1 —e .
to/2

Adding the two integrals we obtain for the final integral:

/ g(H)dt = Outy.
—to/2

Interestingly, it does not depend on 7 = RyC. Therefore, the acquired vertical velocity of the electron

is
CVod  2efCVydr
r = :

mo

v, =1
Following the logic similar to part C, we derive the focal length

E
f= eCVodf'

E.2 (0.3 points).
Comparing f = —E/(eCVydp) with f = —E/(eqdf) from part C we immediataly obtain geg = CVj.
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Particles and Waves (10 points)

Part A. Quantum particle in a box (1.4 points)

A.1 (0.4 points)

The width of the potential well (L) should be equal to the half of the wavelength of the de Broglie
standing wave Aqg = h/p, here h is the Planck’s constant and p is the momentum of the particle.
Thus p = h/Aqs = h/(2L), and the minimal possible energy of the particle is

p2 h2

om  8mL?

Emin -

A.2 (0.6 points)

The potential well should fit an integer number of the de Broglie half-wavelengths: L = %)Lé%) - n,
(n) .

n=12,.... Therefore, particle’s momentum, corresponding to the de Broglie wavelength A4’ is
D = h  hn
n — (n) - i;
AdB

and the corresponding energy is

_ﬁ_ h2n2

_2m_w, n:1,2,3,.... (1)

n

A.3 (0.4 points)

The energy of the emitted photon, E = hc/A (here c is the speed of light and A is the photon’s
wavelength) should be equal to the energy difference AE = E, — E, therefore

he 3 8mcL?

Aoy = -
27 E —F 3h

Part B. Optical properties of molecules (2.1 points)

B.1 (0.8 points)

Taking into account the Pauli exclusion principle, each energy level E, is occupied by two electrons
with spins oriented in the opposite directions. As a results, 10 electrons fill the lowest 5 states,
and the absorption of the photon of the longest wavelength corresponds to the transition of one
electron from the occupied Es to the unoccupied E¢ energy state:

— = E¢ — Es,
1 6 5
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where Eg and Es can be found from Eq. 1, where m is replaced with the electron mass m.. Hence

we obtain:
c-8meL?  10.5%-8mecl* 882 mecl?

“h(6’—-5%) 11 kR 11 *h
This result correspond precisely to the experimental value the peak position of the Cy5 absorption
spectrum.

A

~ 647 nm.

B.2 (0.4 points)

In the similar model for the Cy3 molecule, there are 8 electrons in the box of length L = 8.5I,
thus photon’s absorption corresponds to the E; — Es transition. Taking into account the result of
question B1, we obtain
Ln = 8.5%-8 mecl®
3T (52-42) p

i. e. the absorption spectrum of the Cy3 molecule is shifted by AA ~ 129 nm to the blue comparing

~ 518 nm,

to that of the Cy5 molecule. The experimental value is )L(Ce;g)) = 548 nm, so that our model catches
general properties of these dye molecules rather well.
B.3 (0.7 points)
Let us assume
K =kehPQrd. (2)

The Sl units of the relevant quantities are:

AZ e ko - 2

@l = o5, =2 =m  [d=A-sm [K]=sT
kg - m s

By plugging these expressions into Eq. 2 we obtain a simple system of linear equations for the
unknown powers «, f, y, and §:

200+ 6 =0, —a+ =0, da - f+6=-1, —3a+2+y+6=0.
By solving this system we get:
a=p=-1, Yy =-3, 8=2,
so that the rate of spontaneous emission is

_16JI3 d?
B 3 80]1/13-

3)

B.4 (0.2 points)

By using the result of question B.2 and expressing transition dipole moment as d = 2.4 el, we obtain
from Eq. 3:
3 E()h

—_— A3~ 3.3ns.
1673 2.42]2¢2

TCcys5 =
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Part C. Bose-Einstein condensation (1.5 points)

C.1 (0.4 points)

At temperature T, the average kinetic energy of translational motion is %kBT. Equating this result
to p?/(2m), we obtain typical momentum p = v/3mkgT and the de Broglie wavelength

h
3kaT‘

Adg =

T

C.2 (0.5 points)

The volume per particle V/N is a good estimate for £>. We obtain £ = n™/3, with n = N/V and
equate £ = Agg to express T, = h®n?/®/(3mkg).

C.3 (0.6 points)

Using the answer to the previous question, we express n, = (3mkgT,)/?/h3. Equation of state for the
ideal gas gives ng = p/(kgT). Numerical estimations yield n, ~ 1.59 - 10"* m™ and ny/n, ~ 1.5 10.

Part D. Three-beam optical lattices (5.0 points)

D.1 (1.4 points)

We sum the three electric fields (z components)

E(F,t) = E, 23: cos (l:, ¥ - a)t) , (4)

i=1

and square the result

E*(F,t) = E i i cos (l;, T = a)t) cos (13] T - a)t)
= (5)

Time averaging gives

(B2(7,1)) = E—giicos [(IZ - 1?) -7] ©6)
, . ki) -7,
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we analyse the 9 terms and simplify to

3
(BX(F.1)) —EZ( +Zcos( )) )
Jj=
Here . L. . L. . .
by = ky — ks, by = k3 — ki, bs = ki — ky,

or in terms of the Levi-Civita symbol, l_;k = eijk(Ei—Ej). Incidentally, they are known as the reciprocal
lattice vectors.

D.2 (0.5 points)

Argument: Observe that rotation by 60° maps the three vectors 51,2,3 into the relabelled triplet of
—b’s.

D.3 (1.2 points)

We find
3k kyv3 3k kyv3
V(x,y) = —aE; {— + cos (ky\/_) + cos ( al y_\/_) + cos (—x - y_\/_)} 8)
2 2 2 2
and deduce L
5 3
Vx(x) = —aE(Z) {5+2cos Tx} 9)

The potential has a simple cosine form, and the origin in an obvious minimum. Its replica appear at
multiples of Ax = 47/(3k). In the midpoint between any two minima, e.g. at x = Ax/2 = 2x/(3k),
the function Vx(x) has its maxima.

Concerning the behaviour along the y axis, we have

W(y) = —aE{ +cos290+Zcosq)} ¢ = V3ky/2. (10)

Looking for the extrema, we find the equation
sin2¢ +sing = 0. (11)
o ¢ = 0 (corresponding to y = 0) is the ‘deep’ minimum — the lattice site;

o ¢ = m (corresponding toy = \/'k) is the ‘shallow’ minimum (later shown to be a saddle point

of V(x, y));

o ¢ =2r/3 and ¢ = 4/3 (corresponding to y = \/'k and y = \/_k, respectively) are maxima.
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D.4 (0.8 points)

We review the minima found in the previous question and eliminate the saddle point at (0, 27/3V3k).
The actual minima of the 2D potential landscape V(x, y) are:

o (0,0) — at the origin;

o (4m/(3k),0) — nearest to the origin in the positive direction along the x axis. On the grounds
of symmetry we argue that there are six equivalent nearest minima in the directions 0°, £60°,
+120°, and 180° with respect to the x axis.

Distance between nearest minima (the lattice constant) a = 4/(3k). Given that the laser wave-
length is Ajps = 277/k, we have a = Ax = 2A1,5/3, thus a/Aj,s = 2/3.

D.5 (1.1 points)

The atom’s core electrons (all but the one promoted to to a state with a high principal quantum
number n) shield the electric field of the nucleus so that the effective potential for the outer electron
resembles that of a hydrogen atom. The attractive force acting on that electron, F = e?/(4meor?),
gives rise to its centripetal acceleration a = v?/r. Equating F = mea and using the expression
for the angular momentum meor = nh to eliminate the velocity, we find the quantum number n
corresponding to the orbit with the radius r = Aju:

MeA

e
- ~ 85. 12
7] 471'80 ( )

n=



