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Zero-length springs and slinky coils — Solution
Part A: Statics

A.1 The force F causes the spring to change its length from L to L. Since equal parts of the

. A
spring are extended to equal lengths, we get: A_jl/ = Li - Ay = LiAl.
0 0

Since L = max {%, LO}, we get Ay = max{k%Al,Al}. From this result we see that any piece of
0

length Al the spring behaves as a ZLS with spring constant k* = k %

A.2 Let us compute the work of the force. From Task A.1: dW = F(x)dx = %xdx.

24y
Hence, AW = fAykLO xdx kALloxz N ’;z‘; (Ay? — Al?) .

A.3. At every point along the statically hanging spring the weight of the mass below is balanced
by the tension from above. This implies that at the bottom of the spring there is a section of
length [, whose turns are still touching each other, as their weight is insufficient to exceed the

threshold force kL to pull them apart. The length [, can be derived from the equation:
2

Lo _ _ k1§ _
aMg = kL, hence [, = g aLg.

For l > l,, a segment of the unstretched spring between [ and [ + dl feels a weight ofLng
0

from beneath, which causes its length to stretch from dl to dy = %dl —Mg E =
0 0 0

MIjar=Ldi.
kL3 lo

Integration of the last expression over the stretched region, up to the point L, gives its height
when the spring is stretched

L
0 2 LO

!
H=1 dl =1y +—
°+fl0 zzol0

lo

1 2 1, L 1
— o4 ([2 —[2) = 2O _0:_0( _>
ot o=l =g +5=5(at
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Part B: Dynamics

2
B.1. From Task A.3 we have H(l) = le + %" We now calculate the position of the center of
0

mass of the suspended spring. The contribution of the unstretched section of height [, at the

. l . l - . .
bottom, having a mass ofL—OM =aM, is aM ;0 The position of the center of mass is obtained by
0

summing the contributions of its elements:

L
Hop = = |2 M+fOH(l)d = aM + f - l" pdl
m =y |2 e 272 ) I,
lo
a?ly, 1[1B 1 a?L 313 1
= °y— —+—0 = S+ — Lo =+ 0 — o)
2 " Lolel, T2 2 LO 6L,

Where we have used dm = ‘Li—lM. Substituting [y = aL, yields

0

1 a® «
6a 6 2

Hcm:LO[___+_

I . . . L
When the spring is contracted to its free length L, its center of mass is located at ?0 From the

falling of the center of mass at acceleration g we get:

9o_py _Lo_ [L_ @ a 1] Lo .
yte = Hem 2_L0[6a 6t “ a1

2 2
Hence, t, = / Lo (1 - @)3.
re 3ga

Fork = 1.02 N/m, L, = 0.055 m, M = 0.201 kg, and g = 9.80 m/s?, we have a = 0.0285, and
t. = 0.245s.

B.2. The moving top section of the spring is pulled down by its own weight, m;,,g = Mg (Lz—_l)
0
and also by the tension in the spring below, which is equal to the weight Mgl/L of the
stationary section of the spring. Thus, the moving top section experiences a constant force F =
M g throughout its whole fall. Another way to see that, is that a total force of Mg is exerted on
the spring, but only the moving part experiences it. Let’s calculate the position of the center of

mass at equilibrium of the upper part, i.e., all points with I’ > [ for some [ > [,. From part A,
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s . (- . [ 12 l
the position of a small portion Al" with coordinate |"is: H(l") = T ;0 and the center of
0

mass of this part is:
1"
Hom-upper—i = m— M(LO 5 f H(dm = ——2— M(LO 5 f <Zlo )dm

j 12 l0 Mdl' J l'2 b\ 1y
M(L0 ) 210 Lo (Ly=1D zzo

1 l’3+ll’L0 L2+Lol+12 Lo

+
6l, 2
The position of the upper part of CM when it contracts to a length Lo — L is Hepp—ypper—5 =

2
leo + %O + % (Lo — D). The change in the CM during the contraction process is: AH ey _ypper =

_ L3+Lol-212

(Lo—D(Lo+21) 1
Hcm—upper—i - Hcm—upper—f - 6—l0 - E (LO - l) =0 _ E (LO - l)

6lo
FLO _ gLO
M(Lo=1) ~ Lo—l
From the work energy theorem we get the equation v,ipper_f = 2acmAH cm—upper, hence

[ bal, 2o~ b|= 2‘9[

The acceleration of the CM of the upper partis acy =

2
v
2 0

upper—f =

—2‘gz+(1 1) L
" 3a 3a gro

-2 — (L _
Therefore, A = o~ and B = (3a 1) gLo.

Note that for [ = L,, we have v?2 Log —Zandforl = l, = aL,, we get v2

upper—f — upper— f

Log g , hence, the moment we release the spring its velocity is finite (not zero, the meaning is
that it accumulate this velocity in time that is much shorter than the contracting time 1) and it

decreases to % of the initial value when [ = [,,.

B.3. Note that even though the center of mass of the spring accelerates downwards constantly,
the moving top section actually decelerates, while the position of the center of mass moves
down the spring. The speed of the top section v(l), calculated in Task B2, decreases and
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approaches the value /AalLy, + B immediately before it attaches to the bottom section of
height [, = aL,, which was unstretched and at rest. Once the moving top section attaches to
the resting bottom section, its momentum is shared between both sections, so the speed
further decreases just before the whole spring starts accelerating downwards as a single mass.
Thus, the minimum speed is that of the whole spring immediately after its full collapse. From
momentum conservation, we have

[
Mvpin = mtopv(lo) =M (1 - L—O) JAalLy + B

0

Vpin = (1 — a)/Aaly, + B
Part C: Energetics

C.1. From the moment the spring is released, the acceleration of its center of mass is governed
by the external force Mg and therefore the gravitational potential energy of the spring is fully

converted into the kinetic energy of the center of mass of the spring, which just before hitting

the ground is equal to the kinetic energy of the spring.

All that is left is the elastic energy stored in the spring, which is converted into heat, sound, etc.

To calculate it, we consider the elastic energy stored in a segment dh of the stretched spring,

which when unstretched lies between [ and [ + dl, using the result of Task A.2, AW =

I;—E(Al% — Al?), by choosing Al = dl and Al, = dy, and using dy = lidl (which was obtained
0

in Task A.3), we get:

2
dW = % (l— — 1) dl. Integrating from [, to L, we find

1

L
W—kaO AV 7Y N R Y el
) 2 \z T2 |32 T2\ 32 0
lo Lo
kL3 (1— a3 kL3 )
_T 3(12 —(1—0:) =@(1—a) (2a+1)
1-a)’Qa+1
=MgL0( a)*(2a+1)

6a
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The Physics of a Microwave Oven — Solution
Part A: The structure and operation of a magnetron

A.1. The frequency of an LC circuitis"Q 1 7¢*  pZ ¢ VD O. If the total electric current
flowing along the boundary of the cavity is “Qit generates a magnetic field whose magnitude (by
the assumptions of the question) is T "@Qand a total magnetic flux equal to “ 'Y

@ "‘@FQhence the inductance of the resonatoris0  T&@"* 'Y T'QApproximating the
capacitor as a plate capacitor, its capacitance is 0 - GCYQ Putting everything together, we
find

(111 h 1 340° 0:109
=" 2pJLC 2 p06 W, /giheZ R,O6 2,07(]200\/36

Hz

A.2. Denoting the electron velocity by ® 0, in this case the total force applied on it is

B Q 0w ®6 06 o8
letuswrite®0 ® ® O,with® ‘OT6  bbing the drift velocity of a charged
particle in the crossed electric and magnetic fields (the velocity at which the electric and
magnetic forces cancel each other exactly). Then™®  'Gb 0 O aHDhus, in a frame moving
at the drift velocity @ , the electron trajectory is a circle with constant-magnitude velocity 0

b O0Sandradiusi @& 6 TCD . In the lab frame this circular motion is superimposed upon
the drift at the constant velocity ® . Hence:

1. For®m cOT6 wwdfindd TOXO andi TAOTD .
2. For®m o016 wwbfindd ¢OT0 andi caOTD 8

This information, together with the independence of the period of the circular motion on 0
allows us to plot the electron trajectory in both cases (green and red, for cases 1 and 2,
respectively):

.
| mE, |
v

5 ¢ N

T [mE,)
X

\eB; )




Theory IPhO 2019

It -

ISRAEL 2018

A.3. The velocity of the electron in a frame of reference where the motion is approximately
circularisu'. From A.2 we get that u, +u' =y and U, - U =, hence

ul = (Vmax -Vmin) / 2 %ax :

The radius of the circular motion of the electron in this frameis r =mu'/ e <my,, / eE. The

maximal velocity is that corresponding to a kinetic energy, U, x @ U, , 4G, of 800 eV.

. .
Substituting we find r<emB /zimv ___{B‘/Z_rrel\/ g%\/zgil6:£)_1980@ 348 10"Gn  0.3nfm.

Since this maximal radius is much smaller than the distance between the anode and the
cathode, we may ignore the circular component of the electronic motion, and approximate it as
pure drift.

A.4. As just explained, we may approximate the electron motion as pure drift. In task A.2 we
have found that the direction of the drift
velocity @ is in the direction of the vector @

@ Since we are interested in radial component
of the drift velocity, the only contribution is from
the azimuthal component of the electric field.
The static electric field has no azimuthal
component, hence the drift in the radial
direction results solely from the azimuthal
component of the alternating electric field.
What we have to check is if the azimuthal
component points clockwise or
counterclockwise. From the direction of the field F
lines it is easy to see (attached figure) that in -1- !

points A and B the azimuthal component

pointing clockwise therefore the electrons there drift towards the cathode, while for points C, D
and E the azimuthal component points counterclockwise and the electrons there drift toward
the anode.

Point | toward the toward the cathode perpendicular to the
anode radius

A X

B X
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C X
D X
E X

A.5. In this task we need to consider the azimuthal component of the drift velocity, which
results from the radial component of the electric field. Since all points are at the same distance
from the anode, all electrons experience the same static electric field. Hence only the radial
component o f
position vectors would increase or decrease: If the radial component of the alternating field
points inwards (towards the cathode), the azimuthal drift velocity will be positive
(counterclockwise) and vice versa. Hence the electrons at A, B and C drift closer to each other in

terms of angles, while those at D, E and F drift away from each other.

t he

al ternatd.

neg

foi

el d deter mi

points angle decreases angle increases indeterminate
AB X
BC X
CA X
DE X
EF
DF

A.6. Spokes will be created only in the regions
where focusing occurs. By the result of the
previous task, there are four spokes, as indicated

in the attached Figure.

The electron drift sets the spokes in a

counterclockwise rotation. The frequency of the
alternating field is"Q ¢& WGHz. By the time the
alternating field flipped its sign (half a period),

each spoke moves to the next cavity,

corresponding to an angle of “ ¥1. Therefore, the
angular velocity of each spoke is

1

—T-

-"Q o up m G Each spoke
performs a full rotation around the magnetron
after four periods of the alternating field.

nes



Theory IPhO 2019

Ipt, S 2-4

ISRAEL 2018
—

A.7. The magnitude of the electric field in the region considered, i o O 7¢, is the
magnitude of the static field, thatis, O @7 G &, giving rise to an azimuthal drift velocity of
magnitude O o6 w¥d @ & .Equatingd T with the angular velocity found in the

previous task we find V, =p fB,(IF -&)/4

Part B: The interaction of microwave radiation with water molecules

B.1. The torque at time Ois given by T 0 B OE+FO 00 n OE40 00, hence the

instantaneous power delivered to the dipole by the electric field is
. . . d dp (t

H () =£(t) &) = pE(Ysin (& (g E#t)a( Rcos (9)g E(jb%

B.2. Since the average dipole density (hence the average of each molecular dipole) is parallel to

the field, the absorbed power density is (angular brackets, & Odenote average over time)

P

<H(t)>=<Eosin(wft)dd;> {Eosin( ) S( B Bsin ftw->)>d -

E;b ¢ (fsin( (theos( (tw )) &.5E) , fsie wsin(2dt ) W5EEd , sin

B.3. The energy density of the electromagnetic field at penetration depth @, which is twice the

electric energy density,is¢ - - 00 aO A - -0 aOE] o0 - -0 &I
Therefore, the time-averaged flux density at depth & is:
@ — . .
04 g--‘oq . P = o an

where Qis the speed of light in vacuum. "Qlecreases with ¢ due to the absorbed power
calculated in the previous task we find

Q@ p ... T110ET., .
o ET-}OQ(OEI = o4 R

hence™Od On A@bat OEFX af .

B.4. Similarly to the previous task, the energy flux corresponding to the given field is

o -—-a@oarbc'yg.—-&-on R

Equating the argument of the exponent in the last expression with the result of the previous
task, and using the given approximation OAT O E lleads tof - .
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B.5.

1. Using previous results, the radiation power per unit area is reduced to half of its &  Ttvalue

atdy o EF1 pF OAT  ayf | £EF71 - . From the given graph, at the given
frequency- X Yand-  p Tthence@y P gnm.

We have just found that the penetration depth is proportional to |f- f- . From the given graph
we thus find that:

2. Heating up pure water (continuous lines) decreases - much more significantly than the
corresponding decrease of |- at the given frequency. Thus, the penetration depth of pure
water increases with temperature, allowing deeper penetration of the microwave radiation and
heating up the water inner regions.

3. On the contrary, for a soup (dilute salt solution, dashed lines) - at the given frequency
increases with temperature while - decreases. Thus, the absorption rate increases with
temperature, the penetration depth decreases, and less microwave radiation reaches its inner

regions.
material O ¢ increases with O ¢ decreases with ¢ v remains the same
temp. temp.
water X
soup X
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Thermoacoustic engine — Solution

Part A: Sound wave in a closed tube
A.1. The boundary conditions are: u(0,t) = u(L,t) = 0. As a result, sin (ZTEL) = 0, so we get
Amax = 2L.
A.2. We get

V(ix,t)=S- (Ax +ulx + Ax, t) —u(x,t)) = SAx - (1 + ') = Vo + Vou'.
Thus,

V(x,t) =V, + akV,cos(kx) cos(wt) = Vi(x) = akV, cos(kx).

A.3. We use Newton’s Second Law pyii = —p' to deduce p’ = —pyii = pyaw? sin(kx)cos(wt),
so that

p(x,t) =py — a%zpocos(kx)cos(a)t) = px)= a%zpocos(kx).

2
A.4. Using a < L, we obtain P _ yw. As a result, Po®” — y-k,andc = YPo
Po Yo pPo k Po

A.5. The relative change in T(x, t) is the sum of the relative changes in V(x, t) and p(x,t). As a
result,

1) = 2p1 (1) = 2Va(0) = ( = D2 Vi () = ak(y — DT, cos (k).

A.6. The movement of the gas parcels inside the tube conveys heat along its boundary. To
determine the direction of the convection, we combining the result of Task A.5 and the

expression (1) for u(x, t). We see that when 0 < x < %, the gas is colder when the displacement

u(x, t) is positive. Likewise, when % < x < L, the gas is colder when the displacement u(x, t) is

negative. Hence, heat flows into the gas near the point B, cooling it down, and out of the gas near
the points A and C, heating them up.

Part B: Sound wave amplification induced by external thermal contact

B.1. We get

Tenv(t) = Tplate(xo + u(xo' t)) = TO - % : u(xo, t),
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so that:

Ty = %sin(kxo) = ;72.

B.2. The gas will convey heat from the hot reservoir to the cold one if the parcels are colder than
the environment when u(x,, t) < 0, and hotter when u(x,, t) > 0. This occurs precisely if

Ty > T,

Plugging in the results of Tasks A.5 and B.1, we get

— DTy cos(kxy) = 1, =ké(y—1DT,.

B.3. Using the first law of thermodynamics, we get

dQ _ dE av
dt ~ dt w TP at’

Plugging in the relation E = y%lpV, we see that:

o _ 1 4d __L o, v y o, &
dt yldt(p )+p y—1V

at | y-1 dt~ﬁ Odt y—-100 gt
. dQ . .
B.4. We plug the expression for d—f into the result of Task B.3. This gives:

1, d
Evod_f + yyl 0=, = BVo(Ty = T1) - cos(wt).

We now plug in the data given in equation (6), and get (by considering terms with cos(wt) and
sin(wt) separately):

|4
1 /oPa® + yTlPoVaw = pVo(Tss — T1)

|4
— Voppw — yTlPowa =0

and thus, we can already express 1/}, as

Vo

1
Vy =-pp - 2.
bV Po
B.2

For V,, we plug in the results of Tasks B.1 and

Tst - Tl = = (T - Tcr)r
w2
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giving:

(-1, _y1B a . _ Y
a_< ypa y w{’\/E(T Tcr)) po.

B.5. We want to integrate the mechanical work generated, f pdV, and averaging the result over
a long time. To do this, we substitute our expressions (6) for the perturbed p and V. Since the

average of cos(wt)sin(wt) is 0, and that of sin?(wt) and cos?(wt) is % we get:
v
S_;Mzwt = —1 - (aVp + PpVa)-

Using the result of B.4, we get

Yo T ylpa Pp
S#MOt_w y B{,\/E(T Tcr) VOPO-

2
To leading order, p, is the unperturbed wave p, = p;(xy) = a%po cos(kxy) = akypy %

Simplifying, we get
-1
Wi =78 Ef (T - 1) 22 = 7= (y — DB(T — 1o)ka’s.

B.6. We want to compute the amount of heat convection over one cycle. This means that we
need to take the amount of heat moving in or out of the parcel, and weigh it by the position of
the parcel at that time. Thus, the total heat conveyed by the parcel, integrated along a cycle, is:

_ 1 rae .
QtOt_Axfdtu dt.

This expression can be computed to leading order using Z—f = BV (T — Ty) - cos(wt) and the

a

unperturbed displacement u(x,,t) = 5

cos(wt). This gives

a

2s
Qtot = %.BVO(Tst - Tl)ﬁ = E.BVO ' %(T - Tcr) '\7_5 = %,B(T - 7:cr)aT-

w

B.7. Dividing the results of Tasks B.5 and B.6, we obtain the expression:

Whot Ter Ter T Ter
r’ Qtot (y ) TO T TO T nC



