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1 Three balls

Let the ball A is given an initial velocity v along the axis Y ,
which is perpendicular to the rod. The total momentum of
the system conserves, therefore the center-of-mass (CM) of
the system moves with a constant velocity:

vCM =
mv

3m
=
v

3

along Y . In what follows, we will work in the CM frame of
reference, which is an inertial system of reference. Therefore, in
the CM frame the laws of conservation of energy, momentum,
and the angular momentum hold true. The initial velocities
of the three balls along Y are:

vA =
2v

3
, vB = vC = −v

3
.

Correspondingly, the total kinetic energy of the balls is:

E =
mv2

2

(
4

9
+

1

9
+

1

9

)
=
mv2

3

and the total angular momentum with respect to the CM
equals:

L = m
2v

3
`−mv

3
(−`) = mv`.

In any moment the three balls form an isosceles triangle
with an angle 2ϕ at the top vertex. The distance between A
and C is minimal when either ϕ = 0, or ϕ̇ = 0. For ϕ = 0,
however, the laws of conservation are not consistent with the
rigidity of the rods. Therefore, at the minimal distance ϕ̇ = 0,
and in this particular instance the system behaves as a rigid
body whose moment of inertia with respect to the CM can be
obtained through:

I =
L2

2E
=

3

2
ml2. (1)

On the other hand, the moment of inertia I could be found
independently from geometric considerations. Although, I
could be found using the distances from the balls to the CM
(medicentre of a triangle), it is more convenient to use this
relatively unknown formula for the moment of inertia of a
collection of point masses with respect to CM:

I =

∑
i,jmimj(ri − rj)

2∑
imi

.

In our case:

I =
m2

3m

(
AB2 +BC2 +AC2

)
=
m

3

(
2`2 + d2

)
. (2)

From (1) and (2), we obtain the minimal distance:

d = `

√
5

2
≈ 1.58 `

2 Solenoid

Magnetic field gives rise to magnetization of water molecules,
i.e. each of the molecules becomes a magnetic dipole. Inhomo-
geneous magnetic field exerts a force to a magnetic dipole.

Water molecules being diamagnetic are pushed away from the
region of stronger magnetic field. Water reaches a state with
mechanical equilibrium where the magnetic force is balanced
by a force due to pressure gradient. Hence, in mechanical
equilibrium, regions with stronger magnetic field correspond
to smaller pressures. When the current in the solenoid is
increased, the pressure differences grow, and at a certain
moment, a region will appear where the pressure is smaller
than the saturation pressure of the water vapour. This is the
moment when water starts boiling.

To begin with, let us discuss possible reasonable approxima-
tions. First, we can neglect the water column pressure which is
only 2 to 4 percents of the atmospheric pressure. Second, the
saturation pressure of water vapour under normal conditions
is also much smaller than the atmospheric one and therefore
can be neglected. Thus we can say that boiling starts when
the pressure drop due to magnetic field becomes equal to p0.

So, we need to relate the pressure difference caused by the
magnetic field to the magnetic field strength. Notice that if a
region with magnetic field B is filled with water, the magnetic
field energy density is B2/(2µrµ0); meanwhile, if there is no
water, the energy density is B2/(2µ0). So, we can ascribe the
energy density difference

∆w = (µ−1
r − 1)B2/(2µ0)

to the interaction of water and magnetic field. Next, consider
the following thought experiment. We push away a small
volume V of water from the neighbourhood of a point P in the
water where the magnetic field strength is B; the displaced
water fills in a narrow layer at the top of the water surface of
equal volume. Assuming that the magnetic field is negligibly
small at the top, by comparing the initial and final states,
we conclude that the total interaction energy is reduced by
V (µ−1

r − 1)B2/(2µ0). When pushing away water from P we
perform mechanical work pV , where p is the pressure at point
P . At the upper surface of the water, the moving interface
performs mechanical work p0V so that the net mechanical
work performed by water during this process is V (p0−p). Due
to energy conservation law, V (µ−1

r − 1)B2/(2µ0) = V (p0 − p)
so that

p0 = p+ (µ−1
r − 1)B2/(2µ0).

Note that the way how we derived this relationship is com-
pletely analogous to how the Bernoulli law is derived, and
in fact, the obtained equality can be interpreted as a mod-
ified Bernoulli law for zero speed where the volume dens-
ity of potential energy in gravity field ρgh is replaced with
(µ−1
r − 1)B2/(2µ0) — the energy density of magnetic in-

teraction. This equality can be simplified by noting that
µ−1
r − 1 = −χ/µr ≈ −χ so that

p0 − p = −χB2/(2µ0).

As discussed above, the boiling condition is p ≈ 0, hence

B =
√
−2µ0p0/χ.

Finally, we apply the formula for magnetic field strength inside
a long solenoid B = µ0IN/` to find

I =
`

N

√
2p0
−χµ0

= 4.4 kA.
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3 Staircase

A Since n = −y/h = (x/λ)2/3, x(n) = n2/3λ. The distance
between the steps is

dn = x(n+ 1)− x(n) ≈ dx(n)

dn
=

2

3
λn−1/3 = n−1/3 · 30 µm.

B Equilibrium energy value, being minimum, must be stable
against small perturbations of the crystal shape. Allowed are
perturbations which conserve the total volume of the crystal.
In other words a small horizontal displacement of one step
must be accompanied by an equal and opposite displacement
of another step.

The energy change εn(δ) associated with a small horizontal
displacement δ of the n-th step is

εn(δ) = µ
(

(dn + δ)ν − dνn + (dn+1 − δ)ν − dνn+1

)
≈

≈ µν
(
dν−1
n − dν−1

n+1

)
δ.

In order for εn(δ) + εm(−δ) to be zero for arbitrary n and m
it is necessary to require that the factor in the parentheses
does not depend on n:

dν−1
n − dν−1

n+1 = const.

Substituting dn ∝ n−1/3, we get1:

n(1−ν)/3 − (n+ 1)(1−ν)/3 ≈ 1− ν
3

n(1−ν)/3−1 = const,

1− ν
3
− 1 = 0 =⇒ ν = −2.

The interaction energy corresponds to that of two dipoles in
2D:

E(d) ∝ 1

d2
.

1Trivial solutions ν = 0 and ν = 1 imply that the total energy within
given constraints does not depend on the shape of the crystal.
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1 Three balls

States that the CM moves with a constant velocity v/3 0.5 pts

Correctly writes the law of conservation of momentum

Calculates vA, vB and vC in the CM reference frame 0.9 pts

Correctly writes down kinematic relations for the two rods

Calculates the kinetic energy E = mv(2/3) 0.6 pts

Correctly writes the law of conservation of energy

Calculates the angular momentum L = mv` 1.5 pts

Correctly writes the law of conservation of angular momentum.

Proves the impossibility of the case ϕ = 0 1 pt

States that the minimum distance is met when dϕ/dt = 0 0.5 pts

Comes to the conclusion that vA and vC are perpendicular to AC

States that at this moment the rods AB and CB have identical angular

velocities.

1 pt

Uses the relation I = L2/(2E) 1 pt

Uses L = Iω and E = Iω2/2

States that the CM is in the medicenter 0.5 pts

Calculates I as a function of d or ϕ 1 pt

Equalizes the two expressions for I 0.5 pts

Finds the minimum value of d 1 pt
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2 Solenoid

Stating that boiling starts when pressure becomes equal to ps, the sat-

uration pressure (full marks if used correctly implicitly)

1 pt

Neglecting ps as compared to p0 (full marks if used correctly implicitly) 0.5 pts

Neglecting water column pressure as compared to p0 (full marks if used

correctly implicitly)

0.5 pts

Concluding that drop due to magnetic forces must be equal to p0 (full

marks if used correctly implicitly)

1 pt

Showing that p0 = p+ (µ−1
r − 1)B2/(2µ0) 4.5 pt

Partial score for failed attempt: using formula for magnetic field energy

density w = B2/(2µrµ0)

1 pt

interaction energy ∆w = (µ−1
r − 1)B2/(2µ0) 1.5 pts

relating interaction energy difference to pressure difference 2 pts

Alternative approach with dipole-field interaction analysis

Energy of a magnetic dipole ~dm in magnetic field ~B: −~dm · ~B 0.5 pts

Hence, force acting on a magnetic dipole (parallel to x̂) in magnetic field

(parallel to x̂): F = dm
dB
dx

0.5 pts

Induced magnetic dipole moment density: J = Bχ/(µrµ0) 0.5 pts

Hence, magnetic force per volume fm = Bχ(µrµ0)−1 dB
dx 0.5 pts

This can be rewritten as fm = 1
2χ(µrµ0)−1 dB2

dx 0.5 pts

Magnetic force is balanced with the pressure force per volume fp = − dp
dx 0.5 pts

Hence d
dx

[
−p+ 1

2χ(µrµ0)−1B2
]

= const 0.5 pts

Hence p0 − p = − 1
2χ(µrµ0)−1B2 0.5 pts

Remark: if the pressure is calculated as a pressure from induced

solenoidal currents (due to water magnetization) near the side walls of

test tube, only 2 point out of 4.5 is given (because the pressure at the

water-wall interface is unknown).

Using or deriving formula for the magnetic field inside a long solenoid

B = INµ0/`

1 pts

Using the above results, expressing I 1 pts

Remark: this point can be given only if the solution is correct, except

for a possible mistake by a factor of
√

2

Evaluating I numerically 0.5 pts

Remark: this point can be given only if the solution is correct, except

for a possible mistake by a factor of
√

2

2



EuPhO 2018, Moscow — Theory — Marking scheme

3 Staircase

A (2 points in total for part A)

1. x(n) = n2/3λ (1 pt).

2. dn = x(n+ 1)− x(n) = λ[(n+ 1)2/3 − n2/3] (0.5 pt)

For n� 1, dn = (2/3)λn−1/3 (0.5 pt)

Other solutions leading to the correct answer without computing xn are ac-

cepted. 0.5 pt for final expression of dn are awarded only if both the prefactor

and the exponent are correct.

B (8 points in total for part B)

1. Minimal energy principle expressed mathematically (1 pt)

2. Idea of minimization against small changes in shape (1 pt)

3. Volume conservation principle (2 pt).

4. Energy cost for displacements of one step, εn(δ) or equivalent, computed

correctly (2 pt).

5. Combination of energy minimization and volume conservation in mathe-

matically correct form (1 pt).

6. Correctly derived final answer ν = −2 (1 pt).
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