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Q1 solution 
1. Springs 

A. (10 points) A conservative variable force 𝐹 

is slowly pulling a body of weight 𝑊 as 

illustrated in the figure, along a smooth 

semi-sphere with a radius 𝑅. The force acts 

tangential to the semi-sphere. When the 

body is in the position A the spring has its 

natural length.  

Calculate the work done by 𝐹, to move the 

body from А to Г.  

Solution: 

In position A where the spring has its natural length we considered that the 

gravitational potential energy and the potential energy of the spring is zero. 

The body moves very slowly. Consequently its kinetic energy does not change. (2 p) 

If x is the strain of the spring at position Γ, then, for the spring-body system we have: 

ΔU =U2 –U1 =Ug +Us − 0= mg R sinθ +1/2 K (R θ)2    (4 p) 

Ug =mgh = mg (R sinθ) is the gravitational potential energy at position Γ (2 p) 

U s=1/2 K x2 =1/2 K (Rθ)2 . the potential energy of the spring at position Γ (2 p) 

B. (15 points) For a particular horizontal spring, the intensity of the elastic force, depends on 

the deformation 𝑥 as follows: 𝐹 (𝑥) = 𝛼 ∙ 𝑥 + 𝛽, where 𝛼 = 50 N/m  and 𝛽 = 10 N. 

B1. (5 points) Calculate the potential energy function 𝑈(𝑥) for this spring. Assume that 

𝑈(0)  =  0. 

Solution: 

W= - (U2 –U1)      (1 p) 

By plotting the force F versus position x and calculating the area of the trapezoid 

formed from 𝑥 = 0 to position x we will find 

𝑊 = −𝛽𝑥 − 0.5𝛼 𝑥2,     (2 p) 

since at x = 0, U1 = 0         (1 p) 

then 

𝑈(𝑥) = 𝛽𝑥 + 0.5𝛼 𝑥2.    (1 p) 

B2. (10 points) An object of mass 2 kg is attached to the end of this spring and it’s elongated 

with 1.5 m on a smooth horizontal surface and then released. Determine the speed of 

the object when the elongation is 1.0 m for the first time. 

Solution: 
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We apply the principle of conservation of mechanical energy for the two positions 

x1 = 1.5 m and x2 = 1.0 m of the object and we have 

K1 +U1 = K2 +U2  (1)     (4 p) 

K1=0 and K2=1/2 m v2 (2)    (3 p) 

For x=1.5 m 

𝑈1 =  𝛽𝑥 + 0.5𝛼 𝑥2 = 71,25 𝐽 (3)   (0.5 p) 

For x=1.0 m 

𝑈2 =  35 𝐽  (4)   (0.5 p) 

Hence 

𝑣 = 6.0
m

s
.     (2 p) 
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Question 2: Plank 

A plank of mass M and length l lies on a smooth horizontal surface, and it can move across a 

rough area (i.e. along the x axis), characterized by its length l and the sliding friction coefficient 

µ, the same as the static one. The initial position of the plank is that depicted in the figure 

below. 

A. (6.3 points) The plank is launched with the unknown initial, horizontal speed 𝑣0, towards 

the rough area. Derive the minimum initial speed of the plank for which: 

A1. (5 points) it fully enters the rough area. 

Solution: (5 p) 

When the plank has a portion of length 𝑥 on the rough area, the friction force acting on it is: 

𝐹𝑓(𝑥) = 𝜇 (
𝑀

𝑙
𝑥)𝑔.     (1 p) 

Graphing this force (1 p), we get the adjacent 

representation, the area below which is the work of the 

friction force. 

So, writing the kinetic energy theorem for the plank, it 

reads: 

𝑀𝑣2(𝑥)

2
−

𝑀𝑣0
2

2
= −

𝜇𝑀𝑔

𝑙

𝑥2

2
,  (1 p) 

from which it follows that 

𝑣0 = √𝑣2(𝑥) +
𝜇𝑔

𝑙
𝑥2.     (0.6 p) 

This speed is minimal when 

𝑣(𝑙) = 0,     (0.7 p) 

so 

𝑣0,min = √𝜇𝑔𝑙.     (0.7 p) 

A2. (1.3 points) it completely surpasses the rough area. 

Solution: (1.3 p) 

For the plank to completely exit the rough area, the energy lost by friction doubles (1 p), 

so 

𝑣0,min = √2𝜇𝑔𝑙.    (0.3 p) 

B. (3.7 points) The plank starts from rest as illustrated in the figure above but is pulled to the 

right by a constant horizontal force 𝐹0, permanently acting on it. The purpose is to pull the 

plank on the rough area. 

B1. (2.5 points) Determine the minimum value of the force for the plank to completely enter 

the rough area. 

Solution (2.5 p): 

In this case, the kinetic energy theorem is 
𝑀𝑣2(𝑥)

2
= 𝐹0𝑥 −

𝜇𝑀𝑔

2𝑙
𝑥2.     (1.5 p) 

M 

µ µ=0 µ=0 
l 

x 
0 -l 

𝐹𝑓 

𝑥 
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Again, the force has the minimum value when 

𝑣(𝑙) = 0,     (0.5 p) 

so 

𝐹0,min =
𝜇𝑀𝑔

2
.     (0.5 p) 

B2. (1.2 points) Derive the maximum value of the plank’s speed during its motion analyzed 

at B1, for the minimum value found for 𝐹0. 

Solution (1.2 p): 

The plank’s speed is a quadratic function of 𝑥, having the maximum value when 

𝑥 =
𝐹0𝑙

𝜇𝑀𝑔
=

𝑙

2
.    (0.5 p) 

For this value, the maximum speed is 

𝑣𝑚𝑎𝑥 =
1

2
√𝜇𝑔𝑙.      (0.7 p) 

C. (15 points) The plank starts from rest as illustrated in the figure above but is pulled to the 

right by a constant horizontal force 𝐹0, permanently acting on it. The purpose is to make the 

plank surpass the rough area for a minimum value of 𝐹0. 

C1. (3.7 points) Make a graph representation of the net force acting on the plank versus the 

coordinate x of its front end for 𝑥 ∈ [0, 3𝑙]. 

Solution (3.7 p): 

For the plank’s entrance on the rough area, i.e. 𝑥 ∈ [0, 𝑙], the net force acting on it is 

𝐹(𝑥) = 𝐹0 −
𝜇𝑀𝑔

𝑙
𝑥.     (0.8 p) 

For the plank’s exit from the rough area, i.e. 𝑥 ∈ [𝑙, 2𝑙], the friction force acting on it is 

𝐹𝑓(𝑥) =
𝜇𝑀𝑔

𝑙
[𝑙 − (𝑥 − 𝑙)] =

𝜇𝑀𝑔

𝑙
(2𝑙 − 𝑥),    (0.8 p) 

so, the net force acting on it is 

𝐹(𝑥) = 𝐹0 +
𝜇𝑀𝑔

𝑙
(𝑥 − 2𝑙).     (0.4 p) 

The graph is depicted below (1.2 p): (for each value on the graph, the quantities represented 

on the axis and each line segment, there will be given 0.1 p). 

If 𝐹0 is to be minimized, the lowest point on the graph should be below zero, which means 

that 

𝐹0 < 𝜇𝑀𝑔.     (0.5 p) 

C2. (5 points) Determine the minimum value of the force for the plank to completely exit 

the rough area. It is known that the minimum value of the plank kinetic energy is very 

small, i.e. a very small fraction 𝜀 of the maximum value of the kinetic energy the plank 

had until it reached the minimal value. From the mathematical point of view, the fact 

that 𝜀 ≪ 1 means that its algebraic powers higher than one can be neglected. The value 

of 𝜀 is known. 

𝐹 

l 

2l 3l 

x 

𝑥2 𝑥1 

𝐹0 

𝐹0 − 𝜇𝑀𝑔 

0 
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Solution (5 p): 

The maximum value of the kinetic energy is reached when 

𝑥 = 𝑥1 =
𝐹0𝑙

𝜇𝑀𝑔
      (0.5 p) 

and the minimum value when 

𝑥 = 𝑥2 = 2𝑙 −
𝐹0𝑙

𝜇𝑀𝑔
.     (0.5 p) 

The kinetic energy theorem gives: 

𝑊𝑘,max =
𝐹0𝑥1

2
=

𝐹0
2𝑙

2𝜇𝑀𝑔
     (0.8 p) 

and 

𝑊𝑘,min =
𝐹0𝑥1

2
− (𝜇𝑀𝑔 − 𝐹0)

𝑥2−𝑥1

2
=     (0.7 p) 

=
𝐹0
2𝑙

2𝜇𝑀𝑔
[1 − 2 (

𝜇𝑀𝑔

𝐹0
− 1)

2
].     (0.6 p) 

Since 

𝑊𝑘,min = 𝜀𝑊𝑘,max,     (0.6 p) 

from the above two equations it follows that 

𝐹0 =
𝜇𝑀𝑔

1+√
1−𝜀

2

=
√2𝜇𝑀𝑔

√2+(1−𝜀)
1
2

≅
√2𝜇𝑀𝑔

√2+1−
1

2
𝜀
=    (0.7 p) 

=
√2

√2 + 1
𝜇𝑀𝑔 [1 −

𝜀

2(√2 + 1)
]

−1

≅ 

≅ (2 − √2)𝜇𝑀𝑔 (1 +
√2−1

2
𝜀).     (0.6 p) 

Note: If 𝜀 = 0, then the speed and acceleration are concomitantly zero, so the plank will finish its 

motion in 𝑥 = 𝑥2 < 2𝑙, which is not what the problem asks. 

C3. (6.3 points) Derive the maximum value of the plank’s speed during its motion on the 

interval 𝑥 ∈ [0, 2𝑙]. Plot the graph of the plank’ speed as a function of 𝑥, for 𝑥 ∈ [0, 3𝑙]. 

Note: If useful, you can use the Bernoulli’s approximation (1 + 𝑥)𝑛 ≅ 1 + 𝑛𝑥, if |𝑥| ≪ 1. 

Solution (6.3 p): 

For 𝑥 ∈ [0, 𝑙], the maximum speed of the plank is 

𝑣max,1 = 𝑣(𝑥1) =
𝐹0

𝑀
√

𝑙

𝜇𝑔
,     (0.7 p) 

so 

𝑣max,1 = (2 − √2)√𝜇𝑔𝑙 (1 +
√2−1

2
𝜀).    (0.5 p) 

For 𝑥 ∈ [𝑙, 2𝑙], the maximum speed of the plank is 𝑣max,2 = 𝑣(2𝑙), which is given by the kinetic 

energy theorem: 

𝑀𝑣max,2
2

2
−

𝑀𝑣min
2

2
=

𝐹0

2
(2𝑙 − 𝑥2),     (0.8 p) 

but 

𝐹0

2
(2𝑙 − 𝑥2)

𝐹0
2𝑙

2𝜇𝑀𝑔
=

𝑀𝑣max,1
2

2
,     (0.6 p) 

so 

𝑀𝑣max,2
2

2
=

𝑀𝑣max,1
2

2
+

𝑀𝑣min
2

2
= (1 + 𝜀)

𝑀𝑣max,1
2

2
.   (0.6 p) 

From here we get 
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𝑣max,2 = √1 + 𝜀𝑣max,1 ≅ (1 +
𝜀

2
) (2 − √2)√𝜇𝑔𝑙 (1 +

√2 − 1

2
𝜀) ≅ 

≅ (2 − √2)√𝜇𝑔𝑙 (1 +
√2

2
𝜀),    (0.7 p) 

which is the maximum speed reached by the plank on the considered interval. 

For plotting the requested graph, the value of the plank’ speed for 𝑥 = 3𝑙 is needed, which can 

be obtained again, using the kinetic energy theorem: 

𝑣3 = √𝑣max,2
2 +

2𝐹0𝑙

𝑀
≅     (0.7 p) 

≅ √2𝜇𝑔𝑙(5 − 3√2) [1 +
3

14
(3√2 − 2)𝜀] ≅ 

≅ √2𝜇𝑔𝑙(5 − 3√2) [1 +
3

28
(3√2 − 2)𝜀].   (0.7 p) 

The graph is represented below (1 p): 

 
𝑣 

𝑥 

𝑥1 𝑥2 𝑙 2𝑙 3𝑙 

𝑣max,1 
𝑣max,2 

𝑣3 

𝑣min 
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3. Tennis ball, Solution 

A. Warming up 

During warm up, a tennis ball (A) is dropped from rest from Novak Djokovic pocket of height 

H. At the same instant of time grasshopper (B) stands on the ground below Novak’s pocket and 

starts to move vertically towards the ball with initial velocity v0. When they collide, the ball has 

twice the speed of the grasshopper. The collision occurs at height h.  

A1. (1 point) Write down the equation of motion for the ball, 𝑦𝐴 as a function of time, in terms 

of H, v0 and gravitational acceleration g.  

𝑦A(𝑡) = 𝐻 −
1

2
𝑔𝑡2. 

A2. (1 point) Write down the equation of motion for the grasshopper, 𝑦𝐵 as a function of time, 

in terms of v0 and g. 

𝑦B(𝑡) = 𝑣0𝑡 −
1

2
𝑔𝑡2. 

A3. (3 points) Derive the expression for the velocity of the ball 𝑣𝐴(𝑡) in terms of 

 H, g and 𝑦𝐴(𝑡). 

𝑣𝐴(𝑡) = −𝑔𝑡 ⇒  𝑡 = |−
𝑣𝐴(𝑡)

𝑔
| =

𝑣𝐴(𝑡)

𝑔
, 

⇒ 𝑦A(𝑡) = 𝐻 −
1

2
𝑔 (

𝑣𝐴(𝑡)

𝑔
)

2

, 

⇒ 𝑣𝐴
2(t) = 2𝑔(𝐻 − 𝑦A(𝑡)) ⇒  𝑣𝐵(𝑡) = √2𝑔(𝐻 − 𝑦A(𝑡)). 

A4. (1 point) Derive the expression for the velocity of the grasshopper vB(t) in terms of  

v0, g and 𝑦𝐵(𝑡). 

𝑣𝐵
2(t) = 𝑣0

2 − 2𝑔𝑦𝐵(𝑡)  ⇒  𝑣𝐵(𝑡) = √𝑣0
2 − 2𝑔𝑦𝐵(𝑡). 

A5. (3 points) Derive the expression for the initial velocity 𝑣0 of the grasshopper in terms of h, 

H and g. 

Using condition 𝑣𝐴(𝑡𝐶) = 2𝑣𝐵(𝑡𝐶) at the moment of collision 𝑡𝐶 and 𝑦A(𝑡𝐶) = 𝑦B(𝑡𝐶) = ℎ we 

can write 

2𝑔(𝐻 − ℎ) = 4𝑣0
2 − 8𝑔ℎ, 

⇒ 𝑣0
2 =

1

2
𝑔(𝐻 + 3ℎ). 

A6. (3 points) Derive the expression for the moment of the collision 𝑡𝑐 in terms of v0 and g. 

Using again condition |𝑣𝐴(𝑡𝐶)| = 2𝑣𝐵(𝑡𝐶) we can write 

𝑔𝑡𝐶 = 2𝑣0 − 2𝑔𝑡𝐶  , 
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⇒ 𝑡𝐶 =
2𝑣0

3𝑔
. 

A7. (3 points) Calculate the numerical value of the ratio ℎ/𝐻. 

𝐻 = 𝑣0𝑡𝐶 = 𝑣0

2𝑣0

3𝑔
=

2

3𝑔
𝑣0

2 =
2

3𝑔

1

2
𝑔(𝐻 + 3ℎ), 

⇒
ℎ

𝐻
=

2

3
. 

B. Match 

During match, at serve, Novak aims to hit tennis ball horizontally. 

B1. (1 point) Write down the expression for the equation of motion of the ball in the horizontal 

direction 𝑥(𝑡). 

𝑥(𝑡) = 𝑣𝑖𝑡. 

B2. (1 point) Write down the expression for the equation of motion of the ball in the vertical 

direction 𝑦(𝑡). 

𝑦(𝑡) = y0 −
1

2
𝑔𝑡2. 

B3. (3 points) Calculate the numerical value of the minimal initial velocity 𝑣𝑖 required for the 

ball to pass just above the 0.9 m high net, 15 m in front of Novak, if the ball is launched 

(horizontally) from a height of 2.5 m.  

For 𝑥1(𝑡1) = 15 𝑚, y1(𝑡1) = 0.9 𝑚 and y0 = 2.5 𝑚, where 𝑡1 is instant of time when the ball 

passed just above the net, we can write 

𝑥1(𝑡1) = 𝑣𝑖𝑡1  ⇒ 𝑣𝑖 =
𝑥1(𝑡1)

𝑡1
, 

y1(𝑡1) = y0 −
1

2
𝑔𝑡1

2  ⇒  𝑡1 = √
2

𝑔
(y0 − y1(𝑡1)), 

⇒ 𝑣𝑖 = 𝑥1(𝑡1)√
𝑔

2(y0 − y1(𝑡1))
= 26.3 

𝑚

𝑠
. 

B4. (4 points) Where will the ball land in the case given under B3? 

For 𝑥2(𝑡2) = 𝑣𝑖𝑡2 and y2(𝑡2) = y0 −
1

2
𝑔𝑡2

2 = 0, where 𝑡2 is instant of time when the ball lands, 

we can write 

𝑡2 = √
2

𝑔
y0, 

⇒ 𝑥2(𝑡2) = 𝑣𝑖√
2

𝑔
y0 = 𝑥1(𝑡1)√

𝑔

2(y0 − y1(𝑡1))
 √

2

𝑔
y0, 
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⇒ 𝑥2(𝑡2) = 𝑥1(𝑡1)√
y0

(y0 − y1(𝑡1))
 = 18.8 𝑚. 

B5. (1 point) How long will the ball be in the air before it lands in the case given under B3? 

Gravitational acceleration is 𝑔 = 9.8 m/s2.  

𝑡2 = √
2

𝑔
y0 = 0.71 𝑚. 
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Electric circuit (Solution) 

 

A circuit diagram is given in the figure. It contains 

a battery with voltage 𝐸, two resistors of fixed 

value 𝑅1 and 𝑅2, one resistor 𝑅3 whose value can 

be changed, one voltmeter and two ammeters. A 

series of measurements were made at different 

values of the resistor 𝑅3, which are given in the 

table below. The notations of the measured electric 

currents are given in the figure. From the data 

presented, calculate (all additionally calculated 

data must be present in the empty columns of the 

table): 

 

a) (2 points) The value of the resistance of resistor 𝑅2 is calculated as 𝑅2 =
𝑈

𝐼2
=

𝑈

𝐼1−𝐼3
. (0.5 p) 

Calculated values are given on the table. (1.0 p)  The averaged value is 𝑅2 = 2002 Ω ≈ 2000 

Ω. (0.5 p) 

b) (4 points) As 𝑈 = 𝐸 − 𝑅1. 𝐼1, the dependence 𝑈(𝐼1) is straight line. (0.5 p) It crosses the 

ordinate at 𝐸 and has a slope −𝑅1. (0.5 p)  The graph of the dependence is given below. (3.0 

p)   

c) (2 points) From the obtained graph we calculate the values of the voltage 𝐸 = 12.0 V (1.0 

p) and the resistance 𝑅1 = 2000 Ω. (1.0 p) 

 

N 𝐼1, mA 𝐼3, mA 𝑈, V 𝑅2, Ω 𝑅3, Ω 𝜂, %   

1 5.73 5.46 0.545 2019 99.8 4.33   

2 5.31 4.62 1.38 2000 299 10.0   

3 4.88 3.75 2.25 1991 600 14.4   

4 4.58 3.16 2.84 2000 899 16.3   

5 4.36 2.73 3.27 2006 1198 17.1   

6 4.20 2.40 3.60 2000 1500 17.1   

7 4.07 2.14 3.86 2000 1804 16.9   

8 3.97 1.94 4.07 2005 2098 16.6   

9 3.75 1.50 4.50 2000 3000 15.0   

A 

A 

V 

𝐸 

𝑅1 

𝑅2 𝑅3 

𝐼1 

𝐼2 𝐼3 

10



 

d) (5 points) The value of the resistor is 𝑅3 =
𝑈

𝐼3
. (0.5 p) The so defined efficiency of the 

circuit is 𝜂 =
𝑈.𝐼3

𝐸.𝐼1
. (0.5 p) The calculated values are listed in the table. (1.0 p)   The graph of 

the dependence of the efficiency 𝜂 on the value of the resistance of the resistor 𝑅3 is given 

below. (3.0 p)   
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e) (2 points) It is seen that the maximum of 𝜂 is somewhere in the interval (1200 Ω, 1500 Ω), 

(0.5 p) but as the dependence near the maximum is rather flat, it cannot be determined 

precisely from the presented data. (0.5 p) Good values are 𝜂 ≈ 17%, (0.5 p) and 𝑅3 ≈ 1350 

Ω. (0.5 p)  

f) (5 points) The efficiency of the circuit is 𝜂 =
𝑈.𝐼3

𝐸.𝐼1
=

𝐼3
2.𝑅3

𝐸.𝐼1
. (0.5 p) In the simpler case 𝑅1 =

𝑅2 = 𝑅,  𝐼1 =
𝐸

𝑅+
𝑅.𝑅3

𝑅+𝑅3

. (0.5 p) As 𝑅. 𝐼2 = 𝑅3. 𝐼3, 𝐼2 = 𝐼3
𝑅3

𝑅
 . As 𝐼1 = 𝐼2 + 𝐼3, 𝐼3 = 𝐼1

𝑅

𝑅+𝑅3
. (0.5 

p) Substituting these results in the equation for the efficiency, 𝜂 =
(𝐼1

𝑅

𝑅+𝑅3
)2.𝑅3

𝐸.𝐼1
=

𝐼1.𝑅
2.𝑅3

𝐸(𝑅+𝑅3)2 =

𝑅2.𝑅3

(𝑅+
𝑅.𝑅3

𝑅+𝑅3
).(𝑅+𝑅3)2

. (0.5 p) After simplifying the expression =
𝑅.𝑅3

2𝑅3
2+3𝑅.𝑅3+𝑅2 . (0.5 p) This 

expression can be written as а quadratic equation with variable 𝑅3, 2𝜂𝑅3
2 + (3𝜂 − 1)𝑅. 𝑅3 +

𝜂𝑅2 = 0. (0.5 p) As for the maximal 𝜂 there is only one solution of 𝑅3, then the discriminant 

of this quadratic equation must be zero: 𝐷 = (3𝜂 − 1)2𝑅2 − 4.2𝜂. 𝜂𝑅2 = 0. (0.5 p) The new 

equation for 𝜂 is quadratic one: 𝜂2 − 6𝜂 + 1 = 0. (0.5 p) This quadratic equation has roots 

𝜂 = 3 ± √8. As 𝜂 < 1, (0.5 p) only the root 3 − √8 ≈ 0.172 is a solution. (0.5 p) 

g) (4 points) Substituting the obtained value of 𝜂𝑚𝑎𝑥 = 3 − √8 in the quadratic equation for 

𝑅3, 2𝜂𝑅3
2 + (3𝜂 − 1)𝑅. 𝑅3 + 𝜂𝑅2 = 0, we obtain 2(3 − √8)𝑅3

2 + (3(3 − √8) −

1)𝑅. 𝑅3 + (3 − √8)𝑅2 = 0. (1.0 p)  The discriminant of this quadratic equation is zero. (1.0 

p) Then 𝑅3 =
3√8−8

4(3−√8)
𝑅. (1.0 p) After simplification 𝑅3 =

𝑅

√2
. (1.0 p)        

h) (1 point) The theoretical values of 𝜂 =17.2% (0.5 p) and 𝑅3 =
2000 Ω

√2
≈ 1414 Ω (0.5 p) 

are in excellent agreement with the experimental ones. 
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