
Problem 1: Resistor circuit 

A constant voltage U0 is applied to the ab ends 
of the circuit in figure. The resistors have 
resistances R1=R2=R5=R, R3=2R, R4=4R. The 
voltmeter and the ammeter are considered 
ideal.  

A. (9 points) With the switch S open determine: 

A1. (4 points) The equivalent resistance, Rab, between the ab ends of the circuit. 
A2. (3 points) The values measured by the ammeter and the voltmeter. 
A3. (2 points) The power dissipated on the resistor R4. 

B. (13 points) With the switch S closed determine:  

B1. (9 points) The equivalent resistance, Rab, between the ab ends of the circuit.  
B2. (2 points) The values measured by the ammeter and the voltmeter.  
B3. (2 points) The power dissipated on the resistor R4. 

C. (3 points) The switch S is closed and opened periodically, so that in a time period 
T, 2T/3 of the time is closed and T/3 of the time is opened. Determine the average 
power dissipated on the resistor R4.  

Assume that all current values are reached instantaneously.  

 

Solution 

A1. (4 points) 
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                  (0.5p)  

                 (0.5p) 

  (1p)  

A3.  (2 points) 

                          (1p) 

                               (1p) 

 

B1.  (9 points)_ 

       (1p) 

       (1p) 

                        (1p) 

                       (1p) 

                 (1p)  

                     (1p)  

                    (1p) 

     (1p)  

                   (1p) 

B2.   (2 point) 
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B3.  (2 points) 

                  (1p) 

       (1p)  

C.  (3 point) 

                     (1p) 

         (1p)  

           (1p) 
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Problem 2: The descent of a skier  

A skier descent a steep hill. The angle between the inclined surface of the hill and a 
horizontal plane is 𝛼 = 30,0°. The acceleration of gravity is 𝑔 = 9,81 m/s2. The mass of 
the skier is 𝑚 = 80,0 kg. The coefficient of friction 𝜇 of the skies in the snow is 

unknown. Тhe drag force 𝐹! with which the air acts on the skier, is 𝐹! =
"
#
𝐶𝜌𝐴𝑣#, 

where 𝐶 is an unknown number, the so called drag coefficient, depending on the shape 
of the skier, 𝜌 = 1,28 kg/m3 is the density of the air, 𝐴 = 0,600 m2 is the projected 
frontal area (cross section) of the skier perpendicular to his velocity, and 𝑣 is his speed 
relative to the air. The air does not move (there is no wind). The skier's descent is 
recorded. Analyzing the video, some of his positions 𝑥$ (measured on the slope from 
the starting point of descent) in different moments 𝑡$ after the start of his descent are 
measured. The data are shown on the table below. 

 

Using the above data, one can calculate the values of the coefficient of friction µ, the 
coefficient of the drag force C, the maximum attainable speed υmax, of the skier 
(assuming that he starts his descent from a sufficient high altitude). 

A. (7 points) Using suitable new variables, present the dependence of the skier motion 
on the experimental results in a way that can be studied graphically and the 
information on the parameters describing the motion to be extracted from the graph, 
such as the drag coefficient C, the coefficient of the frictional force µ and the maximum 
attainable speed, υmax. Give the expressions for the new variables and for the 
parameters of the used functional dependence as functions of the given parameters 
𝛼, 𝑔,𝑚, 𝜌, 𝐴.  

B. (4 points) Calculate the values of the new variables for each measurement based on 
the given data and fill the empty columns of the table. 

i 𝑡$/s 𝑥$/m       
1 2,00 7,21       
2 2,50 11,22       
3 3,00 16,08       
4 3,50 21,76       
5 4,00 28,24       
6 4,50 35,49       
7 5,00 43,47       
8 5,50 52,14       
9 6,00 61,49       

10 6,50 71,46       
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C. (4 points) Draw the dependence in the graph paper provided.  

D. (10 points) Using the graph, calculate the values of the coefficient of friction 𝜇, the 
drag coefficient 𝐶 and the maximal attainable speed of the skier 𝑣%&' (if the hill is 
sufficiently high).  

     Solution 

Α.  (7 points) 
The friction force 𝐹(), acting on the skier when he slides on the snow, is 𝐹() = 𝜇𝛮 , 
where 𝛮 is the force of the reaction. As 𝛮 = 𝑚𝑔 cos 𝛼, then 𝐹() = 𝜇𝑚𝑔 cos 𝛼. (0,5 p) 

The projection of the gravity force on the hill surface is 𝑚𝑔 sin 𝛼. As the drag force is 

𝐹! =
"
#
𝐶𝜌𝐴𝜐#, the equation of motion is 𝑚𝑔 sin 𝛼 − 𝜇𝑚𝑔 cos 𝛼 − "

#
𝐶𝜌𝐴𝜐# = 𝑚𝑎, (0,5 p) 

where 𝜐 and 𝑎 are the velocity and acceleration of the skier, respectively.  

Therefore, 𝑎 = 𝑔(sin 𝛼 − 𝑘 cos 𝛼) − *+,
#%

𝜐#, i.e. 𝑎 depends on 𝜐# linearly, 𝑎 = 𝑏 − 𝑑𝜐#, 

where the coefficients of the linear dependence are 𝑏 = 𝑔(sin 𝛼 − 𝑘 cos 𝛼)  

and 𝑑 = *+,
#%

. (1 p) 

As from the experimental data only average velocity 𝜐$,$." =
'!.'!"#
/!./!"#

 can be calculated, 

the instantaneous velocity 𝜐(𝑡$) ≡ 𝜐$ can be evaluated as 𝜐$ =
0!,!"#10!%#,!

#
 . (1 p)  

Therefore, as from the experimental data only average acceleration 𝑎$,$." =
2!.2!"#
/!./!"#

 can 

be calculated, the instantaneous acceleration 𝑎(𝑡$) ≡ 𝑎$ can be evaluated as 𝑎$ =
&!,!"#1&!%#,!

#
 . (1 p) 

So, the graph 𝑎$ = 𝑓(𝜐$#) is straight line 𝑎$ = 	𝑏 − 𝑑𝜐$#. The coefficients 𝑏 and 𝑑 defined 
above can be calculated from the graph. After that the unknown values can be 

calculated: the friction coefficient is 𝜇 =
3456.&'
7836

 , (1 p)  

the drag coefficient is 𝐶 = #%9
+,

 , (1 p) 

and maximal attainable speed of the skier is 𝜐%&' = G:
9
 . (1 p)  

Β. (4 points) 
The empty columns in the table can be filled with the calculated values of averaged 
velocity 𝜐$,$.", (0,8 p) instantaneous velocity 𝜐$, (0,8 p) average acceleration  
𝑎$,$.", (0,8 p) instantaneous acceleration 𝑎$, (0,8 p) and the square of instantaneous 
velocity 𝜐$#, (0,8 p) respectively (see the table below).   
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C. (4 points)  
The dependence is drawn on the graph below. 

 
D. (10 points) 
Using the obtained graph, the calculated values are: 

the friction coefficient is 𝜇 =
3456.&'
7836

≈ 0,15; (3,5p) 

the drag coefficient is 𝐶 = #%9
+,

≈ 0,62; (3,5 p) 

maximum attainable speed of the skier is 𝜐%&' = G:
9
≈34,9 m/s ≈ 126 km/h. (3 p) 

i 𝑡$/s 𝑥$/m 𝜐$,$."m/s 𝜐$/m/s 𝑎$,$."m/s2 𝑎$/m/s2 𝜐$#/(m/s)2 

1 2,00 7,21      
2 2,50 11,22 8,02 8,87    
3 3,00 16,08 9,72 10,54 3,34 3,29 111.09 
4 3,50 21,76 11,36 12,16 3,24 3,19 147,87 
5 4,00 28,24 12,96 13,73 3,14 3,07 188,51 
6 4,50 35,49 14,50 15,23 3,00 2,92 231,95 
7 5,00 43,47 15,96 16,65 2,84 2,79 277,22 
8 5,50 52,14 17,34 18,02 2,74 2,67 324,72 
9 6,00 61,49 18,70 19,32 2,60   

10 6,50 71,46 19,94     
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Problem 3: “The bead on the spring”  

Assume there is a setup such as the one shown in the next figure. A bead with mass 
m is constrained to move along a rail which is 
connected with another rail at an angle θ. The rail has 
friction and the coefficient of the kinetic friction with 
the bead is µ. The bead is connected with a spring of 
spring constant k. The other end of the spring is 
constraint to move on a frictionless rail. The spring is 
always perpendicular to the rail due to the fact the rail 
is frictionless and the spring does not have a mass. The 
relaxed length of the spring is zero. Assume also that the system is not affected by 
gravitational effects.  

The bead starts to move at the vertex of the rails and the spring is at its relaxed length 
of zero. An impulse is given to the system so it starts to move with velocity �⃗�! along 
its rail. The figure shows the configuration of the system at a time 𝑡 > 0.   

A. (6 points) Draw the free body diagram for the bead at an arbitrary moment and 
give the mathematical expressions for the forces you draw. If x is the distance the bead 
has travelled along its rail, determine all the forces and express them in terms of this 
distance x and the other constants.   

B. (8 points) Derive the expression for the distance the bead is covering before it comes 
to a stop for the first time. 

C. (5 points) Determine the condition for the bead to start moving again. Specify the 
direction the bead is going to move. Assume that the coefficient of static friction is  
also µ.  

D. (6 points) Assume that the bead really does move towards the vertex of the rails. 
Determine its speed when it arrives back to the vertex. 

Solution: 

A. (6 points) 
The forces acting on the bead are the friction, the force due to spring 
and the normal force from the rail to the bead. The force of  
friction points to the opposite direction when the bead moves back 
towards the vertex of the two rails. If we assume the bead has 
travelled a distance x then the forces acting on it will be:                                                 (3p) 

𝜃 f 

N 

Fspr 

υο 

𝜃 𝑥 
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When the bead is at position 𝑥 then:  

Spring Force is	𝐹"#$ = 𝑘𝑥𝑠𝑖𝑛𝜃																																																																																																								(1,25p) 
The component of the spring force perpendicular to the rail is:	𝐹"𝑐𝑜𝑠𝜃	and this force is 
opposite to the normal force Ν from the rail to the bead. Its magnitude will be:   

𝑁 = (𝑘𝑥𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃                                           (1,25p) 

The magnitude of the frictional force will be 𝑓 = 𝜇𝛮 ⇒ 𝑓 = 𝜇𝑘𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃              (0,5p) 

B. (8 points) 
The component of the spring force along the rail, points towards the vertex. Its magnitude is 
𝐹!"#/% = 𝐹!"#𝑠𝑖𝑛𝜃 = −𝑘𝑥𝑠𝑖𝑛𝜃	𝑠𝑖𝑛𝜃 ⇒ 𝐹𝑠𝑝𝑟/𝑥 = −𝑘𝑥𝑠𝑖𝑛2𝜃		                                                              (1p) 

When the bead reaches the point further away from the vertex, it stops momentarily.  

Using the work-kinetic energy theorem we obtain: 𝑊&!"#/% +𝑊' = 𝐾' − 𝐾( where 𝑊&!"#/% 	is the 
work done by the component of the spring force and 𝑊'	is the work of the frictional force.  
(1p) 

The forces are of the proportional to the distance travel and their work will becoming either 
from the integral calculation or considering the graph of force vs displacement and estimating 
the area of the triangle. The work will be: 

𝑊&!"#/% = − *
+
𝑘𝑥+𝑠𝑖𝑛+𝜃                          (2p) 

The work of the friction will be: 	𝑊&!"#/% = − *
+
𝜇𝑘𝑥+𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃                                                           (2p) 

Substitution to the work-kinetic energy formula gives  

−
1
2
𝑘𝑥+𝑠𝑖𝑛+𝜃 −

1
2
𝜇𝑘𝑥+𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = 0 −

1
2
𝑚𝜐,+ ⇒

1
2
𝑘𝑥+(sin+ 𝜃 + 𝜇𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) =

1
2
𝑚𝜐,+ 

Solving for x, the bead comes to a stop when it traveled a distance x given by:                            (2p) 

𝑥-.% = <
𝑚𝜐,+

𝑘(sin+ 𝜃 + 𝜇𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)
 

C. (5 points) 

The bead will accelerate back towards the vertex if the component of the spring force along 
the rail is larger than the static frictional force. So the condition to accelerate back is: 

𝑘𝑥-.% sin+ 𝜃 > 𝜇𝑘𝑥-.%𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 ⇒ 𝑡𝑎𝑛𝜃 > 𝜇                               (3p) 

This result is independent of x. If the bead accelerates in one place will accelerate in any other 
place. So, if it starts accelerating back it will make it all the way back to the vertex.                  (2p) 
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D. (6 points)  
Using the work—kinetic energy theorem, as in part B., for the trip back, we will obtain (the 
work of the spring force is positive and the work of the frictional force is negative): 

𝑊&!"#/% +𝑊' = 𝐾' − 𝐾( ⇒
*
+
𝑘𝑥-.%+ sin+ 𝜃 − *

+
𝑘𝜇𝑥-.%+ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = *

+
𝑚𝜐'+               (4p) 

Solving for the speed after substituting the 𝑥-.%	 gives:                                                     (2p)  

𝜐'+ =
𝑘
𝑚
@

𝑚𝜐,+

𝑘(sin+ 𝜃 + 𝜇𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)
A (sin+ 𝜃 − 𝜇𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) ⇒ 𝜐' = 𝜐,<

𝑠𝑖𝑛𝜃 − 𝜇𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃 + 𝜇𝑐𝑜𝑠𝜃
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Problem 4: Galileo Galilei – “The minimum descent time”  

This year the world of Physics commemorates 380 years since Galileo Galilei (1564-1642), one 
of the founders of modern science, passed away. During the final years of his life, Galileo 
approached an interesting problem dedicated to the ”minimum descent time”, or, what is 
today called the ”Galilei’s problem”. 

A. (5 points) From a point A, with zero initial speed, a 
big number of identical material points move in a 
vertical plane, in a uniform gravitational field (the 
gravitational acceleration, g, is known), sliding 
without friction along ramps, inclined at different 
angles to the vertical (see the adjacent figure). If the 
point A lies at the highest point of a vertical circle of 
radius R, determine: 

A1. (2 points) on which of the ramps the material 
points reach back to the circle in the shortest time; 

Solution: For any given ramp, inclined with an angle 𝛼! with respect to the 
vertical diameter of the circle, the acceleration of the material point is 

𝑎! = 𝑔𝑐𝑜𝑠𝛼! , 

 
 

0.5 p 
which is constant. 
The length of that ramp is 

𝐿! = 2𝑅𝑐𝑜𝑠𝛼! . 

 
 

0.5 p 
On the other hand, 

𝐿! =
𝑎!𝑡!"

2
, 

 
 

0.5 p 
so 

𝑡! = .
2𝐿!
𝑎!

, 

or 

𝑡! = 2.
𝑅
𝑔
, 

 
 
 
 
 
 

0.5 p 

which means that all the material points will reach the circle at the same time. 

A2. (3 points) the geometric locus of the points occupied by all the material points at any 
given time during their motion on the ramps (i.e., the geometrical figure described by 
the moving material points, at any given moment of time, if a snapshot is taken). 

Solution: After a time 𝑡, the material point falling vertically will reach the point B#, the length 
of the segment AB# being 

AB# =
𝑔𝑡"

2
, 0.5 p 

while the material point sliding along the ramp inclined with an angle 𝛼! with 
respect to the vertical diameter, will reach the point B$, the length AB$ being 

 
 
 

�⃗� 

A 

𝛼! 
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AB! =
𝑎!𝑡"

2
=
𝑔𝑡"

2
𝑐𝑜𝑠𝛼! . 

0.5 p 

drawing: 

0.5 p 

Hence 
AB! = 𝐴B#𝑐𝑜𝑠𝛼! , 0.5 p 

which means that, for any angle 𝛼!, 
𝑚4𝐴𝐵!𝐵#6 7 = 90°. 0.5 p 

This means that, at any instant 𝑡, all the material points are on the vertical circle 
passing through A (the uppermost point of the circle), having the radius 

𝑟 =
AB#
2

=
𝑔𝑡"

4
. 0.5 p 

B. (9 points) An inclined plane makes the angle 𝛼 = 60° with the 
horizontal plane (see the figure below). A point A is situated 
above the inclined plane, at the height  
𝐻 = AC = 29,43	m, measured along the vertical direction, 
above the inclined plane.  

B1. Find the position of a point B on the inclined plane (i.e., 
the mathematical expression for the length of the segment 
BC), such that a material point, leaving A with zero initial 
speed, and sliding without friction along the rectilinear ramp 
AB, to arrive in B in the shortest time. The gravitational 
acceleration is 𝑔 = 9,81	m/s" and has the same value in all the 
points. Calculate the numerical value for the length of the 
segment BC. 

Solution 1 (geometrical): 4.5p 

We saw above that, for any inclination of the ramp AB, after a time 𝑡, the 
material point is on the circle having the radius 

𝑟 =
𝑔𝑡"

4
, 

which means that the sliding time on the ramp AB is minimum when the circle 
radius is minimum. 0.25 p 

�⃗� 

A 

𝛼! 

B0 

Bk 

A 

B

 

H

 

𝛼
 

�⃗�
 

C
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For the material point to reach the inclined plane, the circle should intersect the 
plane (the circle can be tangent or secant to the inclined plane). The circle with 
the minimal value of its radius, satisfying this condition, is the circle tangent 
to the plane, so B is the tangency point of the circle with the inclined plane (see 
the figure below). 

0.5 p 

Drawing:  

0.75 p 

The problem is solved if we can derive the expression of the angle 𝛽 which 
gives the inclination of the ramp AB with respect to the vertical. 
In ∆OBC, the angle 𝐵𝑂𝐶6  has the measure 

𝑚4𝐵𝑂𝐶67 = 2𝛽 = 𝛼, 2 x 0.25 p 
so 

𝛽 =
𝛼
2
. 0.25 p 

The length of the segment BC is 
BC = 𝑟𝑡𝑎𝑛2𝛽 = 𝑟𝑡𝑎𝑛𝛼. 0.25 p 

The radius of the circle follows from 

𝑐𝑜𝑠2𝛽 =
OB
OC

=
𝑟

AC − AO
=

𝑟
𝐻 − 𝑟

, 3 x 0.25 p 
hence 

𝑟 = 𝐻
𝑐𝑜𝑠𝛼

1 + 𝑐𝑜𝑠𝛼
. 0.25 p 

So, 

BC = 𝐻
𝑠𝑖𝑛𝛼

1 + 𝑐𝑜𝑠𝛼
= 𝐻𝑡𝑎𝑛

𝛼
2
. 0.5 p 

The numerical value for the length of this segment is 
BC = 9.81√3	m = 16.99	m . 0.5 p 

 
Solution 2 (algebraical):   7.5p 
Drawing:  

0.75 p 

The length of the ramp AB is 

AB =
𝑎𝑡"

2
 

0.5 p 

and the acceleration of the material point is 
𝑎 = 𝑔𝑐𝑜𝑠𝛽, 0.5 p 

A 

B

 

H

 
𝛼

 

�⃗�
 

C

 

O

 

𝛽
 

A 

B

 

H

 
𝛼

 

�⃗�
 

C

 

D

 

𝛽
 

𝛼
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so 

𝑡 = .
2AB
𝑔𝑐𝑜𝑠𝛽

. 
0.5 p 

This means that 𝑡 is minimum when %&
'()*

= 𝑚𝑖𝑛. But 

AB =
AD

𝑐𝑜𝑠(𝛼 − 𝛽)
, 

0.25 p 
 

0.5 p 
while 

AD = AC𝑐𝑜𝑠𝛼 = 𝐻𝑐𝑜𝑠𝛼. 0.5 p 
Hence 

AB
𝑐𝑜𝑠𝛽

=
𝐻𝑐𝑜𝑠𝛼

𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝛼 − 𝛽)
. 0.5 p 

Since 𝐻𝑐𝑜𝑠𝛼 = 𝑐𝑜𝑛𝑠𝑡., 𝑡 = 𝑚𝑖𝑛 when the function 
𝑓(𝛽) = 𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝛼 − 𝛽) = 𝑚𝑎𝑥. 0.5 p 

This function can be rewritten as 

𝑓(𝛽) = 𝑐𝑜𝑠"𝛽𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛼 =
1
2
(𝑐𝑜𝑠2𝛽 + 1)𝑐𝑜𝑠𝛼 +

1
2
𝑠𝑖𝑛2𝛽𝑠𝑖𝑛𝛼 = 

=
1
2
𝑐𝑜𝑠𝛼 +

1
2
(𝑐𝑜𝑠2𝛽𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛2𝛽𝑠𝑖𝑛𝛼) = 

=
1
2
𝑐𝑜𝑠𝛼 +

1
2
𝑐𝑜𝑠(2𝛽 − 𝛼). 

0.5 p 

This function is maximum when 𝑐𝑜𝑠(2𝛽 − 𝛼) = 1, which means that 

𝛽 =
𝛼
2
, 

meaning that AB is the bisector of the angle 𝐷𝐴𝐶6 . 

0.25 p 
 

0.5 p 

Then 
BC = DC − DB = 𝐻𝑠𝑖𝑛𝛼 − AD𝑡𝑎𝑛

𝛼
2
= 𝐻𝑠𝑖𝑛𝛼 − 𝐻𝑐𝑜𝑠𝛼𝑡𝑎𝑛

𝛼
2
= 

= 𝐻 W𝑡𝑎𝑛𝛼 − 𝑡𝑎𝑛
𝛼
2
X 𝑐𝑜𝑠𝛼. 

0.5 p 

Since 

tanα =
𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛼

=
2𝑠𝑖𝑛 𝛼2 𝑐𝑜𝑠

𝛼
2

𝑐𝑜𝑠" 𝛼2 − 𝑠𝑖𝑛
" 𝛼
2
=

2𝑡𝑎𝑛 𝛼2
1 − 𝑡𝑎𝑛" 𝛼2

, 0.25 p 

then 

BC = 𝐻	𝑡𝑎𝑛
𝛼
2
1 + 𝑡𝑎𝑛" 𝛼2
1 − 𝑡𝑎𝑛" 𝛼2

𝑐𝑜𝑠𝛼. 

 

Because 
1 + 𝑡𝑎𝑛" 𝛼2
1 − 𝑡𝑎𝑛" 𝛼2

𝑐𝑜𝑠𝛼 =
𝑐𝑜𝑠" 𝛼2 + 𝑠𝑖𝑛

" 𝛼
2

𝑐𝑜𝑠" 𝛼2 − 𝑠𝑖𝑛
" 𝛼
2
𝑐𝑜𝑠𝛼 =

1
𝑐𝑜𝑠𝛼

𝑐𝑜𝑠𝛼 = 1, 

 

then 

BC = 𝐻	𝑡𝑎𝑛
𝛼
2
. 0.5 p 

The numerical value for the length of this segment is 
BC = 9.81√3	m = 16.99	m . 0.5 p 

B2. Determine the mathematical expression for the minimum descent time on the ramp AB 
and calculate its numerical value. 
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(For solution 1):   4.5p 
The length of the ramp AB is 

AB =
𝑎𝑡"

2
 

0.5 p 

and the acceleration of the material point is 
𝑎 = 𝑔𝑐𝑜𝑠𝛽, 0.5 p 

so 

𝑡 = .
2AB
𝑔𝑐𝑜𝑠𝛽

, 
0.5 p 

where 

AB =
AD

𝑐𝑜𝑠(𝛼 − 𝛽)
, 0.5 p 

while 
AD = AC𝑐𝑜𝑠𝛼 = 𝐻𝑐𝑜𝑠𝛼. 0.5 p 

Hence 
AB
𝑐𝑜𝑠𝛽

=
𝐻𝑐𝑜𝑠𝛼

𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝛼 − 𝛽)
, 0.5 p 

so 

𝑡 = .
2𝐻𝑐𝑜𝑠𝛼

𝑔𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝛼 − 𝛽)
. 

0.5 p 

The minimum descent time is (𝛽 = 𝛼/2) 

𝑡+,- = .
2𝐻𝑐𝑜𝑠𝛼

𝑔𝑐𝑜𝑠" 𝛼2
, 

which gives 

𝑡+,- = 2.
𝐻
𝑔

𝑐𝑜𝑠𝛼
1 + 𝑐𝑜𝑠𝛼

 
0.5 p 

The numerical value of the minimum descent time is 
𝑡+,- = 2.000	s . 0.5 p 

 
(For Solution 2):  1.5p 
Since 

𝑡 = .
2𝐻𝑐𝑜𝑠𝛼

𝑔𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝛼 − 𝛽)
. 

0.5 p 

The minimum descent time is (𝛽 = 𝛼/2) 

𝑡+,- = .
2𝐻𝑐𝑜𝑠𝛼

𝑔𝑐𝑜𝑠" 𝛼2
, 

which gives 

𝑡+,- = 2.
𝐻
𝑔

𝑐𝑜𝑠𝛼
1 + 𝑐𝑜𝑠𝛼

 
0.5 p 

The numerical value of the minimum descent time is 
𝑡+,- = 2.000	s . 

 
0.5 p 
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C. (11 points) In his last book1, in which motion is treated mathematically for the first time in 
history, Galileo analyzes the problem of the fastest descent in uniform gravitational field 
without friction and concludes that the arc of a circle is faster than any number of its chords. 
Although it was later proved that the circle is not the path of fastest descent, Galilei admits 
that any possible error will be removed after future advances in Mathematics. The problem 
of fastest descent (also called the brachistochrone problem) – formulated in 1696 by Johann 
Bernoulli and correctly solved by his older brother Jakob Bernoulli – actually shows that 
the curve is different from a circle and is called cycloid, name given by Galilei himself. 

Since the brachistochrone problem is complicated, it can be simply modeled by three 
connected rectilinear ramps, the descent time surpassing the cycloidal one with just a few 
percent. To further simplify the model, a symmetric arrangement will be considered, as 
illustrated in the figure above. A material point is released in A, with zero initial speed and 
slides on the ramps without friction from A to B. The middle ramp is horizontal and the 
transition from one ramp to the next is smooth. The horizontal distance between the fixed 
points A and B is 𝐿 = 5,66	m. 
Note: By modifying the angle 𝛼, while keeping the points A and B fixed, the lengths of all the ramps 
will change. For an angle 𝛼. > 𝛼, the new configuration is represented with dashed lines on the 
above figure. 

C1. (8 points) Determine the angle 𝛼 of the inclined ramps such that the transition time 𝜏 
from A to B to be minimum. 

Solution: Due to the symmetry of the path, the total transition time is 

𝜏 = 𝑡/ + 𝑡" + 𝑡/ = 2𝑡/ + 𝑡". 0.5 p 
If the length of one of the inclined ramps is denoted by 𝐿/, the descending time 
on the first inclined ramp is 

𝑡/ = .2𝐿/
𝑎
, 

0.5 p 
where 

𝑎 = 𝑔𝑠𝑖𝑛𝛼. 0.5 p 
The transition time on the horizontal ramp is 

𝑡" =
𝐿 − 2𝐿/𝑐𝑜𝑠𝛼

𝑣
, 2 x 0.5 p 

where the speed of the material point on the horizontal path is  
2 x 0.5 p 

 
1 Galileo Galilei, Discourses and Mathematical Demonstrations Relating to Two New Sciences, 1638, Leiden, 
South Holland. 

𝐿 A B 

𝛼 𝛼 

�⃗� 

𝛼′ 𝛼’ 
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𝑣 = b2𝑔ℎ = b2𝑔𝐿/𝑠𝑖𝑛𝛼. 
Hence, the total transit time is 

𝜏 = 2.
2𝐿/
𝑔𝑠𝑖𝑛𝛼

+
𝐿 − 2𝐿/𝑐𝑜𝑠𝛼
b2𝑔𝐿/𝑠𝑖𝑛𝛼

. 

 
 

0.25 p 

For optimal values of 𝐿/ and 𝛼, the transit time 𝜏 will be minimal. Let’s consider 
that 𝛼 already has that optimal value and that the only variable is 𝐿/. Under 
these circumstances, we can write 

𝜏 = 2.
2𝐿/
𝑔𝑠𝑖𝑛𝛼

+
𝐿

b2𝑔𝐿/𝑠𝑖𝑛𝛼
−
2b𝐿/𝑐𝑜𝑠𝛼
b2𝑔𝑠𝑖𝑛𝛼

= 

=
2(2 − 𝑐𝑜𝑠𝛼)

b2𝑔𝑠𝑖𝑛𝛼
b𝐿/ +

1
b𝐿/

𝐿
b2𝑔𝑠𝑖𝑛𝛼

. 
0.5 p 

This expression has the form 

𝜏 = 𝑎𝑥 +
𝑏
𝑥
	, 

where 

𝑥 = b𝐿/, 𝑎 =
2(2 − 𝑐𝑜𝑠𝛼)

b2𝑔𝑠𝑖𝑛𝛼
, and	𝑏 =

𝐿
b2𝑔𝑠𝑖𝑛𝛼

. 

It can be written as 

𝜏 = 𝑎𝑥 +
𝑏
𝑥
− 2 ∙ √𝑎𝑥 ∙ .

𝑏
𝑥
+ 2 ∙ √𝑎𝑥 ∙ .

𝑏
𝑥
= g√𝑎𝑥 − .

𝑏
𝑥h

"

+ 2 ∙ √𝑎𝑏. 

From here we can see that 𝜏 is minimal when the binomial is zero, or 

√𝑎𝑥 = .𝑏
𝑥
, 

Which gives 

𝑥 = .𝑏
𝑎
. 

1 p 
In our case, the optimal value for 𝐿/ is 

𝐿/ =
𝐿

2(2 − 𝑐𝑜𝑠𝛼)
. 0.5 p 

For this result the transit time will be 

𝜏 = 2.
𝐿(2 − 𝑐𝑜𝑠𝛼)
𝑔𝑠𝑖𝑛𝛼

. 
0.25 p 

Now, since 𝐿/ is fixed, we can find the optimal value of 𝛼 which minimizes the 
value of 𝜏. This will happen when the ratio 

𝑟 =
2 − 𝑐𝑜𝑠𝛼
𝑠𝑖𝑛𝛼

 

is minimal. From here, by eliminating the denominator and squaring the 
equation, it follows that 

0.25 p 

𝑟"𝑠𝑖𝑛"𝛼 = 4 − 4𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠"𝛼, 
or 

𝑟"(1 − 𝑐𝑜𝑠"𝛼) = 4 − 4𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠"𝛼. 
Rearranging the terms, we get 

(1 + 𝑟")𝑐𝑜𝑠"𝛼 − 4𝑐𝑜𝑠𝛼 + 4 − 𝑟" = 0. 0.5 p 
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The solutions of this quadratic equation are 

𝑐𝑜𝑠𝛼 =
2 ± 𝑟√𝑟" − 3

1 + 𝑟"
. 

 
0.25 p 

The minimal value for 𝑟 to obtain real solutions is 
𝑟+,- = √3. 0.25 p 

For this value of 𝑟, the optimal value of 𝛼 is given by 

𝑐𝑜𝑠𝛼 =
1
2
, 

which gives the value 
𝛼 = 60° . 

 
0.25 p 

 
 

0.5 p 
C2. (2 points) Derive the expression for the length of the entire path of the material point, 

𝐿0(0, when the transition time is minimal and calculate its numerical value. 

Solution: The optimal value for 𝐿/ is 

𝐿/ =
𝐿
3
. 0.5p 

Since the horizontal path has the length 

𝐿" = 𝐿 − 2𝐿/𝑐𝑜𝑠𝛼 =
2𝐿
3
, 0.25 p 

then 
𝐿0(0 = 2𝐿/ + 𝐿", 0.25 p 

having the expression 

𝐿0(0 =
4𝐿
3

 

 
 

0.5 p 
and the numerical value 

𝐿0(0 = 7.55	m . 0.5 p 
C3. (1 points) Derive the mathematical expression for the minimum transition time 𝜏+,- and 

calculate its numerical value. 

Solution: Since 

𝜏+,- = 2.
𝐿𝑟+,-
𝑔

, 0.25 p 

then 

𝜏+,- = 2.
𝐿√3
𝑔

. 
0.25 p 

The numerical value of this time is 
𝜏+,- = 2.00	s . 0.5 p 
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