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Solution to Problem 1 

 

1. In the simplest case the motion is along the vertical axis starting from the origin at the 

bottom of the parabola with an arbitrary initial velocity v0. The motion is described by x = 

0, y = v0t – gt2/2, vy = v0 – gt. The highest point of the trajectory is reached at time t = v0/g. 

The period of the motion is T = 2v0/g. 

 

2. Another simpler case is a trajectory that is symmetric to the parabola that bounds the 

motion from below. This is illustrated with the following figure. In order to have periodic 

motion the trajectory of the particle must reach the boundary at an angle of 90o. The point 

x0 is not arbitrary. It is specific for the given bounding parabola. If v0 is the speed at the 

instant of collision with the boundary given by y = ax2 - b, a > 0, b > 0, the trajectory of the 

particle is described by 

x = - x0 + v0 cos α t,  y = v0 sin α t – gt2/2,  α = 45o. 

 

 
 

Elimination of t from the above equations, with the additional requirement that the 

trajectory has the symmetric form y = b – ax2, and taking into account that α = 45o, one finds 

that the initial speed of the particle at the boundary should be v02 = 2gx0. Therefore the 

period is T = 4x0/(v0 cos α) = 4√(x0/g).  

 

3. The boundary may be represented as y = ax2. Let us take x0 > 0 and (± x0, ax02) as the end 

points of the periodic trajectory. The tangents of the boundary at these end points, at the 

right and left side, are y = ± 2ax0x – ax02. The orthogonal direction to the tangent on the left 

is given by y = (x + x0)/(2ax0) + ax02. Motion of the point particle is described by   

 

x = – x0 + v0 cos β t,         y = y0 +v0 sin β t – gt2/2,          tan β = 1/(2ax0). 
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After elimination of t, the symmetry requirement implies the condition tan β = gx0/(v02 cos2 

β) and the trajectory is given by y = y0 + g (x02 – x2)/(2v02 cos2β). The condition of 

orthogonality at the boundary leads to 2ax0 gx0/(v02 cos2β) = 1. The speed at the boundary 

reflection point is  

 

v02 = 2agx02/cos2β = 2agx02 (1 + tan2 β) = 2agx02 (1 + 1/(4a2x02)) = g(1 + 4a2x02)/(2a) . 

 

and the period T = 4x0/(v0 cos β) = 2√(2/ag) is independent of x0. This is in agreement with 

the result of section 2, where tan α = 2ax0 = 1, and x0 = 1/2a, that is T = 2√(2/ag). 

 

4. The trajectory in the following figure has a parabolic section in the middle and two 

vertical sections at both ends. Indicated angles have to satisfy the relationship α + 2γ = π/2.  

 

 
 

Such trajectory appears when the orthogonal line at the point of collision with the 

boundary divides in two halves the angle between the vertical line and the tangent at the 

end of the parabolic section of the trajectory. The period of this motion is given by T = 

4x0/(v0 cos α) + 4v0/g and v02 = gx0/(sin α cos α) or 

 

T = 4 [1 + √(1 + 1/tan2 α)] √[(x0/g) tan α] . 

 

5. In this case the orbit, as shown in the figure, touches the boundary at three points. The 

boundary and the right and left branches of the trajectory are given by y = ax2, y = bx2 ± (a – 

b)x0x, with ±x0 the abscissa of the collision points with the boundary (a > 0, b < 0, y0 = ax02). 

From the orthogonality condition at the boundary 2ax02(a + b) = 1, it follows b = 1/(2ax02) – a. 
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The period is found from T = 4x0/(v0 cos α) where tan α = 1/(2ax0) and v0 is expressed from 

y0 + 1/2a – (gx02/2v02)(1+ 1/4a2x02) = 0. 

 

In analogy to the situation in section 4, the trajectory of section 5 can have vertical tails 

under similar conditions. There are probably two additional periodic trajectories that are 

not discussed.  

 

Solution to Problem 2 

 

a) 

 

 

 

 

 

 

 b) 

The relevant equations are: 

2𝑚𝑎𝐵 = 𝑚𝑔 − 𝑘𝑥 

and 

𝑚𝑎𝐴 = 𝑘𝑥. 

Let us study the movement of B (and C) with respect to A: multiply the second eq. with 2 

and subtract it from the first: 

2𝑚(𝑎𝐵 − 𝑎𝐴) = 𝑚𝑔 − 3𝑘𝑥. 

So, the problem is equivalent with suspending a body with the mass 2𝑚 by a spring with 

the elastic constant 3𝑘. The elongation of this spring is 

𝑥𝑚𝑎𝑥 =
2𝑚𝑔

3𝑘
. 

In conclusion, the maximum distance between A and B is 

𝐿𝑚𝑎𝑥 = 𝐿0 +
2𝑚𝑔

3𝑘
. 

 

ΒB 
ΒA ΒC 

NB NA S 

S’ F F’ 
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(c)   

 

 

 

 

Initially, d = l0. Since the bodies should remain at rest d = l0 ➔ F = 0 

 

m.g -S = 0 

S’-μ.m.g=0 

 

m.g- μ.m.g = 0 ➔ μ = 1 

 

 

(a) 

 

 

 

 

 

Constant speed: 

m.g-S =0 

S’-F-fB=0 

F’-fA=0 

➔ m.g - fA - fB=0 

      m.g-2μ.m.g=0 

 

➔ m.g = 2μ.m.g  ➔ μ=1/2 

 

F - fA = 0 

k.x = μ.m.g 

 

𝑥 =
𝜇.𝑚.𝑔

𝑘
=

𝑚.𝑔

2𝑘
   ➔𝑙 = 𝑙0 +

𝑚.𝑔

2𝑘
  

 

 

 

 

 

ΒA ΒC 

NB NA S 

S’ fst 

ΒB 

fA fB 

ΒA ΒC 

NB NA S 

S’ F F’ 
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Solution to Problem 3 

 

Data:  

1 600l m= , 1 1
m

v
s

= ,  

2 800l m= , 2 2
m

v
s

=  

 

Expression for time 1t  for the motion on the field as a function of x : 

2 2

1

1

1 1

x lAD
t

v v

+
= =          (1) 

 

Expression for time 2t  for the motion on the road as a function of x : 

2
2

2 2

l xDC
t

v v

−
= =          (2) 

 

Expression for the total time t  as a function of x : 

2 2

1 2 1 2

1 2

1 1
( )t t t x l l x

v v
= + = + + −        (3) 

 

Solutions for the total time and position, 0t t=  and 0x x= : 

2 2

0 0 1 2 0

1 2

1 1
( )t x l l x

v v
= + + −         (4) 

After some elementary algebraic manipulations in (4) we get 
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 0 1 2 1 0 1 2 0 2 1 2 0 0 1 0 2 2 0 2 12 2 2 0v v t v l v x v v t l v v t x v x l v x v l+ + − + − − − =   (5) 

 

“Shaking“ the solutions with small quantities t  and x : 
2 2 2 2 2 2 2 2

1 2 0 1 2 1 0 1 2 0 2

2 2 2 2 2 2

1 2 0 0 1 0 2 2 0 2 1

( ) ( ) 2 ( )

2 ( )( ) 2 ( ) ( ) 0

v v t t v l v x x v v t t l

v v t t x x v x x l v x x v l

+  + + +  − + +

+ +  + − + − + − =
   (6) 

 
2 2 2 2 2 2 2 2 2

1 2 0 0 1 2 1 0 0

2 2 2

1 2 0 2 1 2 0 0 1 0 2

2 2 2 2 2

2 0 0 2 1

(6) ( 2 ) ( 2 )

2 ( ) 2 ( )( ) 2 ( )

( 2 ) 0

v v t t t t v l v x x x x

v v t t l v v t t x x v x x l

v x x x x v l

 +  +  + + +  +  −

− +  + +  +  − +  −

− +  +  − =

   (7) 

 
2 2 2 2 2

1 2 0 1 0

2 2 2

1 2 2 1 2 0 0 1 2

2 2

2 0

(5) (7) (2 ) (2 )

2 2 ( ) 2

(2 ) 0

v v t t t v x x x

v v tl v v tx t x t x v xl

v x x x

→   + +  +  −

−  +  +  +   −  −

−  +  =

    (8) 
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Neglecting all the terms containing very small products, t t  , t x   and x x  : 
2 2 2 2 2 2 2

1 2 0 1 0 1 2 2 1 2 0 0 1 2 2 0(8) ( ) 0v v t t v x x v v tl v v tx t x v xl v x x  +  −  +  +  −  −  =  (9) 

 

Expression for /t x  : 
2

2
2 0 2 02

1

2

2 0 2 2 2 0

( 1)

(9)

v
l x v t

vt

x v t v l v x

+ − −


 =
 − −

       (10) 

 

Equating /x t   to zero and evaluation of x  and t : 

0
t

x


=


          (11) 

2

2
2 0 2 02

1

(10), (11) ( 1) 0
v

l x v t
v

 + − − =       (12) 

1
0

2

2

2

1

(4) (12) ...

1

l
x

v

v

→  = =

−

       (13) 

2

2
0 2 1 2

2 1

1
(13) (4) ... 1

v
t l l

v v

 
→  = = + − 

  

      (14) 

0(13) ... 346.8x m = =         (15) 

0(14) ... 920t s = =         (16) 

 

Solution to Problem 4 

 

As after the switching of the K1 the resistance of the circuit remains the same, the 

potentials on the both ends of K1 are equal (voltage on K1 is zero). This situation is only 

possible when the initial state of К2 is ”1”. Later, as the 𝑅ABγ > 𝑅ABδ, it can be concluded 

that the last state of K1 is ”1”. So, using these conclusions we can fill the state of the 

switches for all states of the circuit (see the table).  

Now we can start calculations of the values of the resistors. As in the beginning both 

switches are closed and the opening of the K1 does not change the circuit resistance, it 

follows 𝑈𝑅1
= 𝑈𝑅2

 and 𝑈𝑅3
= 𝑈𝑅4

. The relations of the currents are 𝐼𝑅1
= 𝐼𝑅3

 and 𝐼𝑅2
= 𝐼𝑅4

. 

From these equations we can obtain that  
𝑅2

𝑅1
=

𝑅4

𝑅3
= 𝑥. To minimize the above expressions, 

we can note 𝑅1 = 𝑅, 𝑅2 = 𝑥𝑅, let 𝑅3 = 𝑦𝑅, then 𝑅4 = 𝑥𝑦𝑅.  

For circuit state “𝛽”: 
𝑅(1+𝑦)𝑅𝑥(1+𝑦)

𝑅(1+𝑦)+𝑅𝑥(1+𝑦)
= 240 Ω . After simplification 

𝑅𝑥(1+𝑦)

1+𝑥
= 240 Ω (1). 

For circuit state “𝛾”: 𝑥(1 + 𝑦)𝑅 = 400 Ω . (2) 

For circuit state “𝛿”: 
𝑥𝑅𝑅

𝑥𝑅+𝑅
+ 𝑥𝑦𝑅 = 280 Ω . (3) 
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Substituting (2) in (1),  
400 Ω

1+𝑥
= 240 Ω, then 𝑥 =

400

240
− 1 =

2

3
 . 

Subtracting (3) from (2), 𝑥(1 + 𝑦)𝑅 −
𝑥𝑅𝑅

𝑥𝑅+𝑅
+ 𝑥𝑦𝑅 = 120 Ω. After simplification, 

𝑥2𝑅

𝑥+1
= 120 Ω. Substituting 𝑥 with the 

obtained value, 𝑅 = 450 Ω. Now 

substituting both 𝑥 and 𝑅 with their 

values in (2), 
2

3
(1 + 𝑦)450 Ω = 400 Ω, we 

obtain 𝑦 =
1

3
. So, the final values of the resistor are, 𝑅1 = 450 Ω, 𝑅2 = 300 Ω, 𝑅3 = 150 Ω, 

and 𝑅4 = 100 Ω.  

 

 The answer is given in the table below. 

State of  

the circuit 

State of  

the K1 

State of  

the K2 

𝑅ABi, 

Ω 

 Resistor 

𝑅𝑗 

Value, 

Ω 

𝛼 1 1 240  𝑅1 450 

𝛽 0 1 240  𝑅2 300 

𝛾 0 0 400  𝑅3 150 

𝛿 1 0 280  𝑅4 100 

 

 

𝑅1 

𝑅2 

𝑅3 

𝑅4 

A B 
K1 

K2 


