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Theoretical Problem 1: ISS Orbital Decay Dynamics [10.0
points]

Introduction

Figure 1: The International Space Station orbiting above the Earth.

The ISS is currently maintained in a nearly circular orbit with a minimum mean altitude of 370𝑘𝑚 and a
maximum of 460𝑘𝑚, in the center of the thermosphere, at an inclination of 𝜃 = 51.6∘ (degrees) to Earth's
equator. The trajectory of the spacecraft is similar to a spiral with a slowly changing distance from the
station to the Earth's surface, and during one cycle of revolution the change in altitude is inconsiderable.

The ISS mass is 𝑀𝑆 = 4.5 × 105𝑘𝑔 and overall length is 𝐿𝑆 = 109𝑚. Huge solar panels with a width of
𝑊𝑆 = 73𝑚 provide the ISS with electrical energy [NASA Official Report (2023].

Including all batteries and other parts, the effective cross area (section) of the station is approximately
𝑆 ≈ 2.5 × 103 m2 [European Space Agency, SDC6-23].

The ISS orbital decay is caused by one ormoremechanismswhich absorb energy from the orbitalmotion,
the essential ones being:

• atmospheric drag at orbital altitude is caused by frequent collisions of gasmolecules with the satel-
lite,

• the Ampere force arising from themotion of the conductive apparatus in the Earth's magnetic field,

• the interaction with the atomic oxygen ions.

"... InMay 2008, the altitudewas 350 kilometers, the ISS lost 4.5𝑘𝑚 andwas re-boosted by the Progess-60
supply ship by 5.5𝑘𝑚. Again, the ISS continued to lose altitude by 5.5𝑘𝑚 ..." [https://mod.jsc.nasa.gov]
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Figure 2: The altitude of ISS (𝑘𝑚) over the years.

Figure 3: The ISS mean height (𝑘𝑚) in 2022-2023.

”. . . The ISS loses up to 330𝑓𝑡 ( 100𝑚) of altitude each day . . . ” [NASA Control Data (2021)]. In 2023
the ISS flies at altitudes of 410 km, with an orbital decay about 70𝑚 every day ( ∼ 2𝑘𝑚 per month), and
duringmagnetic storms the daily descent reaches 300𝑚. The ISS accomplishes the de-orbitmaneuvers by
using the propulsion capabilities of the ISS and its visiting vehicles [International Space Station Transition
Report (2022)].
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Figure 4: ISS model with the cross sections from different aspect angles (𝑑𝑚2). The CROC
provides 2481𝑚2 cross section.

Denotations and Physical constants:

Universal gas constant 𝑅 = 8.31 𝐽 ⋅ 𝐾−1 ⋅ 𝑚𝑜𝑙−1

Avogadro's number 𝑁𝐴 = 6.022 ⋅ 1023 𝑚𝑜𝑙−1

The molar mass of gas (for air) 𝜇 = 0.029 𝑘𝑔 ⋅ 𝑚𝑜𝑙−1

Mass of the Earth 𝑀𝐸 = 5.97 ⋅ 1024 𝑘𝑔
Radius of the Earth 𝑅𝐸 = 6.38 ⋅ 106 𝑚
Gravitational universal constant 𝐺 = 6.67 ⋅ 10−11 𝑚3 ⋅ 𝑠−2 ⋅ 𝑘𝑔−1

Density of air at Earth's surface 𝜌0 = 1.29 𝑘𝑔/𝑚3

Gravitational acceleration at Earth's surface 𝑔0 = 9.81 𝑚 ⋅ 𝑠−2

Averagemagnitude of Earth'smagnetic field 𝐵 = 5.0 ⋅ 10−5 𝑇
The electron absolute charge 𝑒 = 1.60 ⋅ 10−19 𝐶

Part A: Modified barometric formula [2.0 points]
The pressure of atmospheric air, composed mainly of neutral 𝑂2 and 𝑁2 molecules, can be found by
using the Clapeyron-Mendeleev law (the ideal gas law): 𝑝 𝑉 = 𝑀

𝜇 𝑅 𝑇 . where 𝑝, 𝑉 , 𝑇 , 𝑀 and 𝜇 are the
pressure, volume, temperature, mass and molar mass of a portion of air, 𝑅 is the ideal gas universal
constant.

There are two equations for computing air pressure as a function of height. The first equation is applica-
ble to the standard model of the troposphere (ℎ < 100𝑘𝑚) in which the temperature is assumed to vary
with altitude at a lapse rate.

The second equation belongs to the standard model of the thermosphere (ℎ > 250𝑘𝑚) in which the
temperature is assumed not to change considerably with altitude and is applicable to ISS.

We may assume that all pressure is hydrostatic and isotropic (i.e., it acts with equal magnitude in all
directions).
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A.1 Derive the general integral expression for the air pressure 𝑝ℎ at ISS altitude ℎ.
This equation is called the general barometric formula. Hint: the temperature
and gravitation may depend on ℎ.

0.5pt

Remark 1. The temperature of Earth's thermosphere at altitude 300−600𝑘𝑚 does not change considerably
and reaches averagely about 800−900𝐾 on the solar side [NASA data]. Therefore, one may put 𝑇ℎ = 𝑇 =
𝑐𝑜𝑛𝑠𝑡 by investigating the ISS orbital flight. Particularly, since the spacecraft spends almost half of its
flight time in the shadow side of the Earth, where the temperature drops sharply, we may take the value
of 𝑇 = 425𝐾 as the average temperature at these altitudes. This temperature is also in agreement with
the air density value 𝜌ℎ ∼ 10−12𝑘𝑔/m3 [MSISE-90 Model of Earth's Upper Atmosphere] at ℎ = 400𝑘𝑚.

Figure 5: The Earth’s thermosphere.

A.2 Write down the air pressure (the standard barometric formula) 𝑝𝑠𝑡𝑎
ℎ , when the

temperature and gravitation 𝑔ℎ do not depend on ℎ. Calculate the parameter
ℎ0 = 𝑅𝑇

𝜇𝑔0
for 𝑇 = 425𝐾.

0.3pt

A.3 Write down the air pressure (the improved barometric formula) 𝑝𝑖𝑚𝑝
ℎ when

the temperature is constant but the gravitation depends on ℎ. Hint: Use
the leading-order correction only, with accuracy 𝑂(𝑧2

ℎ). Hereby, the flight alti-
tude ℎ above the Earth's surface is significantly smaller than the Earth's radius:
𝑧ℎ ≐ ℎ/𝑅𝐸 ≪ 1.

0.6pt

A.4 Write down the ratio of the 'standard' and 'improved' versions of the barometric
formula 𝑝𝑖𝑚𝑝

ℎ /𝑝𝑠𝑡𝑎
ℎ . Estimate it for ℎ = 4.0 × 105𝑚. Further use the 'improved'

version.

0.4pt

A.5 Write down the air density 𝜌ℎ and the concentration of neutral air molecules 𝑛ℎ
at height ℎ, with accuracy 𝑂(𝑧2

ℎ).
0.2pt
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Part B: Orbital deceleration and station descent rate [3.0 points]
Let us consider the problem of determining the rate of orbital decay of a satellite with mass 𝑀𝑆 that
experiences constant friction force ⃗𝐹𝑑𝑟𝑎𝑔 acting on it. We assume that the decrease in altitude 𝑑ℎ is much
less than the flight altitude ℎ itself (𝑑ℎ ≪ ℎ).

B.1 Write down the satellite velocity 𝑣ℎ and revolution period 𝜏ℎ on a stable orbit of
altitude ℎ.

0.5pt

B.2 Write down the total energy 𝐸𝑆 of a satellite moving along a circular orbit with
radius 𝑅𝐸 + ℎ.

0.5pt

B.3 The total decelerating force exerted on a satellite of constant mass is given by
some external braking force ⃗𝐹𝑑𝑟𝑎𝑔. As a result, the ISS slows down and its al-
titude decreases by a height 𝑑ℎ for a small time interval, 𝑑𝑡. Write down the
equation for the total enery balance of the ISS and surrounding system, given
a value of 𝐹𝑑𝑟𝑎𝑔.

1.0pt

B.4 Define the rate of descent (de-orbiting ) speed 𝑢ℎ of the satellite. Hint: The de-
orbiting speed depends on the friction force, and on the altitude of the satellite,
and on the mass of the satellite.

0.5pt

B.5 Write down the amount of decent 𝐻ℎ for a revolution around the Earth and the
total time 𝑇ℎ for which the satellite will fall from the altitude ℎ to the earth's
surface due to the friction.
Hint: Take into account relations ℎ0 ≪ ℎ ≪ 𝑅𝐸.

0.5pt

Part C: Atmospheric drag [1.0 points]
The speed of the satellite 𝑣 is many times greater than the average velocities (hundreds m/s) of the
thermal motion of atmospheric molecules at a height ℎ ≈ 300 − 400𝑘𝑚, so we can assume that the
molecules were at rest before the collision with the ISS. To roughly estimate the drag force, we assume
that after the collision the molecules acquire the same speed as the satellite.

C.1 Write down the air drag force 𝐹𝑎𝑖𝑟, the de-orbiting descending velocity 𝑢𝑎𝑖𝑟
ℎ and

the descent rate 𝐻𝑎𝑖𝑟
ℎ .

0.5pt

C.2 Define the total time 𝑇 𝑎𝑖𝑟
ℎ for which the satellite will fall from the altitude ℎ to

the earth's surface due to air drag effect. Hint: Take into account relations ℎ0 ≪
ℎ ≪ 𝑅𝐸.

0.5pt

Part D: Drag by atomic oxygen ion [1.0 points]
In the thermosphere, under the influence of ultraviolet and X-ray solar radiation and cosmic radiation,
air ionization occurs (``polar lights''). Unlike 𝑂2, 𝑁2 does not undergo strong dissociation under the
action of solar radiation, therefore, in general, there is much less atomic nitrogen 𝑁 in the Earth's upper
atmosphere than atomic oxygen. At altitudes above 250𝑘𝑚, atomic oxygen 𝑂 predominates. Layers
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containing electrons and ions of oxygen atoms appear on the day side of the atmosphere. In this case,
the concentration of atomic oxygen ions reaches 𝑛𝑖𝑜𝑛 ∼ 1012 𝑚−3

D.1 Write down the decelerating force 𝐹𝑖𝑜𝑛, averaged during a 24-hour, associated
with the mechanical collisions of these particles. Take into account the strong
decrease in ionized layers are negligible during the night. Express the density
of ionized oxygen molecules 𝜌𝑖𝑜𝑛.

0.3pt

D.2 Define the speed of fall of the satellite 𝑢𝑖𝑜𝑛
ℎ due to deceleration by ions of atomic

oxygen. Write down the descent rate 𝐻𝑖𝑜𝑛
ℎ for a revolution caused by the ioniza-

tion effect. Hint: Take into account relations ℎ0 ≪ ℎ ≪ 𝑅𝐸 .

0.7pt

Part E: Drag by the Earth's magnetic field [2.0 points]
We consider the influence on the motion of the satellite of the Earth's magnetic field, the value of which
near the Earth's surface is equal to (3.5 − 6.5) ⋅ 10−5𝑇 with an average value of 𝐵 = 5 ⋅ 10−5𝑇 .

When a satellitemoves at high speed in amagnetic field, an inducted electric current (electromotive force
(EMF) ) occurs in the current-conducting elements of the satellite's structure. This electromotive force
causes a redistribution of electric charges in the current-conducting elements of the satellite structure.
An electric field appears around the satellite, which affects the movement electrically charged particles
in the environment. Electrons are attracted to those parts of the satellite that have a positive potential
(relative to themiddle part of the satellite), and positively charged ions are attracted to those parts of the
satellite that have a negative potential. Electrons and ions that hit the surface of the satellite structures
are combined into neutral oxygen atoms, while the electrons 'travel' in the satellite's conductive struc-
tures, creating an electric current. The satellite, moving in space, 'collects' electrons and ions from the
surrounding space and collides with them. For a rough estimate of the magnitude of the current that
can flow through the conductive structures of the satellite, we will assume that the collection occurs only
from an area equal to the cross-sectional area 𝑆 of the satellite, and all ions and electrons participate in
the creation of this current.

E.1 Evaluate approximately the magnitude of the induced electric current 𝐼𝑖𝑛𝑑 . 0.6pt

E.2 Determine an approximate expression for the induced 'braking' Ampere force
𝐹𝑖𝑛𝑑 in the direction opposite to the direction of the satellite's motion.
Let 𝜙 be the angle between the Earth magnetic field �⃗�along the longitude lines.
To simplify, youmay approximate the length of the satellite𝐿 as the square root
of the satellite area 𝑆. Additionally, instead of computing the average of sin(𝜙),
you may approximate it with sin(𝜋/2 − 𝜃). You may use a discrete number of
sample points to compute an average value.

0.6pt

E.3 Write down the descent speed 𝑢𝑖𝑛𝑑 of the satellite due to Earth's magnetic field.
Write down the descent rate 𝐻𝑖𝑛𝑑

ℎ for a revolution caused by the magnetic drag
effect.
Hint: Take into account relations ℎ ≪ 𝑅𝐸.

0.8pt

Part F: Numerical results and conclusion [1.0 points]
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F.1 Calculate and fill Table 1 in the Answer Sheet. 0.4pt

F.2 Calculate and fill Table 2 in the Answer Sheet. 0.4pt

F.3 Rank these three orbital slowing processes in order of how strong an impact
they have on ISS orbital altitudes higher than 380𝑘𝑚.
For the International Space Station, orbiting at an altitude above 380𝑘𝑚, write
down the most significant factors contributing to orbital decay.

0.2pt
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Theoretical Problem 2: A ball on a turntable [10.0 points]

Preamble

Notations and conventions: The length of a vector ⃗𝐴 is simply denoted as 𝐴 ≡ | ⃗𝐴|. It's 𝑥, 𝑦, 𝑧 components
are denoted by 𝐴𝑥, 𝐴𝑦, 𝐴𝑧, respectively. The time derivative of a quantity is denoted by the dot over the

quantity: ̇⃗𝐴 ≡ 𝑑 ⃗𝐴/𝑑𝑡, ̇𝐴 ≡ 𝑑𝐴/𝑑𝑡. The unit vector along the direction of vector ⃗𝐴 is denoted as ̂𝐴. The unit
vectors along the Cartesian coordinates are, therefore, ̂𝑥, ̂𝑦 and ̂𝑧. The definitions of scalar and vector
products are:

( ⃗𝐴 ⋅ �⃗�) = (�⃗� ⋅ ⃗𝐴) = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧 = 𝐴𝐵 cos 𝜃

( ⃗𝐴 × �⃗�) = −(�⃗� × ⃗𝐴)
= (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦) ̂𝑥 + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧) ̂𝑦 + (𝐴𝑥𝐵𝑥 − 𝐴𝑦𝐵𝑥) ̂𝑧

| ⃗𝐴 × �⃗�| = 𝐴𝐵 sin 𝜃,
where 𝜃 is the angle between ⃗𝐴 and �⃗�. You may need the following properties of vectors and their
multiplications. Triple product rules for vectors:

( ⃗𝐴 × �⃗�) × ⃗𝐶 = ( ⃗𝐴 ⋅ ⃗𝐶)�⃗� − (�⃗� ⋅ ⃗𝐶) ⃗𝐴,
( ⃗𝐴 × �⃗�) ⋅ ⃗𝐶 = (�⃗� × ⃗𝐶) ⋅ ⃗𝐴 = ( ⃗𝐶 × ⃗𝐴) ⋅ �⃗�.
The vector products are very useful in describing many relations in physics. For example:

⃗𝑣 = �⃗� × ⃗𝑟,
⃗𝐹𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝑄 ⃗𝑣 × �⃗�,

and, often, saves time combining three equations for vector components into a single equation.

The statement

Figure 1. Ball rolling on the turntable without slipping

A ball of mass 𝑚 and radius 𝑟 is rolling on a horizontal turntable without slipping (see Figure 1). Its mass
density has a spherical symmetry, i.e. only depends on the distance from its center. The moment of
inertia of the ball is 𝐼 . In part B and C, where the turntable can rotate freely, the moment of inertia of
the turntable is denoted as 𝐼𝑑. The purpose of the problem is to analyze the motion and trajectory of
the ball with respect to the laboratory frame. Throughout the problem, assume the turntable is large
enough so that the ball does not fall off. The following notations are used:

Ω - the magnitude of the turntable angular velocity,
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�⃗� - the spinning angular velocity of the ball with respect to its spinning axis,

�⃗� - the horizontal position of the ball center with respect to the rotation axis of the turn table,

⃗𝑣 - the velocity of the ball at �⃗� with respect to the laboratory frame.

Assume that the initial position �⃗�0 ≡ �⃗�(0) and velocity ⃗𝑣0 ≡ ⃗𝑣(0) of the ball, the angular velocity of the
turn table Ω0 ≡ Ω(0) are known. For the initial vector quantities �⃗�0 ≡ �⃗�(0) and ⃗𝑣0 ≡ ⃗𝑣(0), assume that
their directions are known. In addition, whenever you need to express a vector quantity, you may use

̂𝑧 in your expression. Also, if asked to write your expression in terms of the known quantity you may
use any or all of 𝑚, 𝑟, 𝐼 and 𝐼𝑑. Unless otherwise stated, keep 𝐼 as general. The following notations are
recommended:

𝛼 = 𝐼
𝐼+𝑚𝑟2 , 𝛿 = 𝐼𝑑

𝑚𝑟2 ,
Youmay write the final answers as vector expressions involving cross product (vector product), dot prod-
uct (scalar product) and unit vectors in axis directions.

Part A: Ball on turntable with constant angular velocity [1.5 points]
First we start with the simplest case wherein the turntable angular velocity with respect to vertical axis ̂𝑧
is constant, therefore Ω = Ω0.

A.1 Express the ball's velocity ⃗𝑣 in terms ofΩ, �⃗�, 𝑟 and �⃗� from a kinematic constraint. 0.1pt

A.2 Using Newton's equation and torque equation with respect to its center, find
the acceleration of the ball ⃗𝑎 ≡ ̇⃗𝑣 in terms of Ω, ⃗𝑣, 𝑟, 𝑚 and 𝐼 .

0.2pt

A.3 Find the velocity ⃗𝑣 in terms of Ω, �⃗�, ⃗𝑣0, ⃗𝑅0, 𝑟, 𝑚 and 𝐼 . 0.2pt

A.4 Write an explicit solution for the trajectory of the ball given the initial conditions
⃗𝑣0 and �⃗�0.

0.5pt

A.5 Assume this time that the ball has a uniformmass density, i.e. 𝐼 = 2𝑚𝑟2/5. Tra-
jectory you have found is a circle and it's radius is 𝑅𝑡. Choose its magnitude to
be the same as 𝑅0. How long does it take for the ball to approach the initial spot
on the table (the position on the turntable at 𝑡 = 0) with the closest distance?

0.5pt

Part B: Ball on freely rotating turntable [4.0 points]
In this part, the turntable can rotate freely without any friction around 𝑧 -axis. Therefore its free rotation
is hindered only by the ball's friction.

B.1 Find the velocity ⃗𝑣 and acceleration ̇⃗𝑣 of the ball in terms of Ω , �⃗�, Ω0, �⃗�0, Ω̇, 𝑟, 𝑚
and 𝐼 .

0.2pt

B.2 Find the magnitude of the angular acceleration of the turntable Ω̇ in terms of
Ω, Ω0, �⃗�, �⃗�0, ⃗𝑣0, 𝑟, 𝑚, 𝐼 and 𝐼𝑑. You may use the constants 𝛼 and 𝛿 defined in the
beginning of the problem.

0.6pt
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B.3 Find the magnitude of the angular velocity of the turntable Ω as a function of 𝑅
only. Use this constants in your expression: Ω0, 𝑅0, 𝑟, 𝑚, 𝐼, 𝐼𝑑.

0.6pt

B.4 From the result of B.3, for a given Ω0, 𝑅0, find the maximum possible Ω . 0.1pt

B.5 Write down the vertical component the angular momentum ̂𝑧𝑀𝑧 of the whole
system. Subtract any constant term and rename the remaining part as ̂𝑧𝐿 .
In part B.1 you found the velocity of the ball ⃗𝑣, which can be written as the sum
of a part that depends on the position of the ball �⃗� and a constant vector. Let us
call this constant vector ⃗𝑐 . Choose the direction of 𝑥-axis along this vector and 𝑦-
axis along ̂𝑧× ⃗𝑐 . In this frame of reference, find Ω in terms of 𝐿, �⃗�, ⃗𝑐, ̂𝑧, 𝑅2, 𝑟, 𝑚, 𝐼
and 𝐼𝑑 . Combining this with the result of B.3, write down an equation only
containing 𝑅2 and 𝑦 variables and 𝐿, 𝑟, 𝑚, 𝐼, 𝑐 and 𝐼𝑑. Here 𝑐 is the magnitude of

⃗𝑐. Substituting 𝑅2 = 𝑥2 + 𝑦2 , write down an expression containing only 𝑥 and 𝑦
variables and describing a curve. From this, list all possible types of trajectories.

2.5pt

Part C: Ball on turntable in magnetic field [4.5 points]
In this part, we consider a density profile so that 𝐼 = 𝑚𝑟2/10 . This can be realized, for example, if the
ball is filled up to half of its radius with uniform density and the remaining part has a negligible mass.
In addition, on its outer surface, the ball has a uniform charge density 𝑄/(4𝜋𝑟2) , where 𝑄 is the total
surface charge. The whole setup is in a uniform magnetic field �⃗� that is in ̂𝑧 direction. The turntable
rotates with constant Ω like in Part A.

 

Figure 2. Ball rolling on the turntable in a constant magnetic field �⃗�

C.1 Write down Newton's equation and the torque ⃗𝜏𝑠 equation for the ball. Find
expression for the torque due to the spinning of the ball around its axis in terms
of 𝑄, 𝑟, �⃗� and �⃗� .

0.5pt

C.2 Using the results of C.1, find expression for the linear acceleration of the ball
with respect to the laboratory frame in terms of 𝑄, 𝑟, �⃗� and �⃗� .

0.5pt
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C.3 We assume all quantities of unit lenght are measured by meter, all angular ve-
locities have unit of 1 Hertz, and all quantities of time have the unit of 1 second.
The equation for the linear acceleration you found in part C.2 is a second order
differential equation for �⃗� of the following form:
𝑑2�⃗�
𝑑𝑡2 − 𝛾 𝑑�⃗�

𝑑𝑡 × ̂𝑧 + 𝛽�⃗� = 0.
Write down 𝛾 and 𝛽 constants in terms of 𝑄, 𝑟, 𝐵, 𝐼, 𝑚, Ω. Make the following
transformation to a polar coordinates for the components of �⃗� :
𝑥(𝑡) = 𝜌(𝑡) cos(𝜂(𝑡)),
𝑦(𝑡) = 𝜌(𝑡) sin(𝜂(𝑡))
so that the new equations do not have the first time derivative term. Here the
polar angle 𝜂(𝑡) is a function of time. Find the form of this function.
Express the coefficient 𝛽′ of 𝜌(𝑡) in the new equation in terms of 𝛾 and 𝛽 .
Write down the conditions for different types of behavior of 𝜌(𝑡) with respect to
time: harmonic, exponential etc.

1.0pt

C.4 Consider the following initial conditions for the solution found in part C.3:
𝑥(0) = 1 𝑚, 𝑦 = 0 𝑚, 𝑣𝑥(0) = ̇𝑥|𝑡=0 = 1 𝑚/𝑠, , 𝑣𝑦(0) = ̇𝑦|𝑡=0 = −1 𝑚/𝑠.
From these conditions, find 𝛽 and 𝛾. Using them find the corresponding Ω.
Sketch the trajectory. Is the charge of the surface negative or positive? For the
negative write − and for the positive write + on your answer sheet.

0.9pt

C.5 Consider the solution you have found in part C.4. If you identified it correctly
your solution should have a rotating �⃗�(𝑡). Find the expressions for the total and
per rotation changes in energy for 𝑁 ≫ 1 number of rotations. Here you may
ignore the terms small compared to 𝑁 . In this part assume the mass and the
radius of the ball are 𝑚 = 1 𝑘𝑔 and 𝑟 = 1 𝑚 so that 𝐼 = 1/11 𝑘𝑔 ⋅ 𝑚2.

1.6pt
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Theoretical Problem 3: Cavitation [10.0 points]

Introduction

Cavitation is the phenomenon of vapour bubbles or ``cavities'' occurring in a liquid medium due to drop
in pressure. This is in contrast to boiling, where vapour bubbles are created due to rise in temperature.
Since the vapour bubbles collapse andgenerate shockwaves aswell as supersonic jetswhen the dropped
pressure is restored, cavitation is a constant source of damage and even of catastrophe in hydraulic
machines, ships, and more generally in any device involving liquid flow. On the other hand, it has found
many positive applications, for example in chemical industry, cleaning, and in treatment of kidney stones.

Figure 1. (a) Cavitating propeller (b) Cavitation damage (Source: Wikimedia Commons)

It is understood that cavitation generally growout ofmicroscopic bubbles, called nuclei, that preexisted in
the liquid. These micro-bubbles are a fewmicrons in size and contain both vapour and non-condensable
gas (the latter is just air when ordinary water is under consideration). If the pressure in the liquid be-
comes sufficiently low, the nuclei grow into a macroscopic size, initiating cavitation. Liquid purified of
such nuclei can even withstand negative pressure without cavitating. One usually compares this with
solid under tension, which does not rupture easily if there are no preexisting pockets or cracks in it.

In this problem, we will be concerned with various idealized scenarios related to cavitation. As is often
the case, we can glean some nontrivial information from simple dimensional analysis. However, we will
need differential equations embodying fundamental laws such as Newton's second law of motion and
Fick's law of diffusion, if we want to conduct a more precise study.

One of the first things we want to know is the so called critical (or threshold) pressure, that is theminimum
value of the water pressure so that the nuclei remain microscopic without growing into macroscopic
bubbles. The critical pressure is roughly equal to the vapour pressure at the given temperature, but the
exact value is slightly lower due to surface tension and the air content of the nucleus.
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Figure 2. (a) Cavitation (down arrow) and boiling (right arrow) on a phase diagram (b) Typical
bubble (see Table 1 for notations)

If the external pressure suddenly drops below the critical pressure of a nucleus, then the nucleus starts
expanding and the expansion rate quickly reaches a stable value. In practice, after the bubble becomes
macroscopic in size, the pressure is typically restored to its original value, and the bubble starts collaps-
ing. We will model this situation by considering a macroscopic bubble in equilibrium, whose external
pressure is then suddenly risen. The collapsing bubble will rebound after reaching a minimum size if
the bubble had air in it. On the other hand, a pure vapour bubble would completely dissolve, with the
shrinkage rate growing unboundedly as the radius of the bubble reaches zero. In reality, towards the
end of the collapse, the bubble would lose its spherical shape, and the compressibility of water would
become important. However, unless a particular question explicitly asserts otherwise, we will neglect
those effects here.

Another interesting question is what happenswhen soundwave is transmitted throughwater containing
bubbles. It turns out that not only the bubbles pulsate following the pressure oscillations, but also the
sound wave induces translational motions of the bubbles. These effects can be used to manipulate
bubbles with the help of acoustic waves. For example, in acoustic cavitation, high intensity ultrasound is
employed to generate cavitation or cause collapse of bubbles.

Finally, there is a sort of paradox regarding the existence of nuclei in the first place. The theory predicts
that unless water is saturated with dissolved air, diffusion of air from any nucleus into water through the
gas-water interface must induce a complete dissolution of the nucleus in a matter of seconds. However,
in reality, micron sized nuclei exist in water and it is in fact extremely difficult to get rid of them. We will
consider one of a few potential resolutions of this paradox, namely the suggestion that small crevices
in solid walls or in solid particles carried by water are responsible for acting as micro-pockets of air and
vapour.

Potentially useful information

Vapour pressure

Let us saywe have a closed jar containingwater and air. If the air is too dry, then its humidity will increase
due to evaporation of water. If the air is too wet, then its humidity will decrease due to condensation. It
turns out that in equilibrium, the partial pressure 𝑝𝑣 = 𝑝𝑣(𝑇 ) of vapour in air is a function of temperature.
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Figure 3. (a) Closed jar containing air and water in equilibrium (b) Diffusion flux through the
surface S is proportional to the concentration gradient across S

Now if a bubble changes its volume in an instant, then the humidity inside the bubble will lose its equi-
librium with the surrounding water, and a new equilibrium must be reached either by condensation or
evaporation. In reality this process is so rapid that we can justifiably assume that equilibrium is main-
tained at all times. Moreover, the heat lost or gained by the surrounding water during this process is
negligible, so that the temperature remains constant. To conclude, we assume that the partial pressure
of vapour contained in a bubble remains equal to 𝑝𝑣 at all times.

Henry’s law

While the concept of vapour pressure gives us a good handle on the vapour content of a bubble, Henry
law offers at least a partial handle on the air content. Thinking of a closed jar containing water and air, it
says that in equilibrium, the concentration of dissolved air in water is proportional to the partial pressure
of air above the water:

𝑢 = 𝐻𝑞
where, 𝑢 is the concentration of air in water, 𝐻 is the so called Henry's constant, and 𝑞 is the partial
pressure of air adjacent to water. As before, we will assume that equilibrium of air content in the sense
of Henry's law is maintained at least in the immediate vicinity of the bubble at all times, and that this
maintenance does not cause any temperature change.

Fick’s law

To complement Henry's law, we need to know how dissolved air in water moves from places with high
concentration to places with low concentration. This is where Fick's law enters, which states that the
diffusion flux across an area element 𝑆 is proportional to how fast the concentration changes along the
direction perpendicular to 𝑆, see Figure 3:

𝐽 = 𝜅 𝜕𝑢
𝜕𝑥

Here 𝐽 is the diffusion flux, that is the amount of air moving across the surface per unit area per unit
time, 𝜅 is the diffusivity coefficient, and we have assumed that the 𝑥 coordinate axis is perpendicular to
𝑆. When 𝑢 is a function of 𝑥 and possibly other variables, the notation 𝜕𝑢

𝜕𝑥 means that we have taken the
derivative of 𝑢 with respect to the variable 𝑥, while holding all other variables constant.
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Diffusion equation

If you need to find a function 𝑤 = 𝑤(𝑥, 𝑡) in the first quadrant 𝑄 = {(𝑥, 𝑡) ∶ 𝑥 > 0, 𝑡 > 0} satisfying 𝜕𝑤
𝜕𝑡 =

𝜕2𝑤
𝜕𝑥2 in 𝑄, and {𝑤(𝑥, 0) = 𝑓(𝑥) for 𝑥 > 0,

𝑤(0, 𝑡) = 0 for 𝑡 > 0, then the solution is given by 𝑤(𝑥, 𝑡) = 1√
4𝜋𝑡 ∫∞

0 (𝑒−(𝑥−𝑦)2/(4𝑡) −

𝑒−(𝑥+𝑦)2/(4𝑡))𝑓(𝑦)𝑑𝑦.

Gaussian type integrals

The following integrals may come in handy. ∫∞
0 𝑒−𝑏𝑥2𝑑𝑥 =

√𝜋
2

√
𝑏 , ∫∞

0 𝑥2𝑒−𝑏𝑥2𝑑𝑥 =
√𝜋

4𝑏
√

𝑏 (𝑏 > 0).

Notations and typical values of parameters.

In Table 1, we list the notations used in the statement of the problem, and the typical values of some
important constants.

symbol assigned meaning typical value
𝜌 water density 997 kg/m3

𝑝∞ water pressure far from a bubble 101 kPa
𝑝𝑣 vapour pressure 2340Pa
𝜎 surface tension 72.8 ⋅ 10−3N/m
𝑅 bubble radius
𝑅0 initial radius of a bubble 10−5 m
𝛿 density of air 1.29 kg/m3

𝑞 partial pressure of air in a bubble
𝑞0 initial value of 𝑞
𝛾 adiabatic exponent of air 1.4
𝑢 concentration of dissolved air in water
𝜅 diffusivity coefficient for air in water 2 ⋅ 10−9 m2/s
𝐻 Henry's constant for air in water 0.24 ⋅ 10−6 s2/m2

𝑡 time
𝑓0 natural/resonant frequency

Assumptions

Unless otherwise specified, throughout this problem we assume the following.

• Water is incompressible, inviscid, and homogeneous.

• Water fills the entire space.

• Pressure variation due to gravity is negligible.

• No spatial or temporal variation in temperature.

• There is a single bubble.
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• The bubble remains spherical and without translatory motion.

• No migration of air between the bubble cavity and the surrounding water.

• Air is an ideal gas.

Part A: Preliminary analysis [1.5 points]
These are warm-up questions to get the initial feel of the phenomenon.

A.1 By performing a simple dimensional analysis, estimate the collapse time 𝑇 of
a pure vapour bubble, in terms of bubble's initial radius 𝑅0, water density 𝜌,
water pressure 𝑝∞, and the vapour pressure 𝑝𝑣. Evaluate the formula with the
numerical constant implicit in the formula equal to 1, when 𝑅0 = 1mm and the
quantities 𝜌, 𝑝∞, and 𝑝𝑣 take their typical values from previous Notation Table .
Assume no surface tension: 𝜎 = 0.

0.5pt

A.2 Suppose that a nucleus consisting of air and vapour, with radius 𝑅0 = 10−5 m,
is in equilibrium when the external pressure 𝑝∞ = 101 kPa. Find the partial
pressure 𝑞0 of air in the bubble. Now suppose that the external pressure 𝑝∞ was
gradually decreased, and that the air inside the bubble follows an isothermal
process. Find the critical pressure 𝑝𝑐, defined by the condition that if 𝑝∞ < 𝑝𝑐
the bubble size grows without bound. The quantities 𝑝𝑣 and 𝜎 take their typical
values from the above Notation Table.

1.0pt

Part B: Main dynamics [6.0 points]
Now we will study the detailed dynamics of a spherical bubble consisting of a mixture of air and vapour.
Please assume that there is no air migration through the bubble wall, and hence that the whole dynam-
ics is governed by pressure only. Note however that as we have mentioned, there will be evaporation
and condensation of water vapour at the bubble wall, that maintains the vapour pressure 𝑝𝑣 within the
bubble.

B.1 Suppose that a single spherical bubble resides within water that fills space uni-
formly, and that the bubble may evolve in size without distorting its spherical
shape, due to changes, e.g., in the external pressure 𝑝∞ . Derive an equation
that relates the bubble radius 𝑅(𝑡) and its time derivatives 𝑅′(𝑡) and 𝑅″(𝑡) , sur-
face tension 𝜎 , water density 𝜌 , the pressure far from the bubble 𝑝∞ , and the
pressure inside the bubble 𝑝. Then split the pressure 𝑝 into two terms, by as-
suming that the bubble has both vapour (with partial pressure 𝑝𝑣) and air in it,
and that the air follows an adiabatic process with exponent 𝛾. To give a refer-
ence point, the partial air pressure must be 𝑞0 when the bubble size equals 𝑅0.
Assume that evaporation, condensation, or transfer of air between the bubble
cavity and the surrounding water has no effect on the water volume.

1.5pt

B.2 A water tank under the external pressure 𝑝−
∞ = 101 kPa, containing a nucleus of

radius 𝑅0 = 10−5 m initially in equilibrium, was exposed to vacuum, so that the
system suddenly has 𝑝∞ = 0 . Estimate the terminal (asymptotic) value of the
growth speed 𝑅′ , as well as the time it reaches this terminal value.

1.0pt
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B.3 A water tank under the external pressure 𝑝−
∞ = 1.600 kPa, containing a gas bub-

ble of radius 𝑅0 = 10−5 m initially in equilibrium, was suddenly exposed to the
atmospheric pressure 𝑝∞ = 101 kPa . Estimate the minimum radius of the bub-
ble before it rebounds.

1.0pt

B.4 If there is no gas other than water vapour present in a bubble, the bubble com-
pletely collapses in finite time. Determine the characteristic exponent 𝛼 in
𝑅(𝑡) ∼ (𝑇 − 𝑡)𝛼,
where 𝑇 is the collapse time.

0.5pt

B.5 Based on the equation derived in B3, find the natural frequency of the spherical
oscillation of a bubble of radius 𝑅0 = 0.1mm.

1.0pt

B.6 Suppose that the bubble described in the previous part is subjected to a stand-
ing sound wave along the 𝑥-axis, whose pressure field is given by
𝑝(𝑥, 𝑡) = 𝑝0 + 𝐴 sin ( 2𝜋𝑓

𝑐 (𝑥 + 𝑎)) sin(2𝜋𝑓𝑡),
where 𝑓 is the frequency, and 𝑐 is the speed of sound. The parameters 𝑝0, 𝐴
and 𝑎 are constants, whose meanings may readily be deduced from the equa-
tion. Find the average force exerted upon the bubble. The bubble is situated
at the origin of the 𝑥𝑦𝑧 coordinate system, and its size is much smaller than the
wavelength of the sound.

1.0pt

Part C: Dissolution of nuclei through diffusion [2.5 points]
In this final section, complementary to Part B, we focus on the effect of diffusion across the bubble wall.

C.1 Suppose that a nucleus consisting of air and vapour, with radius 𝑅0 = 10−5 m ,
is placed in water-air solution, in which the dissolved air is in equilibrium with
the atmospheric pressure above the water. The partial pressure of air in the
bubble is 𝑞 = 1.70 ⋅ 105 Pa, and the vapour pressure can be neglected. Estimate
the time required for the bubble to be completely resorbed into water.
The quantities 𝑝∞, 𝜅, 𝛿 and 𝜎 take their typical values from Table 1. Assume that
the region surrounding the bubble in which air diffusion takes place immedi-
ately gets much larger than the bubble itself.

2.0pt
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C.2 Consider a conical crevice in the wall of a water container, with an aperture an-
gle 𝛼, see the following Figure. A small amount of air and vapour reside within
the cone. Write down the condition of mechanical and diffusive equilibrium.
Determine when the pocket of air stays in the crevice without disappearing.
The contact angle of water on the surface is 𝜃.

Conical Crevice

0.5pt


