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General Grading Guidelines
 
When student’s solutions are correct and s/he also show how solutions were obtained, the stduent
gets full credit. The scheme oulined below is helpful if the student’s answers are partially correct.
Attention will be paid to the detailed solution so, if the final answer is correct but it is obtained by
incorrect method(s) then no credit will be given. Alternative solutions may exist and will be given
due credit.
 
Partial or full outcomes obtained for later sections in the problemwhich are incorrect solely because
of errors being carried forward from previous sections, but are otherwise reasonable, will not be
further penalized. For example a dimensioanlly wrong answer when carried forward will not get
any credit in the subsequent sections. A numerically wrong evaluation when carried forward will get
credit in subsequent sections unless the numerical answer is patently wrong (e.g. the value of g is
981 m/sec2! )
 
Incorrect or no labeling of an axis is penalized by -0.1 points
 
The numerical answer (i) must be correct to +/- 10% AND (ii) must respect significant figures.
 
It maybe noted that NO micro-marking scheme takes care of all contingencies. A certain
amount of discretion rests with and a certain level of judgement is invested in the academic
committee.

The Stern-Gerlach Experiment: THE SOLUTION1

A.1 Speed of the Silver Atoms:

We employ the equipartition theorem. Let 𝑣2 be the mean square speed of the
silver atoms in the oven kept at 1200K. Then

𝑚𝑣2

2 = 3𝑘𝐵𝑇
2

where 𝑘𝐵 is the Boltzmann constant. This yields the root mean square speed
to be 5.255×102 m⋅s−1.

[0.5]

0.5pt

1H. S. Mani (former Director, HRI, Prayagraj) and Gautam Datta (DAIICT, Gandhinagar) were the principal authors of this prob-
lem. The contributions of the Academic Committee, Academic Development Group, and the International Board are gratefully
acknowledged.
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B.1 The Basic Expression
The length 𝑙1 is irrelevant and will not be part of the expression.
The magnitude of the acceleration 𝑎 of the silver atoms in the region defined
by 𝑙2 is

𝑎 = 𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

[0.4]
and it will be either in the +𝑥 or -𝑥 direction. At the same time it has a con-
stant horizontal velocity 𝑣𝑧. It traverses the region 𝑙2 in time 𝑙2/𝑣𝑧. Thus after
traversing the inhomogeneous region the deflection in say the +𝑥 direction is

𝛿1 = 1
2

𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

𝑙22
𝑣2𝑧

[0.6]
For the remaining part of the flight the atom will have a constant hoirzontal
speed 𝑣𝑧 and a constant vertical speed 𝑣𝑥0 = (𝜇𝑠𝑑𝐵/𝑑𝑥) (𝑙2/𝑚𝑣𝑧). On account of
the 𝑣𝑥 component the atom will acquire an additional deflection

𝛿2 = 𝑙3𝑣𝑥0/𝑣𝑧

This yields

𝛿2 = 𝑙3𝑙2
𝜇𝑠

𝑚𝑣2𝑧

𝑑𝐵
𝑑𝑥

[0.4]
The total deflection in the +𝑥 direction is 𝛿1 +𝛿2. The splitting seen on the screen
in this idealized case is twice this amount, e.g. 2 (𝛿1 + 𝛿2) . Thus we obtain

Δ𝑥 = 2𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

𝑙2
𝑣2𝑧

(𝑙2/2 + 𝑙3)

 
-0.3 if factor of 2 is missing.

[0.6]

2pt
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C.1 The Inhomogeneous Magnetic Field:

(0,a)

(0,-a)

(x,y)

A1

A2

P

Let ⃗𝐴1𝑃 = ⃗𝑟1 = 𝑥 ̂𝑖 + (𝑦 − 𝑎) ̂𝑗 and ⃗𝐴2𝑃 = ⃗𝑟2 = 𝑥 ̂𝑖 + (𝑦 + 𝑎) ̂𝑗. This gives for
�⃗�(𝑥, 𝑦)

𝜇𝐼0
2𝜋 [�̂� × (𝑥 ̂𝑖 + (𝑦 − 𝑎) ̂𝑗

𝑟2
1

− �̂� × (𝑥 ̂𝑖 + (𝑦 + 𝑎) ̂𝑗
𝑟2

2
] (1)

[0.4+0.4]

= 𝜇𝐼0
2𝜋𝑟2

1𝑟2
2

[(𝑥 ̂𝑗 − (𝑦 − 𝑎) ̂𝑖)(𝑥2 + (𝑦 + 𝑎)2) − (𝑥 ̂𝑗 − (𝑦 + 𝑎) ̂𝑖)(𝑥2 + (𝑦 − 𝑎)2)]

= 𝜇𝐼0 𝑎
𝜋𝑟2

1𝑟2
2

[2𝑥𝑦 ̂𝑗 + (𝑥2 − 𝑦2 + 𝑎2) ̂𝑖] (2)

[0.7]

⃗𝐼 = 𝐼0�̂�

⃗𝐼 = −𝐼0�̂�

x

y

𝑃0(𝑥𝑐, 𝑦𝑐)

CD

A

O R Q

𝑃1(𝑥, 𝑦)

Air

P

B

 
Writing the final expression as any correct function of x and y will get full marks.
If collecting all the terms component-wise not done, then penalize by -0.1. If an
error has been made in simplification then penalize by -0.1.
 

1.5pt
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C.2 Direction at point 𝑅: Field at the point 𝑅 ((𝑥𝑐 + √𝑥2𝑐 + 𝑎2, 0) is given by substi-
tuting 𝑦 = 0. On simple inspection the ̂𝑗 component vanishes. Thus �⃗�(𝑥, 0) ∝ ̂𝑖

[0.2]
Direction at point 𝑃0: Field at 𝑃0 ((𝑥𝑐, 𝑦𝑐 = (𝑥2

𝑐 + 𝑎2)1/2)) is given, using Eq.(2)

𝜇𝐼0
𝜋𝑟2

1𝑟2
2

(2𝑥𝑐(𝑥2
𝑐 + 𝑎2)1/2 ̂𝑗 + (𝑥2

𝑐 − 𝑥2
𝑐 − 𝑎2 + 𝑎2) ̂𝑖)

The ̂𝑖 component is zero. Thus �⃗�(𝑥𝑐, (𝑥2
𝑐 + 𝑎2)1/2) ∝ ̂𝑗

[0.3]

First Alternative Solution
We can show in general that the field at any point on the circle will be radial
(i.e. normal to the circle). We will confine our discussion to the z=0 plane.
Consider a point (𝑥𝑐, 𝑦) with radius √𝑥2𝑐 + 𝑎2. The equation of a circle with
(𝑥𝑐, 0) as centre and √𝑥2𝑐 + 𝑎2 as radius is

(𝑥 − 𝑥𝑐)2 + 𝑦2 = 𝑥2
𝑐 + 𝑎2

or
𝑥2 − 2 𝑥 𝑥𝑐 + 𝑦2 = 𝑎2 (3)

If at the point (𝑥𝑐, 𝑦𝑐) themagnetic field is along ̂𝑗 then the component along
̂𝑖 is zero. (𝑥𝑐, 0) is identified with the point C on the figure. The point 𝑦𝑐 is
then,

𝑥2
𝑐 − 𝑦2

𝑐 + 𝑎2 = 0
or

𝑦2
𝑐 = 𝑥2

𝑐 + 𝑎2 (4)

Now consider a line joining C (𝑥𝑐, 0) to any point 𝑃𝐶(𝑥, 𝑦) lying on the circle
given by eq.(3). The radial vector is ⃗𝐶𝑃 𝐶 = (𝑥 − 𝑥𝑐) ̂𝑖 + 𝑦 ̂𝑗. The magnetic
field at 𝑃𝐶 is

∝ �⃗�(𝑥, 𝑦, 0) = (𝜇𝐼0
𝜋 ) (2𝑥𝑦 ̂𝑗 + (𝑥2 − 𝑦2 + 𝑎2) ̂𝑖)

To show that they are in the same direction, we evaluate the cross product,
⃗𝐶𝑃𝐶 ×�⃗�. The cross product is proportional to �̂� which is a unit vector along

the direction which is normal to both 𝐶𝑃𝐶 and �⃗� and is along �̂�

⃗𝐶𝑃 𝐶 × �⃗� ∝ (2 𝑥 𝑦(𝑥 − 𝑥𝑐) − 𝑦(𝑥2 − 𝑦2 + 𝑎2)) �̂�
which simplifies to

𝑦(𝑥2 − 2𝑥 𝑥𝑐 + 𝑦2 − 𝑎2)�̂�
Using eq.(3), this is zero, proving the result.
 

0.5pt
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C.2 (cont.)

Second Alternative Solution
To show that the field lines are radial over the circe one may merely show the proportionality of
the components of the field and the radius vector. The radius vector is (𝑥 − 𝑥𝑐) ̂𝑖 + 𝑦 ̂𝑗 while the
magnetic field is proportional to (𝑥2 − 𝑦2 + 𝑎2) ̂𝑖 + 2𝑥𝑦 ̂𝑗. Thus

𝑦
2𝑥𝑦 = 1

2𝑥
and

𝑥 − 𝑥𝑐
𝑥2 − 𝑦2 + 𝑎2 = 1

2𝑥

The last step is obtained by observing that the equation of the circle is (𝑥 − 𝑥𝑐)2 + 𝑦2 = 𝑥2
𝑐 + 𝑎2.

C.3 Field in the airgap because of the argument presented in the problem continues
to be given by Eq.(2). So the field ( 𝑦 = 0 ), is again

�⃗� = 𝜇𝐼0 𝑎
𝜋(𝑥2 + 𝑎2)

̂𝑖

[0.5]

0.5pt

D.1 The force 𝐹𝑥 on a magnetic dipole along the 𝑥- direction is

𝐹𝑥 = −𝜇𝑠
𝜕𝐵𝑥
𝜕𝑥 = 𝜇𝑠𝜇 𝐼0

𝜋 × 2 𝑎 𝑥
(𝑥2 + 𝑎2)2 (5)

[0.5]

0.5pt
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E.1
𝜇
𝜇0

= 104; 𝑎 = 6.00×10−3𝑚; 𝑂𝐶 = 6.00×10−3𝑚; 𝑂𝐷 = 8.00×10−3𝑚;

and
𝐼0 = 2.00 𝐴

and so at the midpoint P,
𝑦 = 0;

𝑥𝑃 = 𝑂𝑃 = ((1 +
√

2) × .6 + 1.8)/2 = 1.624 × 10−2𝑚
[0.5]

wherewe have used𝑂𝐷 = .8×10−2𝑚 and𝐷𝐴 = 10−2𝑚. This gives for𝐵𝑥(𝑥𝑃 , 0)

𝜇
𝜇0

𝜇0
𝜋

𝐼0 𝑎
(𝑥2

𝑃 + 𝑎2) = 104 × 4 × 10−7 × 2 × .6 × 10−2

(1.6242 + .62) × 10−4

= 0.16 𝑇
[1]

We also have

(𝜕𝐵𝑥
𝜕𝑥 )

𝑥𝑃

= 2 × 𝑥𝑝
𝑥2𝑝 + 𝑎2 × 𝐵𝑥(𝑥𝑃 , 0) = 2 × 1.624 × 10−2

(1.6242 + .62) × 10−4 × .16 = 17.34 𝑇 ⋅ 𝑚−1

[0.5]

2.0pt

F.1 The magnetic moment of the silver atom:
We use

Δ𝑥 = 2𝜇𝑠
𝑚 (𝜕𝐵

𝜕𝑥 )
𝑥𝑃

𝑙2
𝑣2𝑧

(𝑙2
2 + 𝑙3)

to rewrite
𝜇𝑠 = 𝑚Δ𝑥

2( 𝜕𝐵𝑥
𝜕𝑥 )𝑥𝑃

× 1
[ 𝑙2

𝑣2𝑧
( 𝑙2

2 + 𝑙3)]
[0.5]

= 1.8 × 10−25 × 2 × 10−3

2 × 17.34 × 106 = 1.04 × 10−23𝐽 ⋅ 𝑇 −1

[1]

1.5pt
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G.1 The spread in the line: The two lines on the screen are separated symmetrically
about the centre by Δ𝑥. So the upper (lower) line is at Δ𝑥/2 from the centre.
From Part (2)

Δ𝑥/2 = 𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

𝑙2
𝑣2𝑧

(𝑙2/2 + 𝑙3)

This depends on the beam speed 𝑣𝑧. The spread in this speed leads to a conse-
quent spread in the splitting.

𝛿(Δ𝑥/2) = |𝜕Δ𝑥/2
𝜕𝑣𝑧

|𝛿𝑣𝑧

= 2(Δ𝑥/2)𝛿𝑣𝑧
𝑣𝑧

= 2(Δ𝑥/2) × 0.2
= 0.04𝑐𝑚

[0.3]
Hence the spread in the line from the centre is 0.1 - 0.04 = 0.06 cm to 0.1 + 0.04
= 0.14 cm.
1. Credit will also be given if 20% is interpreted as 10% on each side
2. Answer reported in terms of percentages receive full credit

[0.2]

0.5pt

H.1 Error in the evaluation of the magnetic moment:
From the previous part we have that the splitting ranges from 0.12 cm to 0.28
cmwhereas earlier it was 0.2 cm. The relationship between the splitting and the
magnetic moment is linear. So the magnetic moment ranges from (0.12/0.2) to
(0.28/0.2) the original value. This yields 0.62 × 10−23 J⋅T−1 to 1.46 × 10−23 J⋅T−1.
The total spread is 0.84 × 10−23 J⋅T−1 about the mean value of 1.04 × 10−23 J⋅T−1

[0.3]
or in other words

𝜇𝑠 = 1.04 ± 0.42 J⋅T−1

[0.2]

0.5pt
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A Mechanical Model for Phase Transitions1
General Grading Guidelines

When student’s solutions are correct and s/he also show how solutions were obtained, the stduent gets
full credit. The scheme oulined below is helpful if the student’s answers are partially correct. Atten-
tion will be paid to the detailed solution so, if the final answer is correct but it is obtained by incorrect
method(s) then no credit will be given. Alternative solutions may exist and will be given due credit.

Partial or full outcomes obtained for later sections in the problem which are incorrect solely because of
errors being carried forward from previous sections, but are otherwise reasonable, will not be further
penalized. For example a dimensioanlly wrong answer when carried forward will not get any credit in the
subsequent sections. A numerically wrong evaluation when carried forward will get credit in subsequent
sections unless the numerical answer is patently wrong (e.g. the value of g is 981 m/sec2! )

Incorrect or no labeling of an axis is penalized by -0.1 points

The numerical answer (i) must be correct to +/- 10% AND (ii) must respect significant figures.

It maybe noted that NOmicro-marking scheme takes care of all contingencies. A certain amount
of discretion rests with and a certain level of judgement is invested in the academic committee.

A.1 (0.5 pt)
Equations of motion

The radial component 𝐹𝑟 yields:

𝑚𝑅 ̇𝜃2 = 𝑁 − 𝑚𝑔 cos(𝜃) − 𝑚𝑅 sin2(𝜃)𝜔2 (1)

[0.2]
The tangential component 𝐹𝜃

𝑚𝑅 ̈𝜃 = 𝑚𝑅 sin(𝜃) cos(𝜃)𝜔2 − 𝑚𝑔 sin(𝜃) − sgn ( ̇𝜃) 𝑘𝑁 (2)
OR

𝑚𝑅 ̈𝜃 = 𝑚𝑅 sin(𝜃) cos(𝜃)𝜔2 − 𝑚𝑔 sin(𝜃) − 𝑓𝑘𝑁 (𝑓 = 1) (3)

[0.3]
 
No points if equations not written using radial and tangential components.

1Sitikantha Das (IIT Kharagpur) and Pramendra Ranjan Singh (Principal, Narayan College, J.P. University) were the principal
authors of this problem. The contributions of the Academic Committee, Academic Development Group, and the International
Board are gratefully acknowledged.



Solutions

A2-2
Official (English)

B.1 (1.0 pt)
Equilibrium angle(s)

We set 𝑘 = 0 in the equation for the tangential component of the force. Thus

𝑚𝑅 ̈𝜃 = 𝑚𝑅 sin(𝜃) cos(𝜃)𝜔2 − 𝑚𝑔 sin(𝜃) (4)

For equilibrium we set ̈𝜃0 = 0 in the above equation. Then 𝜃0 = 0 is an equilibrium angle for all values
of 𝜔

[0.4]
The other values are given by

cos 𝜃0 = 𝑔
𝜔2𝑅 = 𝜔2

𝑐
𝜔2 (5)

[0.3]

𝜃0 = ± ∣cos−1 𝜔2
𝑐

𝜔2 ∣ (6)

[0.1]
with values of 𝜃0 between -𝜋/2 to 𝜋/2. The ± indicates that there are two equivalent positions. () The
bead could rise on either side of the axis shown in the figure depicted in the problem. Note that for
𝜔 < 𝜔𝑐, Eq. (5) implies cos 𝜃0 > 1. This is clearly unphysical. A little reflection will convince us that
𝜃0 = 0 for 𝜔 < 𝜔𝑐.

[0.2]

B.2 (0.5 pt)
Sketch of 𝜃0.

0

𝜔/𝜔𝑐

𝜃 0

1

[shape correct: 0.2]
[only if both branches: 0.3]
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B.3 (0.5 pt)
Sketch of the magnitude of the normal reaction

𝜔/𝜔𝑐

𝑁

1

𝑚𝑔

[𝜔 < 𝜔𝑐 ∶ 0.2]
[𝜔 > 𝜔𝑐 ∶ 0.3]

If the shape of the plot is wrong, in that case, the following would be used. If in the detailed work,
it is shown that 𝑁 = 𝑚𝑔 for 𝜔 < 𝜔𝑐, 0.1 points would be provided. If it is shown that 𝑁 = 𝑚𝜔2𝑅 for
𝜔 ≥ 𝜔𝑐, 0.1 points would be provided.
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B.4 (1.0 pt)
The potential 𝑉 (𝜃)

Solution 1: Using direct integration
Given that

𝐹𝜃 = − 1
𝑅

𝑑𝑉 (𝜃)
𝑑𝜃 (7)

and taking 𝑉 (𝜃 = 0) = 0, we obtain on integrating Eq. (4) that

−𝑅 ∫
𝜃

0
𝐹𝜃𝑑𝜃 = ∫

𝑉

0
𝑑𝑉 = 𝑉 − 0

[0.3]
the left hand side is

−𝑅 ∫
𝜃

0
𝐹𝜃𝑑𝜃 = −𝑚𝜔2𝑅2

2 ∫
𝜃

0
sin(2𝜃) + 𝑚𝑔𝑅 ∫

𝜃

0
sin(𝜃)𝑑𝜃

= 𝑚𝜔2𝑅2(cos(2𝜃) − 1)
4 − 𝑚𝑔𝑅(cos(𝜃) − 1) (8)

[0.4]
Noting that 𝑐𝑜𝑠(2(𝜃) − 1) = −2 sin2(𝜃) and 𝜔2

𝑐 = 𝑔/𝑅 we obtain

𝑉 (𝜃) = 𝑚𝑔𝑅 [(1 − cos 𝜃) − 𝜔2

2𝜔2𝑐
sin2 𝜃] (9)

[0.3]
We can also verify the above equation by substitution into Eq. (7)
𝑃 = 𝑚𝑔𝑅
𝑄 = −𝑚𝑔𝑅
𝑆 = −𝜔2𝑚𝑔𝑅

2𝜔2𝑐
Solution 2: Differentiating 𝑉 = 𝑃 + 𝑄 cos(𝜃) + 𝑆 sin2(𝜃)
𝐹𝜃 = 𝑚𝑅 sin 𝜃 cos 𝜃𝜔2 − 𝑚𝑔 sin 𝜃 = − 1

𝑅
𝑑𝑉 (𝜃)

𝑑𝜃 = 𝑄
𝑅 sin(𝜃) − 2 𝑆

𝑅 sin 𝜃 cos 𝜃
[0.3]

Comparing, we get,
𝑄 = −𝑚𝑔𝑅
𝑆 = −𝜔2𝑚𝑔𝑅

2𝜔2𝑐
[0.2,0.2]

Also, as 𝑉 (0) = 0, we have 𝑃 + 𝑄 = 0. Hence, 𝑃 = 𝑚𝑔𝑅
[0.3]
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B.5 (1.0 pt)
The coefficients

We use the expansions for the trigonmetric functions sin(𝜃) and cos(𝜃) in Eq. (10). We shall keep
terms upto and inculding order 𝜃4. Thus

𝑉 (𝜃) ≈ 𝑚𝑔𝑅 [1 − 1 + 𝜃2/2 − 𝜃4/24 − 𝜔2

2𝜔2𝑐
(𝜃 − 𝜃3/6)2]

≈ 𝑚𝑔𝑅
2 [1 − 𝜔2

𝜔2𝑐
] 𝜃2 + 𝑚𝑔𝑅

6 [𝜔2

𝜔2𝑐
− 1

4] 𝜃4

Thus
𝑎(𝜔) = 𝑚𝑔𝑅

2 (1 − 𝜔2

𝜔2𝑐
)

[0.5]

𝑏(𝜔) = 𝑚𝑔𝑅
6 (𝜔2

𝜔2𝑐
− 1

4)

[0.5]
Note: no penalty if the 1/4 term is missed.
One observes that if one incorrectly expands sin 𝜃 ≈ 𝜃, in that case, only 𝑎(𝜔) will turn out to be
correct.
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B.6 (1.0 pt)
Representative plots of the potential

Solution 1: Plotting for 𝜃 ∈ [−𝜋/2, 𝜋/2]

− 𝜋
2 0 𝜋

2

0

−𝜃0 𝜃0

𝜃

𝑉(
𝜃)

𝜔 < 𝜔𝑐
𝜔 > 𝜔𝑐

[𝜔 < 𝜔𝑐 ∶ 0.5]
[𝜔 > 𝜔𝑐 ∶ 0.5]

Solution 2: Plotting for 𝜃 ∈ [−𝜋, 𝜋]

−𝜋 0 𝜋

0
−𝜃0 𝜃0

𝜃

𝑉(
𝜃)

𝜔 < 𝜔𝑐
𝜔 > 𝜔𝑐

[𝜔 < 𝜔𝑐 ∶ 0.5]
[𝜔 > 𝜔𝑐 ∶ 0.5]
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B.7 (1.0 pt)
Bead analogues
Solution 1:
For 𝜔 → 𝜔+

𝑐 , 𝜃0 is close to zero. Hence on expanding the cosine term in Eq. (5),

1 − 𝜃2
0
2 = 𝜔2

𝑐
𝜔2

𝜃0 = ±
√

2 [1 − 𝜔2
𝑐

𝜔2 ]
1/2

(10)

Also note from Eq. (5) that as 𝜔 → ∞, 𝜃0 → ±𝜋/2. This plot also has an analogue in phase transition.
The magnetization ℳ goes to zero as 𝑇 goes to 𝑇𝑐 in a similar fashion. Thus the role of ℳ is played
by 𝜃0 and temperature is inversely related to 𝜔. Increasing temperature is equivalent to decreasing
𝜔. Summarizing,

ℳ ⟶ 𝜃
[0.4]

𝑇𝑐 ⟶ 1/𝜔2
𝑐

𝑇 /𝑇𝑐 ⟶ 𝜔2
𝑐/𝜔2

[0.4]
Equivalent value of 𝛽 for bead is = 1/2.

[0.2]
Solution 2:
For 𝜔 > 𝜔𝑐, cos 𝜃0 = 𝜔2

𝑐/𝜔2. Hence onwriting sin2 𝜃0 = 1−cos2 𝜃0 and substituting the value of cos 𝜃0,
one gets sin 𝜃0 = (1− 𝜔4

𝑐
𝜔4 )1/2. This plot also has an analogue in phase transition. Themagnetizationℳ

goes to zero as 𝑇 goes to 𝑇𝑐 in a similar fashion. Thus the role ofℳ is played by sin 𝜃0 (or equivalently
𝜃0 in the small angle limit) and temperature is inversely related to 𝜔4. Increasing temperature is
equivalent to decreasing 𝜔. Summarizing,

ℳ ⟶ sin 𝜃

[0.4]

𝑇𝑐 ⟶ 1/𝜔4
𝑐

𝑇 /𝑇𝑐 ⟶ 𝜔4
𝑐/𝜔4

[0.4]
Equivalent value of 𝛽 for bead is = 1/2.

[0.2]
[Note: The critical exponent is 1/2 in our case and also in Landau theory. However experimentally
and in more elaborate theories the exponent of vanishing magnetization is 1/3].
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B.8 (1.0 pt)
Oscillation frequency

The frequency of oscillation Ω0 of the bead about the "equilibrium" position 𝜃0 is

Ω0 = 1
𝑅

√𝑉 ″(𝜃)
𝑚

We take the second order derivative of the potential as given in Eq. (10)

𝑉 ″(𝜃) = 𝑚𝑔𝑅 cos 𝜃 [1 − 𝜔2

𝜔2𝑐
cos 𝜃] + 𝑚𝑔𝑅 𝜔2

𝜔2𝑐
sin2 𝜃 (11)

For 𝜃 = 𝜃0 = ± cos−1 (𝜔2
𝑐/𝜔2)

𝑉 ″(𝜃0) = 𝑚𝑔𝑅 𝜔2

𝜔2𝑐
(1 − 𝜔4

𝑐
𝜔4 ) > 0 if 𝜔 > 𝜔𝑐 (12)

For 𝜔 < 𝜔𝑐, 𝜃0 = 0, and we obtain from Eq. (12) that

Ω0 = (𝜔2
𝑐 − 𝜔2)1/2 (13)

[0.5]
Similarly for 𝜔 > 𝜔𝑐, using Eq. (13) we obtain

Ω0 = 𝜔 (1 − 𝜔4
𝑐

𝜔4 )
1/2

(14)

[0.5]
No credit will be provided is small angle approximation of 𝑉 (𝜃) is used.
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B.9 (1.0 pt)
Sketch of Ω0

𝜔

Ω 0

𝜔 < 𝜔𝑐
𝜔 > 𝜔𝑐

𝜔𝑐

𝜔𝑐

Ω 0
= 𝜔

[𝜔 < 𝜔𝑐 ∶ 0.5]
[𝜔 > 𝜔𝑐 ∶ 0.5]

In the case of wrong expression of Ω0 derived in the previous part, marks would be awarded based
on the plot of expression obtained, and physicality of the plots.
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C.1 (1.0 pt)
Condition for equilibrium angles

We substitute the expression for the normal reaction (Eq.(1)) in the angular part (Eq.(3)) to obtain

𝑚𝑅 ̈𝜃 = 𝑚𝑅 sin(𝜃) cos(𝜃)𝜔2 − 𝑚𝑔 sin(𝜃) − 𝑓𝑘(𝑚𝑔 cos(𝜃) + 𝑚𝑅 sin2(𝜃)𝜔2 + 𝑚𝑅 ̇𝜃2)

Noting that 𝜔2
𝑐 = 𝑔/𝑅 and rearranging terms we have

̈𝜃 = 𝜔2
𝑐

⎡⎢
⎣

(sin(𝜃)) (cos(𝜃) − 𝑓𝑘 sin(𝜃)) ( 𝜔
𝜔𝑐

)
2

− sin(𝜃) − 𝑓𝑘 cos(𝜃) − 𝑓𝑘 (
̇𝜃

𝜔𝑐
)

2
⎤⎥
⎦

[0.2]
At equilibrium, ̇𝜃 = 0, ̈𝜃 = 0 and 𝑓 = sgn( ̇𝜃) = ±1 depending on how this equilibrium was attained,
iė., depending on the value of ̇𝜃 just before equilibrium was attained. Thus we obtain the expression
for the equilibrium angle 𝜃0,

sin(𝜃0) (cos(𝜃0) − 𝑓𝑘 sin(𝜃0)) ( 𝜔
𝜔𝑐

)
2

= sin(𝜃0) + 𝑓𝑘 cos(𝜃0) with 𝜃0 ∈ (−𝜋/2, 𝜋/2)

[0.4]
For 𝑓 = 1 and 𝑘 = tan(𝛼) we may express the above as

( 𝜔
𝜔𝑐

)
2

= sin(𝜃0) + tan(𝛼)𝑐𝑜𝑠(𝜃0)
sin(𝜃0)(cos(𝜃0) − tan(𝛼) sin(𝜃0))

= tan(𝜃0 + 𝛼)
sin(𝜃0) (15)

[0.4]
In case of algebraic error leading to 𝑥 = 𝜃0 − 𝛼, only 0.1 points would be deducted.
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C.2 (0.5 pt)
Representative values for 𝜃0
We are given the expansions for the trignometric functions in the problem. We notice that the coef-
ficient of the opposing force 𝑘 is small (=0.05). Thus 𝑘 = 𝛼. We then have

sin(𝜃0) ≈ 𝜃0

tan(𝜃0 + 𝛼) ≈ 𝜃0 + 𝛼
[0.2]

Thus

( 𝜔
𝜔𝑐

)
2

≈ 1 + 𝑘
𝜃0

Simple calculations yield
(a) 𝜃0 = -0.07 radians
(b) 𝜃0 = -0.1 radians

[0.3]
The plot will no longer be symmetric.
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General Grading Guidelines
 
When student’s solutions are correct and s/he also show how solutions were obtained, the stduent
gets full credit. The scheme oulined below is helpful if the student’s answers are partially correct.
Attention will be paid to the detailed solution so, if the final answer is correct but it is obtained by
incorrect method(s) then no credit will be given. Alternative solutions may exist and will be given
due credit.
 
Partial or full outcomes obtained for later sections in the problemwhich are incorrect solely because
of errors being carried forward from previous sections, but are otherwise reasonable, will not be
further penalized. For example a dimensioanlly wrong answer when carried forward will not get
any credit in the subsequent sections. A numerically wrong evaluation when carried forward will get
credit in subsequent sections unless the numerical answer is patently wrong (e.g. the value of g is
981 m/sec2! )
 
Incorrect or no labeling of an axis is penalized by -0.1 points
 
The numerical answer (i) must be correct to +/- 10% AND (ii) must respect significant figures.
 
It maybe noted that NO micro-marking scheme takes care of all contingencies. A certain
amount of discretion rests with and a certain level of judgement is invested in the academic
committee.

Maxwell, Rayleigh and Mount Everest: THE SOLUTION1

Oscillation of the electron cloud:

A.1 (0.5 pt)
⃗𝐸(𝑡) is the electric field at the location of the molecule. The equation of motion of the charge in the

absence of ⃗𝐸(𝑡) would be
̈𝑦 = −𝜔2

0𝑦, (1)

and under forced oscillations
̈𝑦 = −𝜔2

0𝑦 − 𝑞𝐸0
𝑚 cos𝜔𝑡. (2)

[0.5]
[a sign mistake or a term missing −0.3]

1Amitabh Virmani (CMI, Chennai) and A. C. Biyani (retired Govt. Nagarjuna P.G. College of Science. Raipur) were the principal
authors of this problem. The contributions of the Academic Committee, Academic Development Group, and the International
Board are gratefully acknowledged.
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A.2 (0.5 pt)
In equation (2) we substitute 𝑦 = 𝑦0 cos𝜔𝑡 to obtain

−𝜔2𝑦0 = −𝜔2
0𝑦0 − 𝑞𝐸0

𝑚 . (3)

[0.2]
This implies that the amplitude of oscillation is

𝑦0 = 𝑞𝐸0/𝑚
𝜔2 − 𝜔2

0
. (4)

[0.3]
[a sign mistake or a term missing −0.1]

A.3 (0.5 pt)
Since 𝑦 is the separation between the positive and negative charge clouds, the magnitude 𝑝(𝑡) of the
dipole moment is

𝑝(𝑡) = 𝑞𝑦(𝑡) ≈ 𝑞2𝐸0
𝑚𝜔2

0
cos𝜔𝑡. (5)

[0.5]
[sign mistake −0.1]
[answer without approximation −0.2]

A.4 (0.5 pt)
Wemodel the atomas a stationary positive point charge 𝑞 surrounded by a spherical negative charge
cloud of total charge −𝑞, radius 𝑟 and mass 𝑚. Now let the charge cloud be displaced by a small
distance 𝑦. The electrostatic force on the electron cloud by the central positive charge is (see Figure)

⃗𝐹el = 𝑚 ̈𝑦 ̂𝑦 = − 𝑞2

4𝜋𝜖0𝑟3 𝑦 ̂𝑦 = −𝑚𝜔2
0𝑦 ̂𝑦 (6)

[0.4]

−𝑞
+𝑞

𝑟
𝑦

̂𝚥

̂𝚤

Figure 1. Model of the atom with a central positive charge and a displaced spherical electron cloud
of radius 𝑟

Thus, the natural frequency of oscillation is

𝜔0 = 𝑞
√4𝜋𝜖0𝑚𝑟3 (7)

[0.1]
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Power radiated:

B.1 (1 pt)
Dimension of power is

[𝑠] = kg ⋅ m2 ⋅ s−3 (8)

[0.1]
Dimension of dipole moment is

[𝑝0] = C ⋅ m. (9)

[0.1]
We are using SI units. C stands for Coloumb. Dimension of 𝜔 is

[𝜔] = s−1. (10)

[0.1]
Dimension of 𝜖0 is

[𝜖0] = C2 ⋅ N−1 ⋅ m−2 = C2 ⋅ kg−1 ⋅ m−3 ⋅ s2. (11)

[0.1]
Dimension of speed of light 𝑐 is

[𝑐] = m ⋅ s−1. (12)

[0.1]
Let us take the ansatz 𝑠 = 𝑝𝛼

0 𝜔𝛽𝜖𝛾
0𝑐𝛿, i.e.,

[𝑠] = [𝑝0]𝛼[𝜔]𝛽[𝜖0]𝛾[𝑐]𝛿. (13)

[0.1]
We get four equations for the four variables,

𝛼 + 2𝛾 = 0, 𝛾 = −1, (14)
− 𝛽 + 2𝛾 − 𝛿 = −3 𝛼 − 3𝛾 + 𝛿 = 2. (15)

This gives

𝛼 = 2, 𝛽 = 4, 𝛾 = −1, 𝛿 = −3. (16)

Implying,

𝑠 = 𝑘𝑝2
0𝜔4

𝜖0𝑐3 (17)

 
[0.4]
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B.2 (0.2 pt)
We have

𝑠 = 1
12𝜋

𝑝2
0𝜔4

𝜖0𝑐3 = 1
12𝜋

𝑞2𝑦2
0𝜔4

𝜖0𝑐3 = 1
12𝜋

𝑞4𝐸2
0

𝑚2𝜖0𝑐3
𝜔4

𝜔4
0

. (18)

[0.2]

Attenuation of the Intensity 𝐼(𝑥) :

C.1 (1 pt)
Recall that the intensity is the power incident per unit area. Consider a horizontal column of the
atmosphere of cross-sectional area 𝐴 and length Δ𝑥. Let the incident intensity be 𝐼(𝑥). Let the
transmitted intensity be 𝐼(𝑥 + Δ𝑥). The drop in the intensity is due to the scattering of light by the
air molecules. If the number density of air molecules is 𝑛0 then the total power radiated per unit
volume is 𝑛0𝑠. Therefore,

𝐼(𝑥)𝐴 − 𝐼(𝑥 + Δ𝑥)𝐴 = 𝑛0𝑠(𝐴Δ𝑥). (19)

[0.8]
This gives

− 𝑑𝐼
𝑑𝑥 = 𝑛0𝑠. (20)

[0.2]

C.2 (0.5 pt)
Since 𝑠 ∝ 𝐸2

0 and 𝐼 ∝ 𝐸2
0 we have

− 𝑑𝐼
𝑑𝑥 = 𝐼

𝐿, (21)

[0.2]
where

𝐿 = 6𝜋𝜖2
0𝑚2𝑐4

𝑛0𝑞4 (𝜔0
𝜔 )

4
. (22)

[0.2]
The solution to the differential equation as a function of 𝑥 is

𝐼(𝑥) = 𝐼0𝑒−𝑥/𝐿, (23)

with 𝐿 given above.
[0.1]

C.3 (0.3 pt)
Substituting the numbers we find

𝐿 = 6𝜋𝜖2
0𝑚2𝑐4

𝑛0𝑞4 (𝜔0
𝜔 )

4
. (24)

𝐿 ≈ 130 km. (25)

[points are for numerical calculation 0.3]

Height 𝐻′ of the Mountains as seen by an observer :
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D.1 (2 pt)

𝑂 𝑃
𝑅

𝜃

ℎ

𝐵

𝑆
𝐵′

𝑆′

𝐻

𝜃

𝑑 𝛼

Figure 2. Great circle on which lie the mountain 𝐵𝑆 at height 𝐻 and the observer 𝑃 at height ℎ.
The figure is not to scale.
 

[0.7]

In Δ𝑂𝑃𝐵′,
𝑂𝐵′ = 𝑂𝑃 sec(𝜃) = (𝑅 + ℎ) sec(𝜃) (26)

Now, ∠𝑂𝑆𝑃 = ∠𝐵′𝑆𝑆′ and ∠𝑆𝑂𝑃 = ∠𝑆𝐵′𝑆′, hence Δ𝑂𝑆𝑃 and Δ𝐵′𝑆𝑆′ are similar. Thus

𝐵′𝑆′

𝑂𝑃 = 𝐵′𝑆
𝑂𝑆 = 𝑂𝑆 − 𝑂𝐵′

𝑂𝑆 = 1 − 𝑂𝐵′

𝑂𝑆 . (27)

Noting that 𝐵′𝑆′ = 𝐻′, 𝑂𝑃 = 𝑅 + ℎ, 𝑂𝑆 = 𝑅 + 𝐻 and using Eq. (26), we obtain

𝐻′

𝑅 + ℎ = 1 − (𝑅 + ℎ) sec(𝜃)
𝑅 + 𝐻 (28)

Or

𝐻′ = 𝑅 + ℎ − (𝑅 + ℎ)2

𝑅 + 𝐻 sec(𝜃). (29)

[0.8]
Noting that cos(𝜃) ≈ 1 − 𝜃2/2 and 𝜃 = 𝑑/𝑅 we get,

𝐻′ ≃ 𝑅 + ℎ − (𝑅 + ℎ)2

𝑅 + 𝐻 (1 + 𝑑2

2𝑅2 ) . (30)

Alternative answers such as
𝐻′ = 𝐻 − ℎ − 𝑑2

2𝑅 (31)

are given credit.
The numerical values are 𝐻′ = 6096m for Mt Kanchenjunga and 𝐻′ = 4534m for Mt Everest.

[0.5]



Solutions

A3-6
Official (English)

E.1 (1 pt)
In Eq.(23) 𝐼0 represents the intensity of the source which would have been perceived by an observer
at that location if attenuation effects were absent. If the power of the source is taken to be 𝑃0, then
𝐼0 = 𝑃0/4𝜋𝑑2 for the location at distance 𝑑.

𝐼 = 𝑃0
4𝜋𝑑2 exp [− 𝑑

𝐿] (32)

[points only if 1/𝑑2 is recognised 0.5]
The relative intensity of Mt Everest as seen from Darjeeling would be

𝐼Everest
𝐼Kanchenjunga

=
𝑑2
Kanchenjunga

𝑑2
Everest

exp [−𝑑Everest
𝐿 + 𝑑Kanchenjunga

𝐿 ] (33)

= 0.093 (34)

[0.3]
Yes, Mt Everest is visible.

[0.2]

Attenuation length 𝐿𝑝 due to aerosol pollution :

F.1 (1 pt)
From the information given in the problem we have

𝐿𝑝 = 1
8𝑛𝜋𝑟2 (35)

[ 0.3]

𝑛 = 𝜌𝑝
𝑚 (36)

𝑚 = 4𝜋
3 𝑟3𝜌 (37)

This yields
𝐿𝑝 = 𝑟𝜌

6𝜌𝑝
= 50 km, (38)

[ 0.2 (expression)]
[ 0.5 (evaluation)]

where,

𝑟 = 500 × 10−9 m, 𝜌 = 3 × 103 kg/m3, 𝜌𝑝 = 5 × 10−9 kg/m3. (39)

Relative intensity and Visibility of Mt. Kanchenjunga and Mt. Everest :
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G.1 (1 pt)
The new relation for the intensity attenuation is

𝐼 = 𝑃0
4𝜋𝑑2 exp [− 𝑑

𝐿 − 𝑑
𝐿𝑝

] . (40)

For Mt Kanchenjunga
𝐼𝐾
𝐼ref

= exp [−𝑑𝐾
𝐿𝑝

] = 0.22. (41)

[0.3 (expression) + 0.1 (numerical answer)]
The drop in intensity is to 22 % of the reference value. Mt Kanchenjunga will be visible from Darjeel-
ing. For Mt Everest

[0.1]

𝐼𝐸
𝐼ref

= 0.093exp [−𝑑𝐸
𝐿𝑝

] = 0.093 × 0.033 = 0.003. (42)

[0.3 (expression) + 0.1 (numerical answer)]
The drop in intensity is to 0.3 % of the reference value. Mt Everest will not be visible from Darjeeling.

[0.1]


