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Water-Hammer Effect

Introduction

This problem studies variations of fluid pressure caused by pressurewaves in a flowpipe. Proposed tasks
mainly deal with the water-hammer effect arising from both fast and slow closings of a flow-control valve
in the pipe.

We consider only nonviscous liquids and liquid flows which are essentially one-dimensional. All pipes
including their valves are assumed to be rigid, but liquids are not always considered to be incompressible.
If a liquid element of volume 𝑉0 at equilibrium under pressure 𝑃0 is subjected to a change of pressure
Δ𝑃 , the change of its volume Δ𝑉 is assumed to be proportional to Δ𝑃 so that

Δ𝑃 = −𝐵 Δ𝑉
𝑉0

(1)

The constant of proportionality𝐵 represents the bulk modulus of the liquid. For water, take 𝜌0 = 1.0 ×
103 kg/m3 as its equilibrium density and 𝐵 = 2.2 GPa.

Part A. Excess Pressure and Propagation of Pressure Wave (2.2 points)
In a uniform cylindrical pipe of length 𝐿, water is flowing steadily along the +𝑥 direction with horizontal
velocity 𝑣0, density 𝜌0, and pressure 𝑃0. As shown in Fig. 1, the pipe is connected to a reservoir at a depth
ℎ and opens into the atmosphere at pressure 𝑃a.

Suppose the flow-control valve T at the end of the pipe is then shut instantly so that the oncoming liquid
element next to the valve suffers both a pressure changeΔ𝑃s ≡ 𝑃1−𝑃0 and a velocity changeΔ𝑣 = 𝑣1−𝑣0
with 𝑣1 ≤ 0. This causes a longitudinal wave of excess pressureΔ𝑃s to travel upstream in the−𝑥 direction
with a speed of propagation 𝑐.

Fig. 1: Steady flow in a uniform pipe.

A.1 The excess pressure Δ𝑃s is related to the velocity change Δ𝑣 by Δ𝑃s = 𝛼𝜌0𝑐Δ𝑣.
The speed of propagation 𝑐 is given by 𝑐 = 𝛽 + √𝛾𝐵/𝜌0. Find 𝛼, 𝛽, and 𝛾.

1.6pt
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A.2 Calculate values of 𝑐 and Δ𝑃s for the case of water flow with 𝑣0 = 4.0 m/s and
𝑣1 = 0.

0.6pt

Part B. A Model for the Flow-control Valve (1.0 points)
Fig. 2 shows a model for control valve T and the liquid flow through it. The valve is taken to be a short
section of length Δ𝐿 and inner radius 𝑅 near the end A of the pipe. Its cone-shaped outlet has an orifice
of radius 𝑟 and opens into the atmosphere at pressure 𝑃a. Effects of gravity on the efflux are to be
neglected.

The liquid is to be regarded as incompressible and the flow as steady with liquid element at the valve
inlet having velocity 𝑣in, pressure 𝑃in, and density 𝜌0. In Fig. 2, stream lines and normal lines are drawn
only as an aid for visualizing the flow pattern.

Fig. 2: Valve dimensions and contraction of jet.

It is known that, after leaving the valve into the atmosphere, the cross section of the flow will contract
until it reaches a minimum where the stream lines are again parallel. At this point of minimum, the flow
velocity is 𝑣c and the cross section of the flow has a radius 𝑟c = 𝑟

√
𝐶c. Here 𝐶c, called the contraction

coefficient, depends on the ratio 𝑟/𝑅 and the cone angle 𝛽 as shown in Table 1.

𝑟/𝑅 𝐶c(𝛽 = 45∘) 𝐶c(𝛽 = 90∘)
0.00 0.746 0.611
0.20 0.747 0.616
0.30 0.748 0.622
0.40 0.749 0.631
1.00 1.000 1.000

Table 1. Contraction Coefficients for Orifices



Theory

Q1-3
English (Official)

B.1 Find the excess pressure Δ𝑃in = 𝑃in − 𝑃a at the valve inlet where the stream
lines are parallel. Give your answer in terms of 𝜌0, 𝑣in, 𝑟, 𝑅, and 𝐶c.

1.0pt

For all tasks in Part C and Part D, we consider the reservoir-pipe system in Fig. 1 and make the following
assumptions:

• Speed of propagation 𝑐 and density 𝜌0 of liquid are given constants independent of flow velocity.
The ambient atmospheric pressure 𝑃a and the acceleration of gravity 𝑔 are constant.

• Initially, the valve is fully open and the flow in the pipe is steady with fluid pressure 𝑃0 and velocity
𝑣0.

• As in Fig. 1 and Fig. 2, the pipe has length𝐿 and radius𝑅. The valve T is a circular opening of variable
radius 𝑟 with angle 𝛽 = 90∘ and its length Δ𝐿 is negligible so that the valve inlet is effectively at the
end A of the pipe. Effects of gravity on the efflux are negligible.

• Liquid in the reservoir is quasi-static so that its pressure 𝑃ℎ near the pipe entrance B remains con-
stant and we assume that the variation of fluid pressure across the pipe is negligible so that the
flow is one-dimensional throughout the pipe.

• The model outlined in Part B may be used to determine the excess pressure Δ𝑃in = 𝑃in − 𝑃a at the
valve inlet.

Part C. Water-Hammer Effect due to Fast Closure of Flow Control Valve (1.8 points)
Refer to the reservoir-pipe system in Fig. 1. When liquid flow in the pipe is obstructed by complete or
partial closure of the valve, a pressure wave starts traveling upstream. It gets reflected at the reservoir
end of the pipe and travels back to the valve and gets reflected there. Then another pressure wave is
generated and the process just described is repeated. This causes a sequence of sudden pressure surges
and dips for liquid element next to the valve and is referred to as water-hammering.

C.1 Refer to Fig. 1 and Fig. 2. Find the pressure 𝑃0 and velocity 𝑣0 of the steady flow
in the pipe when valve T is fully open (𝑟 = 𝑅). Give answers in terms of 𝜌0, 𝑔, ℎ,
and 𝑃a.

0.6pt

C.2 Consider the same steady flow as in task C.1 with pressure 𝑃0 and flow velocity
𝑣0. Now, at 𝑡 = 0, the valve is closed (𝑟 = 0) instantly. A pressure wave heads
toward the reservoir with speed of propagation 𝑐. Take note 𝑃ℎ = 𝑃0 + 𝜌0𝑔ℎ.
Let 𝜏 = 2𝐿/𝑐. What are the fluid pressure 𝑃(𝑡) and flow velocity 𝑣(𝑡) in the pipe
when 𝑡 is getting very close to each of the instants 𝜏/2 and 𝜏?

1.2pt

Part D. Water-Hammer Effect due to Slow Closure of Flow Control Valve (5.0 points)
Consider again the same steady flow as in task C.1 with pressure 𝑃0 and flow velocity 𝑣0. Now we close
the valve slowly and adopt a finite-step approach to simulate the closing process.

Starting at time 𝑡 = 0, the instant reduction of the radius 𝑟 of the valve (see Fig. 2) is carried out sequen-
tially at a time interval 𝜏 = 2𝐿/𝑐. Immediately after each instant reduction of radius, the flow in the valve
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region is approximated to be steady as in Part B. The pressure and velocity at the valve are then different
from those of the rest of the flow in the pipe.

For each closing step 𝑛, its duration and the radius 𝑟𝑛 of the valve opening are specified in Table 2 along
with the symbols used to represent the corresponding fluid pressure 𝑃𝑛 and flow velocity 𝑣𝑛 at the valve.

closing step 𝑛 time interval of
step 𝑛

ratio 𝑟𝑛/𝑅 pressure at valve when
𝑡 = (𝑛 − 1)𝜏

flow velocity at valve
when 𝑡 = (𝑛 − 1)𝜏

𝑛 = 0 𝑡 < 0 1.00 𝑃0 𝑣0
𝑛 = 1 0 ≤ 𝑡 < 𝜏 0.40 𝑃1 𝑣1
𝑛 = 2 𝜏 ≤ 𝑡 < 2𝜏 0.30 𝑃2 𝑣2
𝑛 = 3 2𝜏 ≤ 𝑡 < 3𝜏 0.20 𝑃3 𝑣3
𝑛 = 4 3𝜏 ≤ 𝑡 < 4𝜏 0.00 𝑃4 𝑣4 = 0

Table 2. Valve closing steps

Take fluid density 𝜌0 and speed of propagation 𝑐 as constants. Let 𝑛 = 0, 1, 2, 3, 4. Define Δ𝑃𝑛 = 𝑃𝑛 − 𝑃0
and Δ𝑣𝑛 = 𝑣𝑛 − 𝑣0. Make sure to enforce the approximation 𝑃ℎ = 𝑃0.

D.1 Obtain an equation which expresses Δ𝑃𝑛/(𝜌0𝑐) in terms of Δ𝑃𝑛−1/(𝜌0𝑐), 𝑣𝑛−1,
and 𝑣𝑛. It must be valid for all steps 𝑛 > 0 specified in Table 2. For 𝑛 = 1, 2, 3,
obtain also an equation which allows 𝑣𝑛 to be computed if both 𝑣𝑛−1 and
Δ𝑃𝑛−1/(𝜌0𝑐) are known.

3.0pt

D.2 Apply the result of task D.1 to water flowwith 𝑣0 = 4.0m/s. Use the graph paper
provided in the Answer Sheet to make all plots of Δ𝑃 versus 𝜌0𝑐𝑣. Be sure to
draw lines and curves intersecting at points having coordinates which give the
values of 𝜌0𝑐𝑣𝑛 and Δ𝑃𝑛 for steps 𝑛 = 1, 2, 3, 4. On the plot, label each point of
intersection (𝜌0𝑐𝑣𝑛, Δ𝑃𝑛) with the value of 𝑛 to which it corresponds. From the
graph, estimate values of 𝜌0𝑐𝑣𝑛 and Δ𝑃𝑛 (both in units of MPa) for 𝑛 = 1, 2, 3, 4.

2.0pt
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Ray tracing and generation of entangled light

Useful formula:

⃗𝐴 × (�⃗� × ⃗𝐶) = �⃗� ( ⃗𝐴 ⋅ ⃗𝐶) − ⃗𝐶 ( ⃗𝐴 ⋅ �⃗�)

Introduction

Let ⃗𝐸 represent the electric field, �⃗� the magnetic field, �⃗� the electric displacement, and �⃗� the magnetic
induction. Wehave �⃗� = 𝜖0 ⃗𝐸+ ⃗𝑃 , with ⃗𝑃 being the polarization of themediumand 𝜖0 being the permittivity
of free space. Only nonmagnetic dielectric media are considered in this problem, hence �⃗� = 𝜇0�⃗�, with
𝜇0 being the permeability of free space. The energy density and energy flow density associated with the
electromagnetic field are given by 𝑢𝑒𝑚 = 1

2 ( ⃗𝐸 ⋅ �⃗� + �⃗� ⋅ �⃗�) and Poynting's vector ⃗𝑆 = ⃗𝐸 × �⃗�, respectively.

In homogeneous dielectric media, a monochromatic plane wave of light can be described by its angular
frequency 𝜔, wave vector �⃗�, �⃗�, and �⃗�. According to Maxwell’s equations, we have �⃗� × ⃗𝐸 = 𝜔�⃗� and
�⃗� × �⃗� = −𝜔�⃗�. For such a wave, variations of �⃗� and �⃗� with position ⃗𝑟 and time 𝑡 are given by sinusoidal
functions of the phase (�⃗� ⋅ ⃗𝑟 − 𝜔𝑡).

Part A. Light propagation in isotropic dielectric media (1.0 points)

If the medium is isotropic, we have ⃗𝑃 = 𝜒𝜖0 ⃗𝐸 and �⃗� = 𝜖 ⃗𝐸, with 𝜒 and 𝜖 = 𝜖0(1 + 𝜒) being the electric
susceptibility and permittivity, respectively, of the medium. For a light wave of angular frequency 𝜔 in
such a medium, a given phase will propagate in the direction �⃗� with a velocity (called phase velocity)
𝑣𝑝 = 𝑐/𝑛. Here 𝑐 is the speed of light in vacuum and 𝑛 is the refractive index of the medium. One can
also use rays to represent a train of light waves. The propagation of a light ray is characterized by the
direction and speed 𝑣𝑟 of the electromagnetic energy flow.

Consider a plane wave of light with angular frequency 𝜔 and wave vector �⃗� in a homogeneous isotropic
dielectric medium.

A.1 Express its phase velocity 𝑣𝑝 in terms of 𝜖 and 𝜇0. 0.4pt

A.2 What is the refractive index 𝑛 of the dielectric medium for the wave? 0.2pt

A.3 What are the direction ̂𝑆 ≡ ⃗𝑆/𝑆 and speed 𝑣𝑟 of its electromagnetic energy flow? 0.4pt

Part B. Light propagation in uniaxial dielectric media (4.8 points)
We now assume the dielectric medium to be uniaxial, i.e, it is electrically anisotropic along a special
direction fixed in the medium, called the optic axis, which we presently call it the 𝑧 direction. In such a
case, the displacement �⃗� and the electric field ⃗𝐸 are related by𝐷𝑥 = 𝜖𝐸𝑥, 𝐷𝑦 = 𝜖𝐸𝑦, and𝐷𝑧 = 𝜖′𝐸𝑧, where
𝑥, 𝑦, and 𝑧 axes are mutually orthogonal. Consequently, the phase velocity of a light wave is anisotropic
and depends additionally on the directions of �⃗� and �⃗�. Let 𝑛𝑜 = 𝑐√𝜇0𝜖 and 𝑛𝑒 = 𝑐√𝜇0𝜖′, answer the
followings questions: B.1, B.2, and B.3.
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B.1 Suppose the wave vector �⃗� of a monochromatic plane light wave is in the 𝑥𝑧
plane so that �⃗� = 𝑘(sin 𝜃, 0, cos 𝜃). At each angle 𝜃, what directions of �⃗� and
�⃗� are permissible for the light wave? Find all possible refractive indices and
express the refractive indices in terms of 𝜃, 𝑛𝑜, and 𝑛𝑒. Find the angle 𝜃 for
which only one value is permitted for the refractive index.

1.5pt

B.2 The polarization of a light wave, i.e., the direction of its electric field ⃗𝐸, can be
either perpendicular (called an ordinary wave or ray ) or parallel (called an ex-
traordinary wave or ray) to the 𝑥𝑧 plane. For each of the light waves you found
in B.1, specify its polarization as a unit vector and indicate whether it is an ordi-
nary or extraordinary wave. Also compute tan𝛼, where 𝛼 is the angle between

⃗𝐸 and �⃗� (𝛼 is positive when going from ⃗𝐸 to �⃗� is clockwise).

0.8pt

B.3 Extend the results in B.1 and B.2 to the general case when the angle between �⃗�
and the positive 𝑧 direction is still 𝜃, but �⃗� is not in the 𝑥𝑧 plane. Find all possible
values of the refractive indices and the corresponding polarizations.

0.6pt

In a uniaxial medium, the direction of �⃗� of a light wave may differ from the direction of the light ray. The
phase velocity of the wave is still given by 𝑐/𝑛 with 𝑛 being the refractive index along �⃗�, while the ray
velocity is defined jointly by the direction and the rate of energy flow.

B.4 Following problems B.1-3, consider a light wave with �⃗� = 𝑘(sin 𝜃, 0, cos 𝜃). Let
the angle between �̂� ≡ �⃗�/𝑘 and the direction of the ray, ̂𝑆, be 𝛼𝑟 (𝛼𝑟 is positive
when going from ̂𝑆 to �̂� is clockwise). Find all possible values of tan𝛼𝑟, speed 𝑣𝑟
of the ray and ̂𝑆. Using these results, express the ray index 𝑛𝑠 = 𝑐/𝑣𝑟 in terms
of ̂𝑆, ̂𝑥, ̂𝑧, 𝑛𝑜, and 𝑛𝑒.

0.8pt

Consider the propagation of a light ray from A to B through an interface between an isotropic medium,
labelled 1, and an anisotropic medium, labelled 2, as shown in Fig. 1. The interface coincides with the
𝑦𝑧 plane, while the plane of incidence is the 𝑥𝑧 plane. Let the angle of incidence be 𝜃1. The refractive
index of medium 1 is 𝑛, while the refractive indices of medium 2 for axes 𝑧2, 𝑦2, 𝑥2 are 𝑛𝑒, 𝑛𝑜, and 𝑛𝑜,
respectively. Here 𝑦2 axis coincides with 𝑦 axis. Fermat’s principle states that the propagation time for
the path that the light ray goes from A to B is a minimum. For light with polarization parallel to 𝑥𝑧 plane
and incident at the angle 𝜃1, Fermat’s principle leads to the following equation:

̄𝐴(tan 𝜃2)2 + �̄� tan 𝜃2 + ̄𝐶 = 0 (1)

B.5 Find ̄𝐴, �̄�, and ̄𝐶 in terms of 𝑃1, 𝑃2, 𝑃3, and 𝑛 sin 𝜃1, where 𝑃1 = 𝑛2
𝑜 cos2 𝜙 +

𝑛2
𝑒 sin

2 𝜙, 𝑃2 = 𝑛2
𝑜 sin

2 𝜙 + 𝑛2
𝑒 cos2 𝜙, and 𝑃3 = (𝑛2

𝑜 − 𝑛2
𝑒) sin𝜙 cos𝜙. From Eq. (1),

find corresponding tan 𝜃2 to two special orientations: 𝜙 = 0 and 𝜙 = 𝜋/2.

1.1pt
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Fig. 1: Propagation of light from A to B through an interface between an isotropic medium 1
and an anisotropic medium 2.

Part C. Entanglement of light (4.2 points)

In a nonlinear medium, the electric field ⃗𝐸 is related to the polarization ⃗𝑃 by 𝑃𝑖 = (𝜖 − 𝜖0)𝐸𝑖 +
∑𝑗 ∑𝑘 𝜒(2)

𝑖𝑗𝑘𝐸𝑗𝐸𝑘. Here 𝑖, 𝑗, 𝑘 each can be any one of the three components 𝑥, 𝑦, 𝑧, and 𝜒(2)
𝑖𝑗𝑘 are constants

representing the second-order nonlinear susceptibility of the medium. Non-vanishing of 𝜒(2)
𝑖𝑗𝑘 implies

that as a light wave travels through a nonlinear medium, it can split into two light waves.

Suppose that because 𝜒(2)
𝑖𝑗𝑘 are not all zero, the electric field in the medium is made up of a superposition

of three plane waves of angular frequencies 𝜔, 𝜔1, and 𝜔2, propagating with wave vectors �⃗�, �⃗�1, and �⃗�2,
respectively. Assume 𝜔 ≥ 𝜔2 and 𝜔1 ≥ 𝜔2.

C.1 Find all possible relations (known as the phase matching conditions) between
these angular frequencies andwave vectors. Viewing light as composed of pho-
tons, what kinds of conservation laws do these conditions imply for the three
photons involved? Write down equations expressing these conservation laws
for the case that a photon with angular frequency 𝜔 and wave vector �⃗� being
split into two photons of angular frequencies 𝜔1and 𝜔2, propagating with wave
vectors �⃗�1and �⃗�2, respectively.

0.8pt

C.2 Consider a light wave in a uniaxial medium. Denote an ordinary ray as o and an
extraordinary ray as e. There are 8 possible ways of splitting for the light wave:
o → o + o, o → e + o, o → o + e, o → e + e, e → o + o, e → e + o, e → o + e,
and e → e + e. Assume that the refractive indices 𝑛𝑜 and 𝑛𝑒 are both increasing
functions of 𝜔. Using the same notations for wave vectors as in problem C.1
and considering the case that �⃗�, �⃗�1, and �⃗�2 are collinear, indicate which of the 8
ways of splitting are not possible.

0.8pt

Consider an incoming e ray traveling along 𝑧′ direction with wave vector �⃗� and 𝜔 = Ω𝑝 in an uniaxial
mediumwith refractive index 𝑛𝑒 < 𝑛𝑜. Suppose that, in a collinear splitting e→e + o, the phase-matching
conditions are realized with 𝑘1 = 𝐾𝑒, 𝜔1 = Ω𝑒, 𝑘2 = 𝐾𝑜, and 𝜔2 = Ω𝑜. Here subscripts 1 and 2 refer to e ray
and o ray. �⃗�1, �⃗�2 and �⃗� all point in the 𝑧′direction. As shown in Fig. 2(a), the optic axis (OA) of the medium
lies in the 𝑥′𝑧′ plane and makes an angle 𝜃 < 𝜋/2 with the 𝑧′ axis. Therefore, 𝑛𝑒 is a function of 𝜔 and 𝜃,
i.e., 𝑛𝑒 = 𝑛𝑒(𝜔, 𝜃). For the same incoming e ray with wave vector �⃗� and 𝜔 = Ω𝑝, suppose its non-collinear
splitting into e + o rays causes the latter two rays to separate but remain on two cones with 𝜔1 = 𝜔2 = Ω,
𝑘1 = 𝑘2, as shown in Fig. 2(b). Note that in the collinear splitting, Ω𝑒 is already close to Ω𝑜, and here Ω is
only slightly less than Ω𝑒. In a plane perpendicular to �⃗�, two circles on the cones for �⃗�1 and �⃗�2 intersect
at points 𝑎 and 𝑏 with the line 𝑎𝑏 parallel to 𝑦′axis. As shown in Fig. 2(a), �⃗�𝛼(𝛼 = 1, 2 ) makes an angle 𝜃𝛼
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with the optic axis and has angular coordinates (𝜓𝛼, 𝜙𝛼) with �⃗�𝛼⟂ being its projection in the 𝑥′𝑦′ plane.
Each vector �⃗�𝛼 deviates from 𝑧′ axis only slightly so that |(Ω − Ω𝑒)/Ω𝑒| ≪ 1, |�⃗�𝛼⟂|/𝑘𝛼 ≪ 1 and |𝜃𝛼 − 𝜃| ≪ 1.
Using approximations which agree with the 𝑧′ component of �⃗�𝛼 to terms of the order 𝑘2

𝛼⟂ and the angle
𝜃𝛼 to (𝜃𝛼 − 𝜃)2, one finds that �⃗�2⟂ = (𝑞𝑥′ , 𝑞𝑦′) must satisfy 𝑀(𝑞𝑥′ + 𝑁)2 + 𝑀𝑞2

𝑦′ = 𝐿.

C.3 Let 𝑀 > 0. Evaluate 𝑀 , 𝑁 , and 𝐿 in terms of Ω, Ω𝑒, Ω𝑜, 𝐾𝑒, 𝐾𝑜 and 𝑁𝑒(𝜔, 𝜃) =
1

𝑛𝑒(𝜔,𝜃)
𝑑𝑛𝑒(𝜔,𝜃)

𝑑𝜃 and the group velocities 𝑢𝑜 = 𝑑𝑤2
𝑑𝑘2

and 𝑢𝑒 = 𝑑𝜔1
𝑑𝑘1

for theo and e rays.
Estimate the angle between the axis of the cone and 𝑧′, and also the angle of
the cone in terms of 𝐿, 𝑀 , 𝑁 and 𝐾𝑜.

1.3pt

Fig. 2: (a) Vector �⃗�𝛼 has angular coordinates (𝜓𝛼, 𝜙𝛼) in the 𝑥′𝑦′𝑧′ coordinate system with �⃗�𝛼⟂
being its projection in the 𝑥′𝑦′ plane. Note that �⃗�𝛼 makes an angle 𝜃𝛼 with OA. (b) Non-collinear
splitting of an e ray into e + o rays that form two cones. Line 𝑎𝑏 is parallel to the 𝑦′ axis.

Problem C.3 shows that a photon may split into two photons which when passing through points a and
b are polarized in perpendicular directions. These two photons are called entangled photon pair because
if one photon that passes 𝑎 (called 𝑎-photon) is polarized in a direction ̂𝑥′, the other that passes 𝑏 (called
𝑏-photon) will be polarized in the direction ̂𝑦′ ⟂ ̂𝑥′, and if the 𝑎-photon is polarized in ̂𝑦′, then the 𝑏-
photon will be polarized in ̂𝑥′. The entangled photon-pair state can be prepared experimentally. It is a
superposition of the above two alternative states and can be expressed as 1√

2 (| ̂𝑥′
𝑎⟩| ̂𝑦′

𝑏⟩ + | ̂𝑦′
𝑎⟩| ̂𝑥′

𝑏⟩). Here
| ̂𝑥′

𝑎⟩| ̂𝑦′
𝑏⟩represents the state when 𝑎-photon is polarized in ̂𝑥′ direction and 𝑏-photon is polarized in ̂𝑦′ di-

rection; similar meaning applies to | ̂𝑦′
𝑎⟩| ̂𝑥′

𝑏⟩. The coefficient 1/
√

2 can be viewed as the product of electric
field amplitudes (expressed in suitable units) of 𝑎- and 𝑏-photons. As illustrated in Fig. 3, two linear polar-
izers 1 and 2 have transmission axes at angles 𝛼 and 𝛽 respectively with respect to ̂𝑥′. We may use them
to perform coincidence measurement on the two photons that pass 𝑎 and 𝑏. Let the probability of simul-
taneously finding two photons passing through polarizers 1 and 2 be 𝑃(𝛼, 𝛽). Alternatively, 𝑃(𝛼, 𝛽) can
also be regarded as being proportional to the product of intensities (after appropriate superpositions)
of light passing through the two polarizers. Denote 𝛼 + 𝜋/2 and 𝛽 + 𝜋/2 by 𝛼⟂ and 𝛽⟂ respectively.

Fig. 3: Two linear polarizers 1 and 2 for coincidence measurement of photons that pass 𝑎 and
𝑏.
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C.4 Consider the total electric field projected by linear polarizers. Find the proba-
bilities 𝑃(𝛼, 𝛽), 𝑃(𝛼, 𝛽⟂), 𝑃(𝛼⟂, 𝛽), and 𝑃(𝛼⟂, 𝛽⟂).

0.8pt

C.5 Assign 𝜎𝑎 = 1 when polarizer 1 with angle 𝛼 finds an 𝑎-photon and 𝜎𝑎 = −1
when polarizer 1 with angle 𝛼⟂ finds an 𝑎-photon. Similarly, 𝜎𝛽 = 1 or −1 is
assignedwhen polarizer 2with angle 𝛽 or 𝛽⟂ finds a 𝑏-photon. If𝐸(𝛼, 𝛽) denotes
the average of 𝜎𝑎𝜎𝑏, the quantity 𝑆 = |𝐸(𝛼, 𝛽) − 𝐸(𝛼, 𝛽′)| + |𝐸(𝛼′, 𝛽) + 𝐸(𝛼′, 𝛽′)|
has important meaning. For classical theories of light, 𝑆 ≤ 2. This is a variant
form of Bell’s inequality (the Clauser-Horne-Shimony-Holt inequality). Find the
expression of 𝑆 and evaluate 𝑆 for the case 𝛼 = 𝜋

4 ,𝛼′ = 0 , 𝛽 = − 𝜋
8 , 𝛽′ = 𝜋

8 .
Indicate if 𝑆 is consistent with the classical theories.

0.5pt
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Magnetic Levitation

Useful Information

(1) Directional derivative of a spatial function 𝑓( ⃗𝑟), given by ∇⃗𝑓( ⃗𝑟), has
∇⃗𝑓 ≡ ( ̂𝑥 𝜕

𝜕𝑥 + ̂𝑦 𝜕
𝜕𝑦 + ̂𝑧 𝜕

𝜕𝑧 )𝑓( ⃗𝑟), where 𝜕
𝜕𝑥 𝑓( ⃗𝑟) denotes a partial derivative of 𝑓( ⃗𝑟) with respect to 𝑥 while

keeping 𝑦 and 𝑧 unchanged.

(2) Integral:

∫∞
0 𝑑𝑡 (𝑎+𝑝𝑡)

[(𝑎+𝑝𝑡)2+(𝑏+𝑞𝑡)2]3/2 = 1
𝑏𝑝−𝑎𝑞 ( 𝑏√

𝑎2+𝑏2 − 𝑞
√𝑝2+𝑞2 ).

Introduction

We intend to study the motion of a small magnetic dipole in the vicinity of a conducting thin film. In
the problem text, the terms dipole and monopole are to be regarded, respectively, as synonymous with
magnetic dipole and magnetic monopole.

A dipole consisting of a spherical permanent magnet with a uniform magnetization �⃗� (magnetic dipole
moment per unit volume) and a uniform mass density 𝜌0 may be treated as a point-like object when its
radius 𝑅 is small. Such a dipole representation is good for describing the magnetic field that the dipole
produces everywhere outside of its sphere. The representation is also a good approximation for the
force acting on the dipole from an applied magnetic field, whenever distances of field sources from the
dipole are much larger than 𝑅.

A point-like dipole can be considered as a pair of monopoles carrying negative and positive magnetic
charges −𝑞m and 𝑞m respectively. The pair has a vanishingly small separation, but possesses a finite
magnetic dipole moment �⃗� = 𝑞m ⃗𝛿m. Here ⃗𝛿m is the displacement vector from the south monopole (−𝑞m)
to the north monopole (+𝑞m). The position of the point-like dipole is chosen to be that of the north
monopole.

The magnetic field �⃗�mp from a monopole 𝑞m is assumed to have a Coulombic form, given by

�⃗�mp = 𝜇0𝑞m
4𝜋𝑟2 ̂𝑟, (1)

where ⃗𝑟 is the displacement vector from 𝑞m to the observation point (or field point), ̂𝑟 is the unit vector
̂𝑟 = ⃗𝑟/𝑟, and 𝜇0 is the free-space permeability. The force exerted by an applied magnetic field �⃗�′ on 𝑞m is
given by ⃗𝐹 = 𝑞m�⃗�′. It follows, from extending the concept of the monopole field just described in Eq.(1),
that the magnetic field �⃗� from a point-dipole is derivable from a scalar potential Φ , given by the form
�⃗� = −∇⃗Φ. The scalar potential Φ is also called the magnetic potential.

The conducting thin film is uniform with thickness 𝑑 in the 𝑧 direction (Fig. 1). It extends horizontally in 𝑥
and 𝑦 directions to infinity and its upper surface is located at a distance ℎ from either a point monopole
or a dipole. We consider only the case ℎ ≫ 𝑑. This allows us to take the electric current density induced
in the film to be independent of 𝑧. We also assume that the displacement current effect to be negligible.
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Fig.1 A monopole 𝑞m appears at a distance ℎ from a conducting thin film of thickness 𝑑. The
origin of the coordinates is located on the upper surface.

The problem is divided into three parts. In Part A, the system consists of a monopole and a thin film,
while in Parts B and C, a moving dipole and a thin film.

We choose the 𝑧 = 0 plane to coincide with the upper surface of the thin film. The vector ⃗𝜌 = 𝑥 ̂𝑥+𝑦 ̂𝑦 = 𝜌 ̂𝜌
denotes the in-plane position vector.

Part A. Sudden appearance of a magnetic monopole: initial response and subsequent
time evolution of the response in the thin film (3.0 points)
We first focus on the initial response of the conducting thin film when at time 𝑡 = 0 a north monopole
𝑞m appears suddenly at the position ⃗𝑟mp = ℎ ̂𝑧 (ℎ > 0), as is shown in Fig. 1. The monopole remains
stationary in all later times (𝑡 > 0).
Our interest here is the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) in regions 𝑧 ≥ 0 and 𝑧 ≤ −𝑑, and the induced
electric current density in the thin film. The total magnetic field �⃗� = �⃗�mp + �⃗�′, where magnetic fields
�⃗�mp and �⃗�′ are, respectively, due to the monopole and the induced current in the thin film. The initial
�⃗�( ⃗𝜌, 𝑧) we refer to is at the time 𝑡0, which falls within the interval ℎ/𝑐 ≤ 𝑡0 ≪ 𝜏c. Here 𝜏c is a time constant
characterizing the subsequent response of the thin film, and 𝑐 is the speed of light in vacuum. In this
problem, we take the limit ℎ/𝑐 → 0 and hence let 𝑡0 = 0.
The calculation of the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) (at 𝑡0 = 0) is facilitated by introducing an image
monopole. For �⃗�( ⃗𝜌, 𝑧) in the region 𝑧 ≥ 0, the image monopole has a magnetic charge 𝑞m and is located
at 𝑧 = −ℎ. On the other hand, for �⃗�( ⃗𝜌, 𝑧) in the region 𝑧 ≤ −𝑑 , the image monopole has a magnetic
charge −𝑞m and is located at 𝑧 = ℎ.
Initial response

A.1 Obtain the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) in 𝑧 ≥ 0 at 𝑡0 = 0. 0.4pt

A.2 Obtain the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) in 𝑧 ≤ −𝑑 at 𝑡0 = 0. 0.2pt

A.3 Find the initial magnetic flux ΦB through surfaces at 𝑧 = 0, and at 𝑧 = −𝑑. 0.4pt

A.4 Obtain the initial induced electric current density ⃗𝑗( ⃗𝜌) in the conducting thin film
at 𝑡0 = 0.

0.6pt
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For 𝑡 > 0, the total magnetic field �⃗� becomes �⃗�( ⃗𝜌, 𝑧; 𝑡) = �⃗�mp( ⃗𝜌, 𝑧) + �⃗�′( ⃗𝜌, 𝑧; 𝑡), by superposition, with
�⃗�′( ⃗𝜌, 𝑧; 𝑡)due to the induced electric current in the thin film. You are required below to obtain an equation
for 𝐵′

𝑧(𝜌, 𝑧; 𝑡) near the 𝑧 = 0 thin film surface. The time-evolution behavior of 𝐵′
𝑧 would reveal a moving

image-monopole picture for the description of the �⃗�′ field near 𝑧 ≈ 0 in 𝑡 > 0.
The equation for 𝐵′

𝑧 inside the thin film is given below,

𝜕2𝐵′
𝑧(𝜌, 𝑧; 𝑡)
𝜕𝑧2 = 𝜇0𝜎 𝜕𝐵′

𝑧(𝜌, 𝑧; 𝑡)
𝜕𝑡 . (2)

This equation has been obtained from imposing inside the thin film theMaxwell equation and the Ohmic
behavior of the conducting thin film ( ⃗𝑗 = 𝜎 ⃗𝐸, where 𝜎 is the electrical conductivity) while neglecting the
displacement-current effect. Term being neglected on the left-hand side of Eq.(2) is 1

𝜌
𝜕

𝜕𝜌 (𝜌 𝜕𝐵′
𝑧

𝜕𝜌 ), based on
the ℎ ≫ 𝑑 condition.

Subsequent response

A.5 Obtain from Eq. (2) an equation of 𝐵′
𝑧(𝜌, 𝑧; 𝑡) near 𝑧 ≈ 0. The equation contains

first partial derivatives of 𝐵′
𝑧(𝜌, 𝑧; 𝑡) with respect to 𝑧, and, separately, to 𝑡.

0.6pt

A.6 Solve for the general form of 𝐵′
𝑧(𝜌, 𝑧; 𝑡) near 𝑧 ≈ 0 in 𝑡 > 0. 0.4pt

A.7 Show that your solution inA.6 reveals amoving image-monopole picture for the
magnetic field𝐵′

𝑧(𝜌, 𝑧 ≈ 0; 𝑡), with a downwardlymoving velocity. Find the speed
𝑣0 of the imagemonopole in terms of known parameters from the problem text.

0.4pt

Part B. Magnetic force acting on a point-like dipole moving with a constant velocity and
at a constant h (4.0 points)
The moving image-monopole concept developed in A.7 for 𝐵′

𝑧 near 𝑧 ≈ 0 can be assumed to hold also
for the �⃗�′ field in the 𝑧 ≥ 0 region. This assumption is good as long as the time evolution is sufficiently
slow in the conducting thin film response.

Fig. 2 A monopole 𝑞m moves with a constant velocity ⃗𝑣 and a constant height ℎ from the con-
ducting thin film. As shown are its coordinates at 𝑡 = 0.

A monopole 𝑞m (Fig. 2) is caused to move in a constant velocity 𝑣 ̂𝑥, with 𝑣 ≪ 𝑐, and a constant height,
at 𝑧 = ℎ, motion up to the present moment (𝑡 = 0). Its present coordinates (𝑥, 𝑦) are (0, 0). Our focus is
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on the magnetic potential Φ+ due to all image monopoles generated by this moving monopole along its
trajectory.

By splitting 𝑞m's trajectory into discrete time steps (a very small time step 𝜏 ), we replace the motion
of the 𝑞m by a hopping at the beginning moment of each time step. The hopping is represented by a
simultaneous removal and creation of the monopoles. The position of the created monopole coincides
with a point on its trajectory right at the beginning moment of this time step. Thus the position of
the removed monopole coincides with its trajectory position at the beginning moment of the previous
time step. This is achieved by a simultaneous sudden appearance of two magnetic monopoles: 𝑞m and
−𝑞m at, respectively, the trajectory positions corresponding to the beginning moments of this and the
previous time step. The two positions are separated by a hopping distance Δ𝑥 = 𝑣𝜏 . This time-step
approach facilitates the determination of all the image magnetic monopoles, and their positions, that
are generated in all the time steps.

A moving monopole

B.1 Write down the present (𝑡 = 0) positions of all the image monopoles of the
types 𝑞m and −𝑞m. The beginning moments of the time steps are at 𝑡 = −𝑛𝜏,
where 𝑛 ≥ 0.

0.8pt

B.2 Find the summation form of themagnetic potential Φ+(𝑥, 𝑧) at 𝑡 = 0 from all the
image monopoles in B.1. Calculate Φ+(𝑥, 𝑧).

0.7pt

Fig. 3 A dipole with an upward-pointingmagnetic dipole moment �⃗� moves with a constant ⃗𝑣
and a constant height ℎ from the conducting thin film. As shown are its coordinates at 𝑡 = 0.

Now consider a point-like moving magnetic dipole as shown in Fig. 3. The dipole, with a dipole moment
�⃗� = 𝑚 ̂𝑧, is caused to move in a constant velocity 𝑣 ̂𝑥 , and a constant height (𝑧 = ℎ) motion up to the
present moment (𝑡 = 0), where its present coordinates are at (0, 0). The point-like dipole can be rep-
resented by two slightly displaced monopoles as has been mentioned in the Introduction section. The
location of themagnetic dipole is chosen to be that of the north monopole, and �⃗� is assumed kept fixed.

A moving dipole

B.3 Find the force ⃗𝐹 acting upon the point-like magnetic dipole by the conducting
thin film at 𝑡 = 0.

1.5pt

Relation between 𝑣0 and 𝑣
For the numerical evaluation in thisPartbelow, we consider a conducting thin film that ismadeof copper,
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such that 𝜎 = 5.9 × 107 Ω−1m−1, 𝑑 = 0.50 cm, and ℎ = 5.0 cm.

B.4 Calculate the value of 𝑣0, the speed of the image dipole as according to A.7. 0.3pt

It is known that the penetration depth 𝛿 (called skin depth), which distance an electromagnetic wave can
penetrate into a conducting slab, depends on the angular frequency 𝜔 of the wave. The dependence is
given by

𝛿 = √ 2
𝜔𝜇0𝜎 . (3)

For the consideration below, we take 𝜔 = 𝑣L/ℎ, where 𝑣L equals the larger velocity of 𝑣 and 𝑣0.

B.5 Obtain the 𝑣 dependence of 𝑣0(𝑣) in both the small and the large 𝑣 regimes. 0.4pt

B.6 Obtain the critical velocity 𝑣 = 𝑣c at which the two regimes in B.5meet. 0.3pt

Part C. Motion of the magnetic dipole when the conducting thin film is superconducting
(3.0 points)
The consideration above can be applied to the case of type-I superconductors, wheremagnetic fields are
completely repelled from the superconductors (the Meissner effect) at all times, by taking the limit that
electrical conductivity 𝜎 → ∞.

Here we consider a point-like magnetic dipole with a horizontal magnetic dipole moment �⃗� = 𝑚 ̂𝑥, a
mass 𝑀0, and located at (𝑥, 𝑦, 𝑧) = (0, 0, ℎ). We focus on vertical motions of the magnetic dipole under
the action of a gravitational field, with gravitational acceleration ⃗𝑔 = −𝑔 ̂𝑧. Weak coupling between the
given dipole orientation and its center-of-mass motion is assumed and is neglected. As such, we fix the
magnetic dipole moment, as is given above, for our considerations below. In addition, we assume an
ultra-high vacuum environment so that no damping to the motion from the residual air needs to be
considered.

C.1 Find the equilibrium distance ℎ0 of the dipole from the superconducting thin
film.

1.2pt

C.2 Find the dipole angular frequency Ω of oscillations about the equilibrium. 0.8pt

Physical parameters for a spherical permanent magnet are as follows: radius 𝑅 = 1.0 𝜇m, mass density
𝜌0 = 7400 kgm−3, 𝑔 = 9.8 ms−2, 𝜇0 = 4𝜋 × 10−7 TA−1m, and magnetization |�⃗� | = 75 × 10−2 T/𝜇0.

C.3 Calculate the value of ℎ0. 0.7pt

C.4 Calculate the value of Ω . 0.3pt


