Solution
Water Hammer

Part A. Excess Pressure and Propagation of Pressure wave
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Fig. S1. Pressure wave (shaded) with speed ¢

A.1 (1.6 pt) Excess pressure and speed of propagation of the pressure wave

When the valve opening is suddenly blocked, fluid pressure at the valve jumps
from P, to P; = P, + AF;, thus sending a pressure wave traveling upstream (to the
left) with speed ¢ and amplitude AP,. Taking positive x direction as pointing to
the right, the velocity of fluid particles next to the valve changes from v, to v,

(v1 < 0). Thus the velocity change is Av = v; — v,.

In a frame moving to left (along —x direction) with speed ¢, i.e., riding on the
wave (see Fig. S1), velocity of fluid in the pressure wave is ¢ + v, while that of the
incoming fluid in the steady flow ahead of the wave is ¢ + v,. Let p; be the density
of fluid in the pressure wave. From conservation of mass, i.e., equation of continuity,
we have

po(c +vy) = py(c +vy) (al)
or, by letting Ap = p; — po,
A_pzl_@_vo—vl_ —Av

P1 p1 cH+vy ¢+

(a2)

Moreover, impulse imparted to the fluid must equal its momentum change. Thus, in
a short time interval T after the valve is closed, we must have

po(c +vo)t[(c+vy) — (c +vo)] = —TAP = (P, — P,)7 (@3)
or

APS=—p0c(1+?)(v1—vo)=—poc(1+?)Av = a=—(1+%) (a4)

If vy/c <1, we have
AP, = —pycAv (a5)
Note that the negative sign in Egs. (a4) and (a5) follows from the fact that the
direction of propagation is opposite to the positive direction for x axis (and velocity).

Otherwise the sign should be positive. Note also that for a compressional wave



(AP; > 0), the velocity imparted to the fluid particle is in the direction of propagation,
while for an extensional wave (AP; < 0), the velocity imparted is in the opposite
direction of propagation.

Egs. (a2) and (a4) can be combined to give

Vo2 Ap
_ 2 20y =X
AP, = pyc (1 + c) o (ab)
From the definition of the bulk modulus B, which is assumed to be constant, it
follows
Vo — V- 1 -1 A
APS=BO 1_p /Po /P1=B_.0 @a7)
Vo 1/po P1
From Egs. (a6) and (a7), we obtain
Van 2
2 20y _
PoC (1 + c) B (a8)

Thus

’B
c= |[——v, = y=1 B = —v, (29)
Po

However, if in the definition of bulk modulus one uses the fractional change of
density Ap/py instead of —AV /V,, the resultis then y =1 + AP, /B.* Either result
is considered valid.

If vy/c <1, we have
c= |— (a10)

*The result (a7) is pointed out by Dr. Jaan Kalda.

A.2 (0.6 pt) Values of ¢ and AP, for water flow
Ans:
From Egs. (a5) and (al10), we have
c=+B/po
AP = pocvy = UO\/pO_B
Putting in the given values v, = 4.0 m/s, v; =0, p, = 1.0 X 103 kg/m3,
and B = 2.2 X 10° Pa, we have
c=+B/py=15x103m/s (b1)
AP, = v4,/poB = 5.9 MPa (b2)
so that AP; is nearly 59 times the standard pressure.
Note that v,/c~10"3 so that the use of approximate formulas (a5) and (a10) is

justified when solving tasks in this problem.



Part B. A Model for the Flow-Control Valve

(B.1) (1.0 pt) Excess pressure at valve inlet
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Fig. 2. Valve dimensions and contraction of jet.

Ans:

The model assumes the fluid to be incompressible. Neglecting effects of gravity,

Bernoulli’s principle gives us

1 1
Epovizn + Py = Epovcz + P,

Equation of continuity and definition of contraction coefficient imply that

R?v;, = nr2v. = nr?C.v,
Therefore
2

1 /R

k()
From Egs. (c1) and (c2), we obtain

AP, = Py, — P, =1p vE li(ﬁf—ll =Ep vE

1 1 a 2 0Yin Cc2 r ) 0%in

This may be cast into a form involving only dimensionless variables:

AP, 1 v;n2[1 /R\* k /N2
=30 =) ‘1125(%)

-[e() ]

Thus we see from eq. (c4) that APy, is a quadratic function of vy,.

where

Part C. Water-Hammer Effect due to Fast Closure of Flow-Control Valve

(C.1) (0.6 pt) Pressure P, and velocity v, when the valve is fully open
Ans:
According to Bernoulli’s theorem and the definition of P, we have

(cD)

(c2)

(c3)

(c4)

(c5)



%.001754'[)0=%P0Vc2+Pa=0+Pa+Pogh=Ph (d1)

From the second equality in the preceding equation, it follows

ve = J2gh
Furthermore, from continuity equation and C.(r = R) = 1.0, we have

nR?*vy = n(C.R)?v, = mR?*v, = vy = v, = /2gh (d2)
Therefore

Py =P, = Py — pogh (d3)
(C.2) (1.2 pt) Pressure P(t) and flow velocity v(t) just beforet = % = % and t=T7
Ans:

When the valve is open, the flow in the pipe is steady with velocity v, and
pressure P,. The sudden closure of the valve causes an excess pressure AP, on the
fluid element next to the valve, causing it to stop with velocity v; = 0. The velocity
change is thus Av = v; — vy, = —v,. Thus, according to Eq. (a5), the excess pressure
on the fluid is given by

AP, = —pocAv = pycv, (el)

Attimet = t/2 = L/c, the pressure wave reaches the reservoir. The velocity of
fluid in the length of the pipe has all changed to v(t/2) = v, = vy, + Av =0 and
the fluid pressure is P(t/2) = P; = Py + AP, = Py + pycvy.

At the reservoir end of the pipe, fluid pressure reduces to the constant
hydrostatic pressure P, = Py + pogh. Equivalently, we may say that the reservoir
acts as a free end for the pressure wave and, in reducing its excess pressure to Py,
causes a compression wave to be reflected as an expansion wave. Relative to the
hydrostatic pressure P, the amplitude of the incoming pressure wave is AP;, =
P; — Py, hence the reflected expansion wave will have an amplitude AP] = —AP;,
and we have

AP{ = —=APy, = Py — P, = (Py + pogh) — (P + pocvy) = —poc(vy — gh/c) (e2)
(Here we allow the pressure amplitude to have both signs with negative amplitude
signifying an expansion wave.) This will cause the fluid at the reservoir end of the
pipe to suffer a velocity change (keeping in mind that the direction of propagation is

now the same as the +x axis)

Avy. = +AP[/(poc) = —(vy — gh/c)
Consequently, its velocity changes to

h
Vip =V +Av. =0 — (vo - %) (e3)

Ahead of the front of the reflected wave, conditions are unchanged and the particle
velocity is still v; = 0 and the fluid pressure is still P, = P, + AP, but behind the
wave front the particle velocity now becomes v,, = — (v, — gh/c) and the

pressure becomes



P1+AP1'=(P0+pocv0)—poc(v0—%>=P0+p0gh (e4)
Therefore, just moment before t = t = 2L/c when the front of the reflected wave
reaches the valve, the fluid in the whole length of the pipe will be under the
pressure P(t) = Py + pogh = P, as given in Eq. (e4) , and all fluid particles in the
pipe will move, as given in Eq. (e3), with velocity v(7) = v,, = —v, + gh/c, i.e., the

fluid in the pipe is expanding and flowing toward the reservoir.
Part D. Water-Hammer Effect due to Slow Closure of Flow-Control Valve

(D.1) (3.0 pt) Recursion relations for AP, and v,
Ans:

Enforcing the approximation P, = P, + pogh = P, is equivalent to putting
h = 0 in all of the results obtained in task (e).
(1) Partial closingn =1

At the valve, immediately after partial closing n = 1, fluid pressure jumps
from P, to P, causing flow velocity to change from v, to v;. The pressure and

velocity changes are related by Eq. (a5):
1
— (P, —Py) =—(v, — f1
,DoC( 1 0) (vy — vp) (f1)

Just before reflection by the reservoir, the fluid in the entire pipe has pressure P;
and velocity v,. After reflection by the reservoir, i.e., a free end, and before the start

of valve closure n = 2, the fluid in the entire pipe has pressure (Eq. (e4) with h = 0)
Py — (P, — Py) =Py
and velocity

—(P, - P,
v{=v1+M=v1+(vl—v0)
PoC

(2) Partial closingn = 2
Immediately after partial closing n = 2, valve pressure changes from P, to P,,
causing flow velocity to change from v;{ to v,. The pressure and velocity changes are

given by Eq. (a5):
1
E(PZ—PO)=—(v2—v{)=—v2+v1+(v1—v0) (f2)
0
Using Eq. (f1), we may rewrite the preceding equation as
1 1
— P, —Py) = —(v, — ——(P; — P, f3
DoC (P, 0) (v, — 1) ,DOC( 1 0) (f3)
Just before reflection by the reservoir, the fluid in the entire pipe has pressure P,

and velocity v,. After reflection by the reservoir and before valve closure n = 3, the

fluid in the entire pipe has pressure
P, — (P, —Py) =P,
and velocity

v, = v, + (v, —vg)



(3) Partial closingn = 3

Immediately after partial closing n = 3, valve pressure changes from P, to P,
causing flow velocity to change from v; to v5. The pressure and velocity changes are
given by Eq. (a5):

1
p_C(P3—Po):—(U3—Ué):—U3+V2+(U2—U{) (f4)
0
Using Eq. (f2), we may rewrite the preceding equation as
1 1
—(P; —Py) = —(v3 — —— (P, — P, f5
,DOC( 3 0) (v3 —v,) PoC( 2 0) (f5)

Just before reflection by the reservoir, the fluid in the entire pipe has pressure P;
and velocity v5. After reflection by the reservoir and before valve closure n = 4, the
fluid in the entire pipe has pressure

P3—(P3_Po)=Po
and velocity

vz = v3 + (v3 — v3)
(4) Partial closingn = 4

When the valve is fully shut at valve closing n = 4, the valve becomes a fixed

end, so the fluid velocity at the valve changes from v to v, = 0. The pressure

P, at the valve is then given by Eq. (a5):

1 1
— Py —Py) = —(vy —v3) = —vy, +v3 ——(P3 — Py) (f6)
o€ o€

Finally, if we take note of the fact that AP, = 0 and v, = 0, then all equations

obtained above relating excess pressures and velocity changes after valve closings all

have the same form:

AP, ( ) AP,_4
poC T P Po€

To solve for AP, = P, — P,, we note that, from Egs. (c3) and (c5), we have

(n=12734) (£7)

another relation between AP, and v,;:

AP, = %knpovn2 (n=1,2,3) (f8)
where C, represents C. for r =17, and
1 /R\*
k, = [C—% <Z) - 1] (n=123) (f9)
Combining Egs. (f7) and (f8), we have a quadratic equation for v,,:
2
%kn (UC—”) + U—C” + (Apinc‘zl - U"C‘l) =0 (n=123) (f10)

which can be solved readily using the formula

, —1+\/1+2kn(%—%>
n
no_ =123 f11
- L (n=123) (f11)
If both AP,_;/(pc?) and (v,_;/c) are known, Eq. (f11) may be used to

compute v,,/c and then find AP,/(pc?) by using Eq. (f8). Therefore, Eq. (f7) may




be solved iteratively starting withn = 1 untiln = 3. For n = 4, we know v, = 0, so
Eq. (f7) may be used directly to find AB,.

Note that, from Eq. (f8), AP,,_; is a quadratic function of v, _4, so thatif v,_;
is known, then v, may be computed using Eq. (f11) and then AP, may again be

computed using Eq. (f8).

(D.2) (2.0 pt) Estimating AP, and pycv, by graphical method

Ans:

To solve Egs. (f7) and (f8) using graphical method, we rewrite them as follows:

AR, = —(poCVn — PoCVp_1) — APp_4

AP,

e (bocvi)?

0

(n=1,234)

(n=1,234)

(1)

(82)

In a plot of AP vs. pycv, Eq. (g1) and Eq. (g2) correspond to a line passing through
the point (pycv,,_1, —AP,_;) with slope —1 and a parabola passing through the
origin, respectively. Thus one may readily obtain the solutions for each step of valve

closing by locating their points of intersection, starting withn = 1. The result is

shown in the following graph.

AP/MPa

(pocvs, —AP3)

AP-pcv at valve

(pocvy, —AP;)

n=3,r/R=0.2 —@—n=2, r/R=0.3

pcv/MPa

(pocvy,—APy)

—8—n=1, r/R=0.4

Excess Pressures and particle velocities at the valve for slow closing

no| m/R Cn kn vp/(m/s) | pocvy/MPa | AF,/(MPa) | AP,/(pocvo)
0 | 100 1.00 0.0 4.0 6.0 0.0 0.0

1 | 040 | 0631 | 971 3.6 5.8 0.62 10 %

2 | 030 | 0622 | 318 2.5 3.8 1.0 17%

3 | 020 | 0616 | 1646. 1.1 1.7 1.1 18%




0.00

0.0

0.0

0.64

11%

poc = 1.50 X 106 kgm~2s71

vy =4.0m/s




Appendix
(The following table and graph are for reference only, not part of the task.)

Forvy = 4.0 m/s,c = 1.5 X 103 m/s, and p = 1.0 X 103 kg/m3, the results

for v, and AP, are shown in the following table and graph. They are computed

according to equations given in task (f). Note that for a sudden full closure of the

valve, we have AP qden = PCVy = 6.0 MPa.

Excess Pressures and particle velocities at the valve for slow closing

valve closing step n

n Tn/R Cn kn vn/(m/s) pcvn/MPa APn/(MPa) APn/(pCUO)
0 | 1.00 1.00 0.0 4.0 6.0 0.0 0.0
1 | 040 | 0.631 | 97.1 3.58 5.37 0.624 10 %
2 | 030 | 0.622 | 318. 2.50 3.75 0.997 17 %
3 | 0.20 | 0.616 | 1646. 1.13 1.695 1.06 18 %
4 | 0.00 0.0 0.0 0.643 11%
AP, /MPa Excess pressures at valve
1.5
1 —
0.5
0
0 1 2 3 4 5




APhO 2021 Theoretical Question (1 Marking Scheme) (2021/04/13) p.1/3

[Marking Scheme] Theoretical Question 1

Water Hammer

(Task)
points

Marking Scheme for Answers to the Problem

Part A

(A1)
1.6

Excess pressure of pressure wave a=—1+wvy/c)

0.1 expression for impulse.

0.1 expression for momentum change.

0.1 equating impulse to momentum change

0.2 correct equation of continuity for compressible fluid.
{0.1 solving by use of energy conservation}

0.2 negative sign of «

0.3 correct magnitude |a| =1+ vy/c
{0.1for |a| = 1}

YVVVVYVYYYVYYV

Speed of propagation L =-vy, y=1=(1+AP,/B)
» 0.1lrealizing —AV /Vy, = Ap/p, = Ap/py

» 0.1 negative sign of B

» 0.2 correct magnitude |B| = v,

> 02 y=1=~(1+AP/B)

> {0.1if Jy[ ~ 1}

Numerical values of ¢ and AP; for water flow.

» 0.2 + 0.1 for magnitude and unit of ¢ = 1.5 x 10% m/s.

» 0.2 + 0.1 for magnitude and unit of AP, = 5.9 MPa.

> {0.1 + 0.1 for correct order of magnitude for ¢ and AP}

Part B

. k 5 1 (R\*
Excess Pressure at valve inlet. AP, = > PoVin, k= [— (—) - 1]

ci\r
0.2 using inlet and vena contracta in Bernoulli theorem.
0.1 correct equation of continuity for incompressible fluid
0.1 deduce 72 = r2C...
1 (R\?
0.1 deduce v, = = (;) Vip-

C

0.5 obtain APy, =2 pov? with correct k.

>
>
>
>
>
> {0.2 for AP, x v2 .}

Part C

(C.1)
0.6

Pressure and velocity when valve fully open. P, = P, v, = \/2gh
» 0.1 correct equation of Bernoulli theorem.

» 0.1 correct equation of continuity.

» 0.1realizing C.(r =R)=1.0

» 0.1 vy =.2gh

> 0.2 P, =P,

(C2)
1.2

Pressure P(t) and flow velocity v(t) ast - t/2 and t - 7.
0.3 for P(— 1/2) = Py + pycv,
{0.1 for P(—= t/2) = pycvy}
0.3for v(—1/2)=0
0.3for P(= 1) = Py + pogh = Py
{0.1for P(= 1) = Py}
0.3 for v(— 1) = —v, + gh/c
{0.1 for v(—= 1) = —v,}

YVVYVYYVYYVYYVY




APhO 2021 Theoretical Question (1 Marking Scheme) (2021/04/13) p.2/3

Part D | (D.1) [Recursion relations for AP, and v,,.

5.0 3.0 AP _ (= — APn-y =
. PoC (v‘n vn—l) PoC (n 1)2;314)

—1+ 142k (=2 APno1
Vn _ \/ ( c pc? ) (Tl _ 1,2,3)

c kn
0.2 setting h =0 to simplify equations.
0.2 use AP = Fp,cAv for waves moving in Fx direction.
0.2 sign change of AP upon reflection at reservoir end.
0.2 no sign change of Av upon reflection at reservoir end.
0.2 no sign change of Ap upon reflection at valve end.
0.2 sign change of Av upon reflection at valve end.
1.0 correct recursion formula for AP, n = 1,2,3,4.
0.4 use AP, = %knpov,% to eliminate AP, in recursion formula

0.2 take positive root when solving for ”T”,n =123
(D.2) (AP, and pycv,, by graphical method. 2

PoC = _(vn - 1Jn—l) - DoC
20 I 04 (0.1 each) AP, Vs. pycv, line (n = 1,2,3,4) passing through
(poCVn—1, —AP,_,) Withslope = -1 (n =1,2,3,4).

0.3 (0.1 each) parabola for AP, vs. v, curve (n = 1,2,3).

0.1 Start with (pycv, = 6.0 MPa, AP, = 0)

0.1 End with v, =0

0.4 (0.1 each) each label n at (p,cv,, AP,) (n=1234)

0.4 (0.1 each) estimate of AP, (n=1,2,3,4).

0.3 (0.1 each) each estimate of pycv, (n=1,2,3)
Refer to plot and table on next page for values of (pycv,, APR,).

YV VVYVVVVVY

APp_q

YV VVYVYVYY

Partial outcomes obtained for later problems which are incorrect solely because of
errors being carried forward but are otherwise reasonable will not be further penalized.
However, this rule does not apply to incorrect final outcomes.



APhO 2021 Theoretical Question (1 Marking Scheme)

(pocvs, —AP3)
n=3,r/R=0.2 —e—n=2, r/R=0.3

AP-pcv at valve

(pocvy, —AP;)

pcv/MPa

(2021/04/13)

(pocvy,—AP;)

—e—n=1, r/R=0.4

p.3/3

Excess Pressures and particle velocities at the valve for slow closing

n /R Cn kn v, /(m/s) PoCVy/MPa AR, /(MPa) AR,/ (pocvo)

0 1.00 1.00 0.0 4.0 6.0 0.0 0.0

1 0.40 0.631 97.1 3.6 5.8 0.62 10 %

2 0.30 0.622 318. 2.5 3.8 1.0 17%

3 0.20 0.616 1646. 1.1 1.7 1.1 18 %

4 0.00 0.0 0.0 0.64 11%
poc = 1.50 X 106 kgm=2s1 vy = 4.0m/s




Theoretical Question 2: Ray tracing and generation of entangled light

Part A. Light propagation in isotropic dielectric media

A.10.4 pt

Ans: \/;706

Solution:

From kx E = wB = wuoH and kx H = —wD, one obtains k x (Ex E) = —w?uyD. By using
the given identity A x (B x C) = B(A-C)—C(A-B), one finds k x (k x E) = k(k-E) — k2E.
Since D -k = 0 and D = ¢E, we find k x (k x E) = —k?E and the relation
kx (k x E) = —w?uoD reduces to —k2E = —w?pioek.

Now the phase delocity is determined by kr—“t) = 0, we find that the phase velocity
¥, = 4 = @[ Clearly, we have & = \/W' Hence v, = \/}1706

A.2 0.2 pt

Ans: c,/jp€

Solution:

Fromvp:ﬁzﬁ,weﬁndn:c\/ﬁ

A.3 0.4 pt

Ans: /27, Up = Up = \/%

Solution:

To find the speed of the ray, we first note that the direction of the energy flow, given by
the Poynting vector S=ExH , is in the same direction of k. The electromagnetic energy

density u = u, + u,, with u, = %Eﬁ and u,, = léf[

Now, from kxH = —wﬁ, one has D = ——ka Hence u, = pE kx H = Lpl% ExH.
Similarly, from kxE = wé, we find u,, = ﬁBJ{;x E= ﬁ/%ﬁ x H. Hence u = %/%Exé
We find v, = S/u =v, = \/ﬁ

Part B. Light propagation in in uniaxial dielectric media

B.1 1.5pt

Ans: n = n,, B:j:l%xgzj:(—cos&(),siné), D==+jorn= Lol B = +j,

\/ng sin2 0+n2 cos2 0’
D = +y X k = +(cos 6,0, —sinf). For § = 0, there is only one permitted value for the

refractive index
Solution:

From k x E = wuoH and k x H = —wD, one obtains k x (k X E) = —w?pD. Writing out



components and using w = <k, we find

2

—cos?0F, + cosOsinE, = —n—gEx,
n
2 .2 n
—cos”0E, —sin“ 0F, = _ﬁEy’
n2
—sin?0FE, + cosOsinbE, = ——;Ez.
n

After a bit rearrangement, we obtain

o

n2
(—g — cos? 9) E, 4+ cosfsinfFE, =0

n
n2
cosfsinE, + (—; — sin? 0) E,=0.
n
The vanishing of the determinant yields
2 2 2
(1 — %) {(% — cos? 9)(% — sin® ) — sin” 6 cos® 0] = 0. (1)

Clearly, for a general 6, we have two solutions for n:

(1) n=mn,

In this case, E, = E, = 0. E is parallel to the y axis. From k x E = wB and k x (Moé) =
—wﬁ, we obtain the directions of B and D as B = +k x g = £(—cosf,0,sinf) and
D =—kx B==+(0,1,0) = +4.

(2) (Z—é — cos? 0)(2—% — sin® @) — sin®f cos? § = 0.

\/ng sin? +n2 cos? 0
one refractive index. This is the direction of the optic axis.

After rearrangement, we find n = . Clearly, at § = 0, n = n,, there is only

In this case, E, = 0. Hence E lies in the 2z plane. Hence the relation kx E=wB implies

B = 4. The relation k x (uoB) = —wD implies D = +§ x k.

B.2 0.8 pt
Ans: (1) when n = n,, E = 4§ and this is an ordinary ray. tana = 0.
— NoNe n — 1 _ 2 2 & ija 1
(2) when n = ok E =+ /= pre Sin2{9( n; cos#,0,n;sinf) and this is an

_ (n2-n?)tan@

extraordinary ray. tan o T a6

Solution:
(1) For n = n,, both E and D are parallel to the y axis. This is an ordinary ray with

tana = 0.



B o B o . .
(2) For n = e rres n # n,, £, = 0. By substituting n back into the equations of

2
E, and E,, we find that Zg

n2
ne

sindFE, 4+ cosE, = 0. Hence the electric field lies in zz plane

with £ = i\/ng — ;Mg sm29(_nz cos6,0,n2sinf) ( B points in Fy direction.). Therefore,
FE is not perpendicular to k£ and lies in the xz plan in together with D and k. This is the
extraordinary ray.

Since k x H = —wﬁ, D is perpendicular to k. Hence D = +(—cos#,0,sin0). Let B = 7,
the relative orientation of £ and D for a given # are shown in the following figure for the

case when n, < n,.

Z —_
k
9 D1k
B X
v D
E
Let the angle relative to x axis be #; and 6, for E and D. We have tan 0, = —tanf and
2 _ 2_ .2 /]

tanf; = —Z—é’ tanf. Hence tana = tan(fy — 01) = 1tj?a9591t?;n9912 = %’%ﬁﬂ%‘zt)ats;a. The same

result remains when n, > n, except that tan a < 0, indicating that the relative orientation

of E and D is reversed.

B.3 0.6 pt
Ans: n=mn,, E = +k x Z/sinf and this is an ordinary ray.
A~ 2 9]% 2 gin2 §—n2 20)2 L.
when n = Lot , B =+ 1 e tom H"O.S"g necos 92 and this is an
\/ng sin? 4-n2 cos2 @ \/né cos? f+nl sin? @ s

extraordinary ray.

Solution: The problem has an axial symmetry so that in the plane formed by the z
axis and l%, one can write k = k,z + kﬂ;‘l and E = E.zZ + ELI%L, where l;:l is perpen-
dicular to 2. Clearly, we k., = kcosf, k, = ksinf, E, = Fcosf, and £, = FEsinf.
Writing out the components for the equation: k x (l; X E) = —w2u05, we get ex-
actly the same equations except that FE, is replaced by E,. Hence all of the solu-
tions are the same except & is replaced by k.. Since k,sinf = k — cos 0z, we obtain

fe—cos 0z s
that when n = Lot , B =+ L [—n? cos 0% + n2sinfz] =
\/n% sin? 0+n2 cos? 0 \/n‘c} cos2 0+nisin S

3



1 —n?2 cos Ok+(n2 sin? 6—n2 cos? §) 2

\/né cos2 f4+nl sin @ sin ¢
B.4 0.8 pt
Ans: (1) n =mn,, tana, =0, v, = =, S = (sind, 0, cos 0)
2 2 102 12
Q)= e tana, = B o e ey
S = L (n2sin@,0,n? cosh)

\/n‘é cos2 0+n4 sin? 0
(3) me = /(5 22 + (S - 2

Solution:

The direction of the energy flow is given by the Poynting vector, S = Ex H. Let the energy
density of EM wave be u and the ray velocity be v,. Then v, = 2. Here u = u, + u,, with
Up = %E . D and u,, = %é . H. There are two cases:

(i)n = n,, E = (0, E,0), D=c¢E, k x E:wugﬁ, kx H=—-wD.

l%, E and H are mutually perpendicular to each other. Hence S is parallel to l;;, ie.,

S = (sin#, 0, cosA) and tan a, = 0.

Now from k x H = —wl_j, one has D = —il%xf_f. Hence u, = —ﬁﬁl%xﬁ = ﬁ/%ﬁxﬁ
Similarly, we find u,, = 53— H kx E = %f{ E x H. Hence u = Uil% E x H. Since S = k,
Weﬁndu:Ui. HencevT:%:vp:%:ni.

P o
(i) n = Lol . In this case, we can tak B = (0, B,0) (negative y direction works

\/ng sin? 4-n2 cos2 @
as well). D, E and k are in the xz plane and D is perpendicular to k. Therefore, the angle

between S = tﬁ x B and k is equal to the angle between D and E, ie., a, = a. This is
shown in the following figure when n, < n, (for n, > n,, both a and «, are negative, the

relative orientation of E and D is reversed and ordering of S and k are switched).

ol T
e
= W




(n2—n2)tan@

23 tanZ0 Now, because

Therefore, from problem (d) (ii), we get tana, = tana =

u= vik Ex H = vi|E X H| cos a, we obtain v, = % = 2~ Hence the phase speed v, and
p p
2 20 20
the ray speed are related by v, = v, cos. From tan«, one finds cos v = == tnpsint0
\/n;l cos2 0+nisin 0
_ ¢ _ ¢ nd cos? f+nl sin? 0
Hence v, = ncosa  noNe \/n?Z cos2 +n2sin? 6"
. ) . . 2_n2)sin 6 cos
Clearly, S = (sin(f 4+ a),cos(d + «)). Since sinq = —Raznedsinfeosd g co5q =
\/n‘é cos? 0+nd sin? 9
2 29 2 g 29 A .
neccos Trme S e find S = L (n2sin@,0,n? cos®).
\/ngc cos2 f+nd sin? 0 \/n‘elc cos2 +nd sin? 0
2 2 2 2 oin2 2 o 2,2 2 2 A ~

2 _ [ c _ 92 92nZcos®f+nssin“h _ (nZsinf)*ni+(nZcosf)ng _ L aN2,.2 .
From ns = (vr> = oM nd cos? O+ndsin?0 ndcos2 0+nisin?260 we find n, = (S QZ) e + (S
2)2n? .
B.5 1.1 pt
Ans: A= Pi(n%sin’6, — P,), B = —2P3(n*sin’6;, — P,), C = P,n?sin® 6, — P?

. = I 1 1), = 3\~ s~ Uq 1), = [N~ S1n" 04 3
¢ — O tan 92 — nne sin 61
, —MesNZlL

noy/n2—n?sin? 6,

¢ =m/2, tanfy = %.
Solution:
Let the distance along z axis between A and B be d and the point of the interface that
the ray passes be the origin O. The coordinates of B and A points can be expressed as
(hg,0,2) and (hy1,0,d — ). The distances are then given by AO = d; = \/h? + (d — 2)? and
OB=d, = \/W . The propagation time from A to B is determined by the ray speed
vy as (ding + dang)/c, where ng; are ray indices for medium ¢. According to the Fermat’s
principle, we need to minimize the optical path length defined by A = ding + dong. Ac-
2, = (8% - )2 + (35

cording to problem (e), we have n2, = Z9)?n2. For an isotropic medium,

the ray index is simply the refractive index, i.e., ng; = n. Using the following relations

OB

ha
- Ty = cos(¢p — by) = —cos ¢ + ° sin o,
2 2

OB ds
gz; cZy = cos(g + ¢ —0y) =sin(fy — ¢) = 5 cos ¢ — z sin ¢,
we find
A =ny/h3 + (d — 2)2 4+ \/(hacos ¢ + zsin ¢)2n2 + (—hysin ¢ + z cos ¢)2n2.
The minimum occurs When = 0. We obtain
z—d (hy sin ¢ cos p(n? — n2) + z(n?sin® ¢ + n? cos? ¢)

+
\/ﬁ V/(hg cos ¢ + zsin ¢)2n2 + (—hysin ¢ + z cos ¢)2n2



Recognizing = sin #;, moving the second term to the left and taking square of

hi+(d—z)?
the equation, we obtain

(Pg — P1 tan92)2

2 2.2
n’sin“ 6, =
! Pltan292—2P3tan92+P2’

where P, = n2cos? ¢ + n2sin® ¢, P, = n2sin® ¢ + n?cos? ¢, and Py = (n?2 — n2)sin ¢ cos ¢.

By expanding the above equation out, we find
Py(n?sin®0; — P)tan® 0, — 2P3(n*sin? 0, — P,) tan6; + Pyn*sin® 6, — P32 = 0.

Hence A = Py(n?sin?6, — P), B = —2P;(n?sin?0; — P1), and C = Pyn®sin0, — P2.
For ¢ = 0, we have P; = 0, P, = n2, and P, = n?. We find n?(n%sin®6; — n?)tan? 6, +

n?n?sin?0; = 0. Hence tanf, = __ mnesinby
noy/nZ—n?sin? 6,
For ¢ = m/2, we have P5 = 0, P = ng and P, = ng We find

nn, sin 01

ney/n2—n2sin? 0y

n2(n?sin?0; — n?) tan? 0y + n2n%sin® §; = 0. Hence tan 0y =

Part C. Entanglement of light

C.1 0.8 pt

Ans:(1) w = w; £ we, k= El + 152

(2) hw = hwy £ hws, hk = hEl + hEg represents the energy conservation and momentum
conservation of photons.

(3) Splitting of photon: Energy conservation w = w; + wp, momentum conservation: k=
Ky + k.

Solution:

For a light wave with frequency w and E, the corresponding polarization density and the
electric field are in the form of A cos(wt — k- ), which can be rewritten as é(ei(“t’g":‘) +
e_i(‘”t_’;ﬂ). By substituting the above form into the equation PNF = D2k Xg,)fEJEk and
equating the relevant exponents, we find all possible relations are

—

w:w1+wQ,k:E1+Eg.

Or w=w —wy, k =k — ka,
where we have made use of the fact that the frequency is positive. The meaning for the these
relations is clear if one recall that the energy and momentum of a photon is given by Aw and

hik. The relation of hw = hwy + hws, Bk = h/% + h/% represents the energy and momentum



conservations when a photon with (w, E) is annihilated and split into two photons with (wy,
El) and (ws, Eg), while the relation of hw = hw — hws, hk = hl% — hEQ represents the energy
and momentum conservations when a photon with (wy, El) is annihilated and split into two

photons with (w, lg) and (ws, 122)

C.2 0.8 pt

Ans: o +o0+o0,e—>e+e

Solution:

For the collinear case, the phase matching conditions become w = w; +ws, ni(z’)w = o (wcl)wl +

ng (w2)ws

2=, where i, j, and k are indices of either o or e. Assuming that w; > wy, one can solve

w1 as w; = w — wy. We obtain

na() = ny(er) = = [mawa) = ()],

(2)

Clearly, because w > wy > wy, if i = j =k, n;(w) —n;(wi) > 0 and ng(ws) —nj(wr) <0, the
above equation cannot be satisfied. For other cases, because there is no relation between n,
and n., the phase matching conditions can be satisfied. Hence only o - o+o0 and e — e+e

are not possible.

C.3 1.5 pt

Ans: (1) M = KlN@e b otliRe 'y — N, /2M and F = —(Q - Q)(2 — 1) + De
(2) the angle between the axis of the cone and 2" is N/ K, = _Ko[l—Ne?é(ee,ggecot T

(3) the angle of cone is about \/IL(Z_M = _(512\4—;2:)(“_10 — )+ %.

Solution:

To satisfy the phase matching condition, we expand the angular frequencies w; and ws into
wi = Qe+ v and wy = Q, + /. Clearly, because Q. + €, = Q,, to satisfy w; + wy = w,
V' = —v. Similarly, the conditions for the wavevectors, k= El + /;2, can be written as
k. =k =K, =k, + ko and ky; = —k1, = ¢1. For the o light ray, we have k2, + k2, = k2
with ky = M One finds that ks, = \/m = ky — ’;% Expanding the dependence

of wy in ky to v, we obtain

Q,)$2
by — no(wa)wa _ ()8 | dks ()= K, — L
c c dwo U

where u, is the group velocity for the ordinary ray. Hence to the second order of corrections,



we get

2
v qi
ko, = K, — — — —.
2 u, 2K,
Similarly, for the e light ray, we have ki, + ki, = k% with k; = "(% One finds that
ki, = ki —k} =k — 2}5 The expansion of ky is different from that for ko due to its

angle dependence. Let the spherical angles for /;1 be 0, and ¢;. We have
ne(wi, 0 )wr — ne($2e,0)Qe  dki (2, 0)

Qe dne (9, 0)
k — — — Qe — 0 - 0
! c c * dsl, (1 )+ c do (61 )+
Here "e(Qe—c’g)Qe = K., %ﬂjm is 1/u, with u, being the group velocity for the extraordinary

ray and is given by

dk1(2e,0)  ne(Qe,0) N Qe dn.(, 0)

dSQ, N c c dS,
dne(Qe,0 NoMNe nzfn% sin 0 cos 6 o
Because % = o 81512 9+n£COSQ o = Ne(Qe, O)N(Qe,0), we find N.(9,0)

2

(ne—ng)sinfcosd — Noto that for Ne < Mgy, Ne(Qe,0) < 0. To find 60 = 6; — 0, we note

n2 sin? 6+n2 cos? 0

that for any k., one has (cf. Fig. 2(a))
/%a -OA = cos 0, = cos b cos 1, + sin 0 sin 1), cos @, .

Since sin ¢, = |EL1]/|/Z1] =q./ky < 1and cosyy; = /1 —sin?y; = 1 —1/2sin*¢; +---, to

the second order, we can replace k; by K. and obtain

1%_ . qL
2K 1 + sin 6 {Z—l—---}cos@.

k .OA = cos ] = cos [

On the other hand, cos 6y = cos 6+ 2<28(9; — ) +- - = cos§ —sin§(6; —) +- - - . Comparing

this equation to the equaton for ky - OA, we obtain
1 Qi i qz'
01_9:2[(@2 te—ZCOSle 2ﬁcot0—|—z+---
Putting all together, we find

2

1
klz = Ke + _(Q - Qe) + N6<Qe7 9)%/

o 2K [Ne(€2,0) cot 0 — 1] +

The above equation when combined with the equation of £;, and the relation K, = k. + k.,

we find

J— —_— — —— 7 2
(Q Qe)(ue Uo) + Ne(Qe7 e)qw + q; QKeKo

11 {KO[Ne(Qe,G)cotQ—l]—Ke}_0



Because n, < n,, N.(£2,60) < 0. The above equation can be rewritten in the form

N1 1 1, N?

M |Gy — — Mg =—(Q—Q)(— - — <.

[q QD] FMG = —(@- 00— ) + 1%
Here D = KO[I_NE&%Q’Q:OMHKE > 0. Hence E = —N./2M > 0 (N. < 0) and
L =—-(0— Qe)(% - uLe) + ﬁ; Clearly, the cone axis formed by ks is characterized by

7. We find that the angle between the axis of the cone and 2’ is tan™'(N/ky,), which

is about N/k;, ~ N/K, = —Ko[l_NjgiiéVfwteHKe. The angle of the cone is given by

sin™! X i/M ~ VIL(/M = _(Q_Qe)(i ~- L)+ NZ
2 o Uo Ue

MK, AM2K, "

C.4 0.8pt
Ans: P(a,f) = 3sin*(a + ), P(a,BL) = tcos’(a + B), Plai,B) = icos’(a + ),
P(ay,BL) = %Sinz(a + )
Solution:
For a-photon, let the electric field along the polarizer and perpendicular to the polarization
represented by |a,) and |a,). Here o, and o, are essentially the electric field amplitudes in
appropriate units. The electric fields (the states) along 2’ and ¢ can be written as
|21} = cos afay) — sinalay),
195) = sina|ay) + cos afay).
Similarly, for b-photon, we have
|#,) = cos B]3;) — sin B|By),
|95) = sin B|B;) + cos B|5,).
Hence we obtain
|5)[95) = (cos alag) — sinalay))(sin B]3;) + cos B|5,)),
|Ja)12) = (sin o|a) + cos afayy))(cos B1B,) — sin B]5,)).

The state of the entangled photon pair can be written as

(122)185) + 19a)123))

[(cos asin 8 + sin v cos B)(|a) | Be) — || 5y))
+ (cosacos B —sinasinf)(|aw)|By) — |ay)|Bz))]
= —= [sin(a + B)(|aw)|B:) — |oy)|By)) + cos(a + B)(|aw)|By) — |ay)|B:))]

Sl =Sl

5=



From the above equation, we obtain

P(a,p) = %sirﬁ(a + f),
Play,B1) = %sinQ(a—i—ﬁ),

P, 1) = 5 cos(a+ )

P(ay,B) = %cosz(oz + 0).

C.5 0.5pt
Ans: S =|cos2(a— ) —cos2(a— )| + |cos2(a/ — B) + cos 2(ca/ — [3')]
S = 2v/2. S > 2 indicates that it is not consistent with classical theories.

Solution:

One first realizes that E(«, ) = iggg;iiggigi;;i%ggi;:jggig; Using expressions for P, we
find

E(a, B) = sin*(a + B) — cos*(a + f3)
= (sina cos 3 + cos asin 3)* — (cos a cos B — sin asin 3)?
= —(cos? a — sin® @) (cos® B — sin® 3) + 4 sin asin 3 cos v cos 3

= sin(2«) sin(25) — cos(2a) cos(28) = — cos2(a — f).

Hence S = |cos2(a— 3) —cos 2(a — )| +| cos 2(a’ — B) +-cos 2(a/ — B')|. Fora = §, o' =0,
B=—-5 08 =% wefind S=|~— \% - \%| + \\% + \/L§| = 2v/2 > 2. Hence classical theories

do not apply.
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Ray tracing and generation of entangled light — Marking Scheme

Remark: When student’s solutions are correct and also show how
solutions were obtained, it gets full credit. Only when student’s solutions
are incorrect or partially correct, the followings apply.

Part A. Light propagation in isotropic dielectric media

A.10.4 pt Realize that the phase velocity is given 0.2 pt
w
Solution: by
1
JHo€ Correct expression for % = 0.2 pt
Ho€
A.20.2 pt Correct relation % = i 0.1pt
Solution: n = ¢,/u,e
Correct expression n = Cq/yoe 0.1pt
A.30.4pt Correct expression for direction of S 0.2 pt
Solution: . .
S—F Correct result of computing the ratio 0.1 pt
o 1 S/u
v =V, =
Vo€ Correct expression for 0.1 pt
1
v?" =P, =
? VHo€
Part B. Light propagation in uniaxial dielectric media
B.1 1.5pt Realize that the determinant associated | 0.2 pt
. with equations for electric field has to
Solution: . .
vanish and correctly write out the form
n=To of the determinant
B=1kxy= ]
(- cos 9,0sin6) Correct equation for n 0.1 pt
D ==y
. _— Correct expressions for n 0.3 pt
\/n% sin2 +n% cos2 n,: 0.1pt,
§ =1y ToTe : 0.2pt
D=1y xk= \/ng sin2 8+n2 cos2 @
+(cosf,0,—sinf)
Correct expressions for B (each 0.4 pt

6 = 0 or m only one refractive
index is allowed.

direction is 0.2 pt, both + and - are
given the fill credit)




Correct expressions for D (each
direction is 0.2 pt, both + and - are
given the fill credit)

0.4 pt

Correct value for the angle with only 0.1 pt
one refractive index
B.2 0.8pt Correct ratio of E,: E, for the case 0.3 pt
_ NoTle .
Solution: of n= \/ P :0.1pt
ng sin? 6+nj cos? 0
n=n,
E = 49 ordinary light ray Correct expression for the
tana =0 polarization of the corresponding
refractive index:
n= NoNe N R
\/nf, sin2 8+n2 cos? 0 E= ty: 0.1pt
~ 1
~ 1 E=+
E== ng cos? f+nf sin2 0
ni cos? 6+ng sinz 6 ) 9 0n2sind): 0.1
—n5 cos0,0,n;sinf): 0.1pt
(—n2 cos@,0,n2sin ) (=ne © ):0-1p
Correct expressions for the angle of 0.3 pt
Extraordinary light ray E and D relative to x axis: 0.1 pt
Correct expression for tan a:
tana = (n¢-n?)tand
" nZ+nZtan?6 tana = 0:0.1 pt
__ (md-nd)tanb
tana = WAnEwnze - 0.1pt
Correctly indicate types of light rays: | 0.2 pt
Ordinary light ray 0.1 pt
Extraordinary light ray 0.1pt
B.3 0.6pt Realize that the axial symmetry and 0.2pt
Solution: replace X by k,
n=n, :
~ o~ Correct expressions for the 0.2pt
E=%2Xk/sin6 lar; P fth di P
dinarv Lioht ra po arlzathn of the corresponding
ordinary g y refractive index:
n= MoMe E=+y: 0.1pt
\/nf, sin2 8+n2 cos? 0
E =4 ! E =+ . X

ni cos? 6+ng sinz 6
—n% cos? Ok+(nZ sin? 8+n% cos? )2
sin @

ni cos? 6+ng sinz 6

—n?% cos? Bk+(nZ sin? 8+n% cos? )2

:0.1pt

sin @




extraordinary

: Correct expressions for n (0.1pt) and | 0.2pt
light ray . .
indications for type of light rays
(0.1pt)
B.4 0.8 pt Correct expressions for tan o, 0.2 pt
Solution: (each expression 0.1pt for different n)
n=n,:
tana, =0
- £
T
S=(sinf,0,cos0) Correct expressions for v, (each 0.2 pt
expression 0.1pt for different n)
n= fofe ;
\/nf, sin2 8+n2 cos? 0
2—n2 i S 0.2 pt
tan o, = (n20 nze)ta;w — tana Correct.expressmns fc?r S (each p
ng+ng tan? 6 expression 0.1pt for different n)
c \/ng cos? 0+nf sin2 9
V. =
T nome \/ng cosZ 0+n3sin2 9
o 1
S = X ]
\/ng cos2 60 +nsin? 6 Correct expression for ng 0.2 pt
(n?%sin@,0,n2cos 0)
ng = (- 2)?nZ + (S-2)°n3
B.51.1pt Indicate that the path is determined by 0.3 pt

Solution:

Ié_ = Pl(nz Sin2 91 - Pl)

B = —2P;(n?sin? 0, — P;)
C = P,n?sin? 6, — P2

¢=0:tanf, =

nne sin 64

Ny ,nf,—nz sin2 6,

¢ =mn/2 : tanf, =

nn, sin 64

N ,nf,—nz sin2 6,

the optical path length d;ng + dyn,,
where d; and d, are

distances ,connecting Ato O and O to B
(0.1 pt).

ng, and ng, are the corresponding

refractive indices of the path d; and d,
(0.2 pt)

Correct expression for the optical path 0.3 pt
length in terms of geometric factors

(suchas 64, ¢, 6, and coordinates of

points A and B)

Each minor error in expression: -0.1

pt

Correct expression for A 0.1 pt

Correct expression for B

0.1pt




Correct expression for C 0.1 pt
Correct expression for tan 8, when 0.1 pt
¢ =0
Correct expression for tan 8, when 0.1 pt
¢ =mn/2
Part C. Entanglement of light
C.10.8 pt Correct expressions for 0.2 pt
. w=w tw,
Solution: (+:0.1pt, —: 0.1pt)
Relations: Correct expressions for 0.2 pt
W= ot o, k=k +k,
k=k +k
1= (+:0.1pt, —: 0.1pt)
k =k, +k, : momentum Adding h and interpretate | 4
conservation hk = hk; + hk, as
momentum conservation
w = w; + w, :energy conservation Adding A and 0.1 pt
interpretate Aw =
Splitting: hw,; + hw, asenergy
W= w+ w, conservation
k=1l +k, Correct expressions for 0.2 pt
splitting of
w = w; + w, (0.1pt) and
k =k, +k, (0.1pt)
C.2 0.8 pt Indicating that there is a 0.4 pt
Solution: confliction for splitting into
' the same type of the light
0—>0+o0 :
e sede ray due to that the refractive
indices n, and n, are
both increasing functions of
o.
Correctly listing 0o > 0+0 | 0.2 pt
Correctly listinge— e + e 0.2 pt

Extra listing of splitting: -
0.2 pt for each listing




C.31.3pt

Solution:

Kp(1—=Ng(Qg,0) cot 0)+K,
2K, K,

M =

Ne
2M
L:-{Q—Qg(i—lj+ﬁé

u,)  4aM

Angle between the axis of the cone and

,. N

z'is —
KO

(= - — )

Ko(1—Ne(Qg,0) cot 0)+K,

JL/M

o

Angle of the cone is

Realize the conservation of
momentum along z
direction: K, = ki, + ky,

0.1 pt

Correct expansion of k,,

Minor errors for numerical
factors: -0.1 pt

0.3 pt

Correct expansion of k;,
in frequency

Minor errors for numerical
factors: -0.1 pt

0.2 pt

Correct expansion of k,,
in momentum

Minor errors for numerical
factors: -0.1 pt

0.2 pt

Correct expression for M

0.1 pt

Correct expression for N

0.1 pt

Correct expression for L

0.1 pt

Correct expression for the

angle between the axis of

the cone and z' (using N
and K,)

0.1 pt

Correct expression for the
angle of the cone (using L,
M and K,)

0.1pt

C.4 0.9 pt

Solution:

P(a,pB) = %sinz(a + B)
P(a,B,) = %COSZ(CZ + B)
P(a,,pB) = %sinz(a + B)
P(ay, 1) = >cos?(a + )

Correctly expressing the
electric fields along X' and
' direction in terms of the
electric fields along the
direction of the polarizer and
perpendicular to the direction
of polarizer for individual a-
photon (0.1pt) and b-photon
(0.1pt)

0.2 pt

Correctly expressing the
entangled photon pair state
1 o arvia AT\ .
= (ZWIFH) + 19)1%4)) in
terms of combination of
states using directions of

0.3 pt




the polarizer: |a,)|By) —
la)lB,), la)IBy) —
|y )| B

Correct expression of

P(a,B)

0.1pt

Correct expression of

P(a, IBL)

0.1pt

Correct expression
of P(“J_; ﬁ)

0.1pt

Correct expression of

P(ay, .BL)

0.1pt

C50.5pt

Solution:

S =]cos2(a—pB)—cos2(a—p")|+
|cos2(a’ — B) + cos2(a’ — B')|
Value of S =22 > 2

Inconsistent with classical theories

Correct expression of
E(a, B) interms

Ofp(aiﬂl)r P(CKJ_,IB),
P(ay,f) and P(ay,B,)

0.3 pt

Correct expression of
E(a,B) intermsof a and

B

0.1pt

Correct value of S and
consistency with classical
theories.

0.1pt




Theory 3 Magnetic Levitation: Solution

Part A. Sudden appearance of a magnetic monopole: initial response and subsequent
time evolution of the response in the thin film

Initial response
A.1l In the z > 0 region, excluding the point occupied by the monopole, the magnetic field
§=§’+§mpatt= to = 0 is given by

—

_ Hodm _ (z-h)i+p )
Bup =" (e-neperre (A-1)

Tr _ Moqm (z+h)2+p

am [(z+h)2+p2]3/2’ (A-Z)
B _ Hodm (z—h)z+p (z+h)2+p )
T am [[(z—h)2+p2]3/2 [(Z+h)2+p2]3/2] ' (A 3)

A2 Inthe z < —d region, the magnetic field B = B’ + By, at t = t, = 0 is given by

(A4)

A.3From Eq. (A-3), B, =0atz =0 forall p.

Therefore, the|total magnetic flux ®g = 0atz = 0. | (A-5)
From Eq. (A-4), B, =0atz = —d.
Therefore, the|total magnetic flux ®g = 0 at z = —d. (A-6)

A.4 Applying Ampere’s law along the path shown in the figure below, and using the
approximation d « h, we have

B,(p, z=0)dp = uo j(p) dp-d, (A-7)
where the contributions from the B,d terms are smaller by a factor d /h and neglected.
dp
——————— -"———————I
C[Il = < =, E ix I J— p
_______ [P ——

The induced current density is given by

SN 1 . =gy _ _ dm ZAXZ))
JP)=-—2xB(p,z=0) =3 "o - (A-8)

Subsequent response
A.5 Consider the form of an integral of Eq.(2), in the Question sheet, over the film thickness, we
get, for z = 0 inside the film (thatis z < 0 and |z| « d), that

0B,
0z

0By

7 0z

0By

- (A-9)

0By _
ae Hoo(d + 2z) —= = U0



!

. . . 0B 0B
Since B, is an even function of z’' = z + d /2, therefore we have a—ZZ =—-=

= so that
z 0z l_q—z

the left-hand side of Eq.(A-9) becomes 2 %BZ’ (p, z; t). The right-hand side is approximated by
the z-independent term of B, inside the film thickness. On the other hand, the z-dependent term
of B} is even in z’ and is of order ~ z'2d /h so that it can be neglected based on the h > d
condition. As such the right-hand side is represented by B,(p, z; t). Putting these results together,

we get
9 9 5y
2 5 B,(p,z; t) = uyod arBZ(p’ z;t)

(A-10)

Y, Y
= EBZ(p,Z; t) =1, EBZ(p,z; t).

Herez = 0, and vy, = 2/(uy0d).
A.6 The equation in A.5, namely, Eq.(A-10) supports a solution of the form

B',(p,z;t) = f(p,z + vyt), (A-11)
andat z = 0.
— ' _ HoGm (z+h) ‘ p
ATALt =0, B,(p,z=20) = =~ CEYEEE which is of the form
B,(p,z=0) =F(p,z+ h). (A-12)
For t > 0, we have according to Eq.(A-11), the replacement
(A-13)

to the BY(p, : £ = 0).

In other words, B,(p,z = 0;t) = F(p,z + vyt + h).
This corresponds to a physical picture of a moving image monopole, with its position
(A-14)

Zmp = —h - vot.

(A-15)

Finally, | vy = 2/(uood).

Part B. Magnetic force acting on a point-like magnetic dipole moving at a constant h with
a constant velocity

A moving monopole
B.1 The present locations of all the image magnetic monopoles of type q,, are at

(B-1)

(x,z) = [-nvt,—h — ny,t], forn = 0.




The locations of all the image magnetic monopoles —q,, are at

(x,z) =[-(n+ Dvr,—h —ny,t ], for n = 0. (B-2)

B.2 The magnetic potential @, (x, z) due to all the image magnetic monopoles at t = 0 is given
by, in summation form

Hoqm 1 Hoqm 1
®.(x,2) = Zn 0\/(x+nvr)2+(z+h+nvor)2 4m L= 0 JG+(m+D)v)2+(z+h+nven)? |
_ Hodm oo 1 _ 1 -
= ®,(x,2) = am Ln=o V (x+nv1)2+(z+h+nvyT)? \/(x+(n+1)vr)2+(z+h+nvor)2]' (B-3)

In integral form
O, (x,2) = 22 J, dt’ - - = ] (B-4)

JE+vtH2+(z+h+vt")2 J(x+vt’+vT)2+(z+h+vot")2

_ HoGm [® .4 (x+vt")vr i
- f [(x+vt")2+(z+h+vo7)2]3/2 "’ (B-5)
1 zZ+h Vo
> | @, (x,z) = B2 — — (B-6)
an  (z+h)v—vpx \/x2+(z+h)2 Jv2+v%
A moving dipole
B.3
The total magnetic potential
Dr(x,z) =D, (x,2) + P_(x,2), (B-7)
where ®_(x,z) = —®,(x,z — ).
Dr(x,z) =D, (x,2) — D, (x,z— 6p)
=0y X 0D, (x,2)/0z. (B-8)

n

—

Z7




2

_ _ bkomv v z+h _ Vo . X )
CDT(x' Z) - an | [(z+h)v-vox]? \ /x2+(z+h)? \/v2+v§ [(z+h)v—vox][x2+(z+h)2]3/2 | (B 9)
Force acting on the point-like magnetic dipole:
d d
E = ~Gn 5 1(0,2)] _ +4ny 10, Z)|z=n-am' (B-10)
— _HoMdm ( 4 _ _ 1 -
k= 21 1 /u2+v (2h)3 (2h- 5m)3] (B-11)
o | g3l v (B-12)
Z  32mht V2402 '
da d
= ~m gy Pr@ )|+ g PrCh—6m)| (B-13)
3Mom Vo
= FE, = B-14
32mh* v l ’v2+v0 ( )
Relation between v, and v and their relation
2 2
B.4 Vo = od  4mx10-7x59x107x0.5x10-2 54 m/s. (B-15)

B.5 Inthe small v regime, meaning that v is smaller than a certain typical velocity of the
system (or a critical velocity v, to be considered in the next task B.6) we have the characteristics
basically akin to that of v = 0. For v = 0, the frequency w is associated with v, /h. Making use
of the parameters given in B.4, the skin depth (Eq.(3) in the question sheet) § is given by

6=\/ 2 =\/ 2% — 1.58 c.m., which is more than three times greater than d.

WHoOo VoHoO
Thus we have, in the small v regime,

vy (V) = vy. (B-16)




In the large v regime, we have the skin depth § < d so that the effect thin film thickness

defr = 0, (B-17)
within which the field is more or less uniform (i.e. z independent).

In this case, w = v/h, (B-18)
so the

— 2 _ 2 (@ _ |2V _ /2
UO(U) T uoos uocr\/ 2 Alpooch hUUO, or
d v
n) = v ¢ 2 (B-19)
B.6 The critical velocity v, is determined from the condition § = d :

2 2h
d= = | v = =1
Boovc/h dzpeo

Part C Motion of the magnetic dipole when the conducting thin film is superconducting

als

(B-20)

When the electrical conductivity ¢ — oo, the receding velocity v, — 0 so that there will not be
a whole series of image magnetic monopoles. Instead, the image is simply one image magnetic
dipole mirroring the instantaneous position of the magnetic dipole. In this case, the image
magnetic dipole is m = mX located at the location (x,y, z) = (0,0, —h). It is then clear, from the
symmetry of the image configuration, that the force on the magnetic dipole from the image
aligns only along Z. For our convenience, we take the magnetic monopole —q,, to locate at x =
0, and for the magnetic monopole q,, the location x = §,,.

C1

The total magnetic potential ®+(x, z) from the image magnetic dipole is

CDT(X, Z) - _ Hodm 1 + Hodm 1 (C'l)

am [xZ4(z+h)? A (x=8m)2+(z+h)?
Approach 1:

The total vertical force E, acting on the magnetic dipole from the image magnetic dipole is given
by

F} = (=m) |~ 2= @[ =0, + G |~ 5= 1 4=s; (C-2)

z=h z=h



B = ﬂoqun z+h _ lloqIZn
2 4w [x2 4 (z+ h)?2]3/2lx=0, 4w [(x — )2 + (z + h)2]3/2]x=0,
zZ=h z=h
_ Kodh Z+h + Hodin z+h
am [x2+(z+0)2)3/2|x=6m, T am [(x-8m)2+(z+M)2]3/2|x=6m,
z=h z=h
) Hodh [ 1)? 1
=22 |1 (©3)
(1+(ﬁ) )
r_ 3Ilom2 -
Z 7 64mht’ (C-4)
Equilibrium condition:
FZI - M0g =0, (C'E)
3H0m2 _
64mhE Mog,
) 1
_ | Buom~ |4 _
= ho = [64nMog] (C-6)
Approach 2:
We can use the direct force calculation.
2 171\2 2h ]
E/ = 2 odn (_h) - G (C-7)
41T 2 (62 +(2h)2)
2
Hodm i) _ 1 -
- om (Zh 1 AL (C-8)
(1+(ﬁ) )

__ 3puem?
64mh*’

The equilibrium condition F; — Myg = 0 gives the same equilibrium position h, as in Eq. (C-6),

3[10771.

o | k= [
64TMyg

C.2

The oscillation frequency about the equilibrium is obtained from



E =~ My + %Az, (C-9)

yA

where Az = z — hy,

dF,
And from —~ = —k = —M,Q? (C-10)
we have
__ d3ugm?® _ 3ugm?® _ 4 3ugm?® _ 4Mog __ 2
k= = e = 16mhy ~ ho 64mhi  hy MoQ (C-11)

The angular oscillation frequency

Q= 2. (C-12)

0
C.3
1/4
3uo(tnr?m)” 1/4
ho = J(n—) - [ (C-13)

”(g”R Pog) 16pog
10 18x752x10~4] /4

ho = [16X7400x9.8xu0] m = 25. pm. (C-14)

30%x10~6

c4 |a= \/;‘? = |28 -1 =1 3kHz (C-15)
0




Theory 3: Magnetic Levitation — Marking Scheme

Part A Sudden appearance of a magnetic monopole (3.0 points)

Initial response (1.6 points)
Al 5 _Hom (z—h)Z+p 0.1 0.4
mp 477 [(Z _ h)2 + p2]3/2
E' _ HoQm (z+h)Z+ .5 0.2
A [(z + h)? + p?]3/2
5 _ Hom (z—h)z+p N (z+h)z+p 01
4n_|{(z—m?+p?P2 " [z + W) + p*7 |
A2 B=0 0.2 0.2
A3 B.=0 at z=0 0.1 0.4
Gp=0 at z=0 0.1
B,=0 atz=-d 0.1
by =0 atz=—-d 0.1
A4 B,(p,z=0)dp =y j(p)dp-d 0.4 0.6
o Lo qm ZXP 0.2
](p) - ‘LlodZ X B(p)Z - 0) - 27Td (hz +p2)3/2
Subsequent response (1.4 points)
A5 0B, 0B, B g+ 2 0B, 4 0B, 0.2 0.6
9z| oz = Hoo(d +22) 57~ pood
z —-d—-z
0B, _ 0B, 02
0z 0z
Z —d—z
d d
EBZ,(p' z;t) = 2/(uood) X 6_ZBZ’(p' z; t) 0.2
A.6 B',(p,0;t) = f(p,z+ vyt) near z = 0 0.4 0.4
A7 Att =0 B,(p,z > 0) is of the form F(p,z + h) 0.1 0.4
Fort >0 z—z+ vyt 0.1
vo = 2/(/100-61) 02

Part B Magnetic force acting on a point-like magnetic dipole

moving at a constant h with a constant velocity (4.0 points)
A moving monopole (1.5 points)

B.1 Present positions of g, : 04] 08
(x,z) = [-nvt,—h — nv,t], forn > 0.
Present positions of —q, :
(x,z) =[-(n+ Dvt,—h —nvyt ], for n > 0.

0.4




B.2 Magnetic potential : 0.7
0dm 1 1
+(x Z) #4(711 Zn 0\/(x+nm')2+(Z+h+n1;0‘r)2 Zn O\/(x+(n+1)m')2+(Z+h+n1/0‘r)2 0.3
D, (x,2) - il “ae ! 0.2
o 4mt J, Jx +vt)2 + (z+ h +vot')?
1
B J(x + vt + v0)2 + (z 4+ h + vyt')?
HoGmV 1 Z+h Vo 0.2
CD+(X, Z) - —
4w (z+ h)v —vox 2+ (z+h)? v+ 02
A moving dipole (1.5 points)
B.3 DOr(x,z) = P (x,2) + D_(x,z) where 0.2 1.5
d_(x,z) =—-b, (x,z— 6)
DOr(x,z) =D, (x,2) — D, (x,z— 6py) 0.2
=0y, X 0D, (x,2)/0z '
o )__/,Lomv v ( z+h v )
T2 = [(z + h)v — vox]? JZ+ Gz +h)? Jvr 2
x? 0.3
B [(z+ h)v —vox][x? + (z + h)2]3/2]
d
E = —qny®r(0,2)] _+ qmd—¢T(o, 2. 0.2
_ 3um? [ l 0.2
& ~ 32mh* w/172 + vé
d d 0.2
E = _qma +qmd_CDT(x'h_6m) o
3 S,uom vy I l 0.2
* T 32mh* v /vz + 02
Relation between vy and v (1.0 points)
B.4 S 2 2 0.3
07 puood ~ 4m x 10-7 X 5.9 x 107 x 0.5 X 102 0.3
=54 m/s
B.5 |Inthev <wv. regime: vo(V) = vy 0.1 0.4
. . 2 2 WO 0.1
Inthe v > v. regime: v,(v) = vl
w=v/h 0.1
d [ 0.1
vo(w) =vo |3 -~
B.6 6=d 0.1 0.3
_2h  h 0.2
Ve oo Vo :




Part C Motion of the magnetic dipole when the conducting thin

film is superconducting (3.0 points)
C.1 Approach 1: Start from the total magnetic potential 1.2
1 1
(DT(X, Z) — _MOCIm + Hoqm 0.3
Am [x2+(z+h)? AT \J(x —84)% + (z + h)?
- J d 0.3
B = () [~ 5|y + 0 [~ 50| s
z=h z=h
, _ 3pem? 0.4
Z _ 64mh* .
[ 3ug? | 0.2
07 |64nM,g
Approach 2: Start from the force
2
= o Mol (i) ~ 2h 06
z 4 |\2h (62, + (2h)2)3/2
, _ 3puem? 0.4
* _ 64mh* .
[ 3ugm? | 0.2
o 64nMyg
C.2 dF] ] 0.8
7, = k= Mol 0.5
0 4g 0.3
= In
C3 A 2 /4 03] 07
lfern) | gy
ho = = ———
641 (%nR3pog) 16pog
L |10t x 757 x 107 1 02
%7 116 x 7400 x 9.8 X p, '

hy = 25 pm 0.2

o Q= tg_ | 4x98 -1 =13kH 0.3 >
= |hy  J30x10-6° T 0 '




