
 

Solution 

Water Hammer 

Part A. Excess Pressure and Propagation of Pressure wave 

          

A.1 (1.6 pt) Excess pressure and speed of propagation of the pressure wave 

When the valve opening is suddenly blocked, fluid pressure at the valve jumps 

from 𝑃0 to 𝑃1 = 𝑃0 + ∆𝑃s, thus sending a pressure wave traveling upstream (to the 

left) with speed 𝑐 and amplitude ∆𝑃s. Taking positive 𝑥 direction as pointing to 

the right, the velocity of fluid particles next to the valve changes from 𝑣0 to 𝑣1 

(𝑣1 ≤ 0). Thus the velocity change is ∆𝑣 = 𝑣1 − 𝑣0. 

In a frame moving to left (along – 𝑥 direction) with speed 𝑐, i.e., riding on the 

wave (see Fig. S1), velocity of fluid in the pressure wave is 𝑐 + 𝑣1, while that of the 

incoming fluid in the steady flow ahead of the wave is 𝑐 + 𝑣0. Let 𝜌1 be the density 

of fluid in the pressure wave. From conservation of mass, i.e., equation of continuity, 

we have 

𝜌0(𝑐 + 𝑣0) = 𝜌1(𝑐 + 𝑣1)                                                                      (a1) 

or, by letting ∆𝜌 ≡ 𝜌1 − 𝜌0, 

∆𝜌

𝜌1
= 1 −

𝜌0

𝜌1
=

𝑣0 − 𝑣1

𝑐 + 𝑣0
=

−∆𝑣

𝑐 + 𝑣0
                                                     (a2) 

Moreover, impulse imparted to the fluid must equal its momentum change. Thus, in 

a short time interval 𝜏 after the valve is closed, we must have 

𝜌0(𝑐 + 𝑣0)𝜏[(𝑐 + 𝑣1) − (𝑐 + 𝑣0)] = −𝜏∆𝑃 = (𝑃0 − 𝑃1)𝜏          (a3) 

or 

∆𝑃s = −𝜌0𝑐 (1 +
𝑣0

𝑐
) (𝑣1 − 𝑣0) = −𝜌0𝑐 (1 +

𝑣0

𝑐
) ∆𝑣   ⇒    𝛼 = − (1 +

𝑣0

𝑐
)  (a4) 

If 𝑣0/𝑐 ≪ 1, we have  

∆𝑃s = −𝜌0𝑐∆𝑣                                                                                       (a5) 

Note that the negative sign in Eqs. (a4) and (a5) follows from the fact that the 

direction of propagation is opposite to the positive direction for 𝑥 axis (and velocity). 

Otherwise the sign should be positive. Note also that for a compressional wave 

Fig. S1. Pressure wave (shaded) with speed 𝑐 
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(∆𝑃s > 0), the velocity imparted to the fluid particle is in the direction of propagation, 

while for an extensional wave (∆𝑃s < 0), the velocity imparted is in the opposite 

direction of propagation. 

Eqs. (a2) and (a4) can be combined to give 

∆𝑃s = 𝜌0𝑐2 (1 +
𝑣0

𝑐
)

2 ∆𝜌

𝜌1
                                                                       (a6) 

From the definition of the bulk modulus 𝐵, which is assumed to be constant, it 

follows 

∆𝑃s = 𝐵
𝑉0 − 𝑉1

𝑉0
= 𝐵

1/𝜌0 − 1/𝜌1

1/𝜌0
= 𝐵

∆𝜌

𝜌1
                                       (a7) 

From Eqs. (a6) and (a7), we obtain 

𝜌0𝑐2 (1 +
𝑣0

𝑐
)

2

= 𝐵                                                                                (a8) 

Thus 

𝑐 = √
𝐵

𝜌0
− 𝑣0                     ⇒    𝛾 = 1              𝛽 = −𝑣0                    (a9) 

However, if in the definition of bulk modulus one uses the fractional change of 

density ∆𝜌/𝜌0 instead of −∆𝑉/𝑉0, the result is then 𝛾 = 1 + ∆𝑃s/𝐵.* Either result 

is considered valid. 

If 𝑣0/𝑐 ≪ 1, we have 

𝑐 = √
𝐵

𝜌0
                                                                                                  (a10) 

*The result (a7) is pointed out by Dr. Jaan Kalda. 

A.2 (0.6 pt) Values of 𝑐 and ∆𝑃s for water flow 

Ans: 

From Eqs. (a5) and (a10), we have 

𝑐 = √𝐵/𝜌0                                                                                             

Δ𝑃s = 𝜌0𝑐𝑣0 = 𝑣0√𝜌0𝐵                                                                      

Putting in the given values 𝑣0 = 4.0 m/s, 𝑣1 = 0, 𝜌0 = 1.0 × 103 kg/m3, 

and 𝐵 = 2.2 × 109 Pa, we have 

𝑐 = √𝐵/𝜌0 = 1.5 × 103 m/s                                                  (b1) 

Δ𝑃s = 𝑣0√𝜌0𝐵 = 5.9 MPa                                                        (b2) 

so that Δ𝑃s is nearly 59 times the standard pressure.  

Note that 𝑣0/𝑐~10−3 so that the use of approximate formulas (a5) and (a10) is 

justified when solving tasks in this problem. 



 

Part B. A Model for the Flow-Control Valve 

(B.1) (1.0 pt) Excess pressure at valve inlet 

Ans: 

The model assumes the fluid to be incompressible. Neglecting effects of gravity, 

Bernoulli’s principle gives us 

1

2
𝜌0𝑣in

2 + 𝑃in =
1

2
𝜌0𝑣c

2 + 𝑃a                                                                   (c1) 

Equation of continuity and definition of contraction coefficient imply that 

 𝜋𝑅2𝑣in = 𝜋𝑟c
2𝑣c = 𝜋𝑟2𝐶c𝑣c                                                                          

Therefore  

𝑣c =
1

𝐶c
(

𝑅

𝑟
)

2

𝑣in                                                                                     (c2) 

From Eqs. (c1) and (c2), we obtain 

∆𝑃in = 𝑃in − 𝑃a =
1

2
𝜌0𝑣in

2 [
1

𝐶c
2

(
𝑅

𝑟
)

4

− 1] =
𝑘

2
𝜌0𝑣in

2                     (c3) 

This may be cast into a form involving only dimensionless variables: 

∆𝑃in

𝜌0𝑐2
=

1

2
(

𝑣in

𝑐
)

2

[
1

𝐶c
2

(
𝑅

𝑟
)

4

− 1] =
𝑘

2
(

𝑣in

𝑐
)

2

                                   (c4) 

where 

𝑘 = [
1

𝐶c
2

(
𝑅

𝑟
)

4

− 1]                                                                              (c5) 

Thus we see from eq. (c4) that ∆𝑃in is a quadratic function of 𝑣in. 

Part C. Water-Hammer Effect due to Fast Closure of Flow-Control Valve 

(C.1) (0.6 pt) Pressure 𝑃0 and velocity 𝑣0 when the valve is fully open 

Ans: 

According to Bernoulli’s theorem and the definition of 𝑃ℎ, we have 

 Fig. 2. Valve dimensions and contraction of jet. 

𝑣c 
𝑣in 

2𝑅 2𝑟 

𝛽 

 A   Δ𝐿 

  𝑃a 

2𝑟c = 2𝑟√𝐶c 

 𝜌0 

  𝑃in 



 

1

2
𝜌0𝑣0

2 + 𝑃0 =
1

2
𝜌0𝑣c

2 + 𝑃a = 0 + 𝑃a + 𝜌0𝑔ℎ = 𝑃ℎ                       (d1) 

From the second equality in the preceding equation, it follows 

𝑣c = √2𝑔ℎ                                                                                                       

Furthermore, from continuity equation and 𝐶c(𝑟 = 𝑅) = 1.0, we have 

 𝜋𝑅2𝑣0 = 𝜋(𝐶c𝑅)2𝑣c = 𝜋𝑅2𝑣c  ⇒  𝑣0 = 𝑣c = √2𝑔ℎ                    (d2) 

Therefore 

𝑃0 = 𝑃a = 𝑃ℎ − 𝜌0𝑔ℎ                                                                           (d3) 

(C.2) (1.2 pt) Pressure 𝑃(𝑡) and flow velocity 𝑣(𝑡) just before 𝑡 =
𝜏

2
=

𝐿

𝑐
 and 𝑡 = 𝜏 

Ans: 

When the valve is open, the flow in the pipe is steady with velocity 𝑣0 and 

pressure 𝑃0. The sudden closure of the valve causes an excess pressure Δ𝑃𝑠 on the 

fluid element next to the valve, causing it to stop with velocity 𝑣1 = 0. The velocity 

change is thus ∆𝑣 = 𝑣1 − 𝑣0 = −𝑣0. Thus, according to Eq. (a5), the excess pressure 

on the fluid is given by 

𝛥𝑃s = −𝜌0𝑐∆𝑣 = 𝜌0𝑐𝑣0                                                                          (e1) 

At time 𝑡 = 𝜏/2 = 𝐿/𝑐, the pressure wave reaches the reservoir. The velocity of 

fluid in the length of the pipe has all changed to 𝑣(𝜏/2) = 𝑣1 = 𝑣0 + ∆𝑣 = 0 and 

the fluid pressure is 𝑃(𝜏/2) = 𝑃1 = 𝑃0 + Δ𝑃s = 𝑃0 + 𝜌0𝑐𝑣0. 

At the reservoir end of the pipe, fluid pressure reduces to the constant 

hydrostatic pressure 𝑃ℎ = 𝑃0 + 𝜌0𝑔ℎ. Equivalently, we may say that the reservoir 

acts as a free end for the pressure wave and, in reducing its excess pressure to 𝑃ℎ, 

causes a compression wave to be reflected as an expansion wave. Relative to the 

hydrostatic pressure 𝑃ℎ, the amplitude of the incoming pressure wave is ∆𝑃1r =

𝑃1 − 𝑃ℎ, hence the reflected expansion wave will have an amplitude ∆𝑃1
′ = −∆𝑃1r 

and we have 

∆𝑃1
′ = −∆𝑃1r = 𝑃ℎ − 𝑃1 = (𝑃0 + 𝜌0𝑔ℎ) − (𝑃0 + 𝜌0𝑐𝑣0) = −𝜌0𝑐(𝑣0 − 𝑔ℎ/𝑐)   (e2) 

(Here we allow the pressure amplitude to have both signs with negative amplitude 

signifying an expansion wave.) This will cause the fluid at the reservoir end of the 

pipe to suffer a velocity change (keeping in mind that the direction of propagation is 

now the same as the +𝑥 axis) 

∆𝑣1r = +∆𝑃1
′/(𝜌0𝑐) = −(𝑣0 − 𝑔ℎ/𝑐)                                                        

Consequently, its velocity changes to 

𝑣1r = 𝑣1 + ∆𝑣1r = 0 − (𝑣0 −
𝑔ℎ

𝑐
)                                                    (e3) 

Ahead of the front of the reflected wave, conditions are unchanged and the particle 

velocity is still 𝑣1 = 0 and the fluid pressure is still 𝑃1 = 𝑃0 + Δ𝑃s, but behind the 

wave front the particle velocity now becomes 𝑣1r = −(𝑣0 − 𝑔ℎ/𝑐) and the 

pressure becomes 



 

𝑃1 + ∆𝑃1
′ = (𝑃0 + 𝜌0𝑐𝑣0) − 𝜌0𝑐 (𝑣0 −

𝑔ℎ

𝑐
) = 𝑃0 + 𝜌0𝑔ℎ                (e4) 

Therefore, just moment before 𝑡 = 𝜏 = 2𝐿/𝑐 when the front of the reflected wave 

reaches the valve, the fluid in the whole length of the pipe will be under the 

pressure 𝑃(𝜏) = 𝑃0 + 𝜌0𝑔ℎ = 𝑃ℎ as given in Eq. (e4) , and all fluid particles in the 

pipe will move, as given in Eq. (e3), with velocity 𝑣(𝜏) = 𝑣1r = −𝑣0 + 𝑔ℎ/𝑐, i.e., the 

fluid in the pipe is expanding and flowing toward the reservoir. 

Part D. Water-Hammer Effect due to Slow Closure of Flow-Control Valve 

(D.1) (3.0 pt) Recursion relations for Δ𝑃𝑛 and 𝑣𝑛 

Ans: 

Enforcing the approximation 𝑃ℎ = 𝑃0 + 𝜌0𝑔ℎ ≈ 𝑃0 is equivalent to putting 

ℎ = 0 in all of the results obtained in task (e). 

(1) Partial closing 𝑛 = 1 

At the valve, immediately after partial closing 𝑛 = 1, fluid pressure jumps 

from 𝑃0 to 𝑃1, causing flow velocity to change from 𝑣0 to 𝑣1. The pressure and 

velocity changes are related by Eq. (a5): 
1

𝜌0𝑐
(𝑃1 − 𝑃0) = −(𝑣1 − 𝑣0)                                                                 (f1) 

Just before reflection by the reservoir, the fluid in the entire pipe has pressure 𝑃1 

and velocity 𝑣1. After reflection by the reservoir, i.e., a free end, and before the start 

of valve closure 𝑛 = 2, the fluid in the entire pipe has pressure (Eq. (e4) with ℎ = 0)  

𝑃1 − (𝑃1 − 𝑃0) = 𝑃0                                                                                        
and velocity 

𝑣1
′ = 𝑣1 +

−(𝑃1 − 𝑃0)

𝜌0𝑐
= 𝑣1 + (𝑣1 − 𝑣0)                                                   

(2) Partial closing 𝑛 = 2 

Immediately after partial closing 𝑛 = 2, valve pressure changes from 𝑃0 to 𝑃2, 

causing flow velocity to change from 𝑣1
′  to 𝑣2. The pressure and velocity changes are 

given by Eq. (a5): 
1

𝜌0𝑐
(𝑃2 − 𝑃0) = −(𝑣2 − 𝑣1

′ ) = −𝑣2 + 𝑣1 + (𝑣1 − 𝑣0)                  (f2) 

Using Eq. (f1), we may rewrite the preceding equation as 
1

𝜌0𝑐
(𝑃2 − 𝑃0) = −(𝑣2 − 𝑣1) −

1

𝜌0𝑐
(𝑃1 − 𝑃0)                                  (f3) 

Just before reflection by the reservoir, the fluid in the entire pipe has pressure 𝑃2 

and velocity 𝑣2. After reflection by the reservoir and before valve closure 𝑛 = 3, the 

fluid in the entire pipe has pressure 

𝑃2 − (𝑃2 − 𝑃0) = 𝑃0                                                                                        
and velocity 

 𝑣2
′ = 𝑣2 + (𝑣2 − 𝑣1

′ )                                                                                        



 

(3) Partial closing 𝑛 = 3 

Immediately after partial closing 𝑛 = 3, valve pressure changes from 𝑃0 to 𝑃3, 

causing flow velocity to change from 𝑣2
′  to 𝑣3. The pressure and velocity changes are 

given by Eq. (a5): 
1

𝜌0𝑐
(𝑃3 − 𝑃0) = −(𝑣3 − 𝑣2

′ ) = −𝑣3 + 𝑣2 + (𝑣2 − 𝑣1
′ )                 (f4) 

Using Eq. (f2), we may rewrite the preceding equation as 
1

𝜌0𝑐
(𝑃3 − 𝑃0) = −(𝑣3 − 𝑣2) −

1

𝜌0𝑐
(𝑃2 − 𝑃0)                                 (f5) 

Just before reflection by the reservoir, the fluid in the entire pipe has pressure 𝑃3 

and velocity 𝑣3. After reflection by the reservoir and before valve closure 𝑛 = 4, the 

fluid in the entire pipe has pressure 

𝑃3 − (𝑃3 − 𝑃0) = 𝑃0                                                                                        
and velocity 

𝑣3
′ = 𝑣3 + (𝑣3 − 𝑣2

′ )                                                                                       
(4) Partial closing 𝑛 = 4 

When the valve is fully shut at valve closing 𝑛 = 4, the valve becomes a fixed 

end, so the fluid velocity at the valve changes from 𝑣3
′  to 𝑣4 = 0. The pressure 

𝑃4 at the valve is then given by Eq. (a5): 
1

𝜌0𝑐
(𝑃4 − 𝑃0) = −(𝑣4 − 𝑣3

′ ) = −𝑣4 + 𝑣3 −
1

𝜌0𝑐
(𝑃3 − 𝑃0)          (f6) 

Finally, if we take note of the fact that ∆𝑃0 = 0 and 𝑣4 = 0, then all equations 

obtained above relating excess pressures and velocity changes after valve closings all 

have the same form: 
∆𝑃𝑛

𝜌0𝑐
= −(𝑣𝑛 − 𝑣𝑛−1) −

∆𝑃𝑛−1

𝜌0𝑐
                      (𝑛 = 1,2,3,4)             (f7) 

To solve for Δ𝑃𝑛 = 𝑃𝑛 − 𝑃0, we note that, from Eqs. (c3) and (c5), we have 

another relation between Δ𝑃𝑛 and 𝑣𝑛:  

∆𝑃𝑛 =
1

2
𝑘𝑛𝜌0𝑣𝑛

2                                              (𝑛 = 1,2,3)                 (f8) 

where 𝐶𝑛 represents 𝐶c for 𝑟 = 𝑟𝑛 and 

𝑘𝑛 = [
1

𝐶𝑛
2

(
𝑅

𝑟𝑛
)

4

− 1]                                       (𝑛 = 1,2,3)                 (f9) 

Combining Eqs. (f7) and (f8), we have a quadratic equation for 𝑣𝑛:  
1

2
𝑘𝑛 (

𝑣𝑛

𝑐
)

2

+
𝑣𝑛

𝑐
+ (

∆𝑃𝑛−1

𝜌0𝑐2
−

𝑣𝑛−1

𝑐
) = 0             (𝑛 = 1,2,3)     (f10) 

which can be solved readily using the formula  

𝑣𝑛

𝑐
=

−1 + √1 + 2𝑘𝑛 (
𝑣𝑛−1

𝑐
−

∆𝑃𝑛−1

𝜌𝑐2 )

𝑘𝑛
             (𝑛 = 1,2,3)       (f11) 

If both ∆𝑃𝑛−1/(𝜌𝑐2) and (𝑣𝑛−1/𝑐) are known, Eq. (f11) may be used to 

compute 𝑣𝑛/𝑐 and then find ∆𝑃𝑛/(𝜌𝑐2) by using Eq. (f8). Therefore, Eq. (f7) may 



 

be solved iteratively starting with 𝑛 = 1 until 𝑛 = 3. For 𝑛 = 4, we know 𝑣𝑛 = 0, so 

Eq. (f7) may be used directly to find ∆𝑃𝑛. 

Note that, from Eq. (f8), ∆𝑃𝑛−1 is a quadratic function of 𝑣𝑛−1, so that if 𝑣𝑛−1 

is known, then 𝑣𝑛 may be computed using Eq. (f11) and then ∆𝑃𝑛 may again be  

computed using Eq. (f8). 

(D.2) (2.0 pt) Estimating Δ𝑃𝑛 and 𝜌0𝑐𝑣𝑛 by graphical method 

Ans: 

To solve Eqs. (f7) and (f8) using graphical method, we rewrite them as follows: 

∆𝑃𝑛 = −(𝜌0𝑐𝑣𝑛 − 𝜌0𝑐𝑣𝑛−1) − ∆𝑃𝑛−1        (𝑛 = 1,2,3,4)              (g1) 

∆𝑃𝑛 =
𝑘𝑗

2𝜌0𝑐2
(𝜌0𝑐𝑣𝑛)2                                   (𝑛 = 1,2,3,4)              (g2) 

In a plot of ∆𝑃 vs. 𝜌0𝑐𝑣, Eq. (g1) and Eq. (g2) correspond to a line passing through 

the point (𝜌0𝑐𝑣𝑛−1, −∆𝑃𝑛−1) with slope −1 and a parabola passing through the 

origin, respectively. Thus one may readily obtain the solutions for each step of valve 

closing by locating their points of intersection, starting with 𝑛 = 1. The result is 

shown in the following graph. 
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𝜌0𝑐𝑣1,−∆𝑃1  

𝜌0𝑐𝑣2, −∆𝑃2  𝜌0𝑐𝑣3, −∆𝑃3  

0, ∆𝑃4  

Excess Pressures and particle velocities at the valve for slow closing 

𝑛 𝑟𝑛/𝑅 𝐶𝑛 𝑘𝑛 𝑣𝑛/(m/s) 𝜌0𝑐𝑣𝑛/MPa ∆𝑃𝑛/(MPa) ∆𝑃𝑛/(𝜌0c𝑣0) 

0 1.00 1.00 0.0 4.0 6.0 0.0 0.0 

1 0.40 0.631 97.1 3.6 5.8 0.62 10 % 

2 0.30 0.622 318. 2.5 3.8 1.0 17 % 

3 0.20 0.616 1646. 1.1 1.7 1.1 18 % 



 

𝜌0𝑐 = 1.50 × 106 kg m−2 s−1               𝑣0 = 4.0 m/s 

4 0.00   0.0 0.0 0.64 11 % 



 

----------------------------------------------------------------------------------------------------------- 

Appendix 

(The following table and graph are for reference only, not part of the task.) 

For 𝑣0 = 4.0 m/s, 𝑐 = 1.5 × 103 m/s, and 𝜌 = 1.0 × 103 kg/m3, the results 

for 𝑣𝑛 and Δ𝑃𝑛 are shown in the following table and graph. They are computed 

according to equations given in task (f). Note that for a sudden full closure of the 

valve, we have Δ𝑃sudden = 𝜌c𝑣0 = 6.0 MPa. 

 

 

 

--------------------------------------------------------------------------------------------------- 
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valve closing step n 

Excess pressures at valve 

Excess Pressures and particle velocities at the valve for slow closing 

𝑛 𝑟𝑛/𝑅 𝐶𝑛 𝑘𝑛 𝑣𝑛/(m/s) 𝜌𝑐𝑣𝑛/MPa ∆𝑃𝑛/(MPa) ∆𝑃𝑛/(𝜌c𝑣0) 

0 1.00 1.00 0.0 4.0 6.0 0.0 0.0 

1 0.40 0.631 97.1 3.58 5.37 0.624 10 % 

2 0.30 0.622 318. 2.50 3.75 0.997 17 % 

3 0.20 0.616 1646. 1.13 1.695 1.06 18 % 

4 0.00   0.0 0.0 0.643 11 % 
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Part A 

2.2 

(A.1) 

1.6 

Excess pressure of pressure wave          𝛼 = −(1 + 𝑣0/𝑐) 

 0.1 expression for impulse. 

 0.1 expression for momentum change. 

 0.1 equating impulse to momentum change 

 0.2 correct equation of continuity for compressible fluid. 

    {0.1 solving by use of energy conservation} 

 0.2 negative sign of 𝛼 

 0.3 correct magnitude |𝛼| = 1 + 𝑣0/𝑐   

    {0.1 for |𝛼| ≈ 1} 

 

 Speed of propagation        𝛽 = −𝑣0, 𝛾 = 1 ≈ (1 + ∆𝑃s/𝐵) 

 0.1 realizing −∆𝑉/𝑉0 = ∆𝜌/𝜌1 ≈ ∆𝜌/𝜌0 

 0.1 negative sign of 𝛽 

 0.2 correct magnitude |𝛽| = 𝑣0 

 0.2 𝛾 = 1 ≈ (1 + ∆𝑃s/𝐵)   

    {0.1 if ]𝛾[ ≈ 1} 

(A.2) 

0.6 
Numerical values of 𝑐 and ∆𝑃𝑠 for water flow.    

 0.2 + 0.1 for magnitude and unit of 𝑐 = 1.5 × 103 m/s. 

 0.2 + 0.1 for magnitude and unit of Δ𝑃s = 5.9 MPa. 

    {0.1 + 0.1 for correct order of magnitude for 𝑐 and Δ𝑃s} 

Part B 

1.0 

(B.1) 

1.0 
Excess Pressure at valve inlet.  ∆𝑃in =

𝑘

2
𝜌0𝑣in

2 , 𝑘 = [
1

𝐶c
2 (

𝑅

𝑟
)

4
− 1] 

 0.2 using inlet and vena contracta in Bernoulli theorem. 

 0.1 correct equation of continuity for incompressible fluid 

 0.1 deduce 𝑟c
2 = 𝑟2𝐶c. 

 0.1 deduce 𝑣c =
1

𝐶c
(

𝑅

𝑟
)

2
𝑣in. 

 0.5 obtain ∆𝑃in =
𝑘

2
𝜌0𝑣in

2  with correct 𝑘. 

    {0.2 for ∆𝑃in ∝ 𝑣in
2 .} 

Part C 

1.8 

(C.1) 

0.6 
Pressure and velocity when valve fully open. 𝑃0 = 𝑃a 𝑣0 = √2𝑔ℎ 

 0.1 correct equation of Bernoulli theorem. 

 0.1 correct equation of continuity. 

 0.1 realizing 𝐶c(𝑟 = 𝑅) = 1.0 

 0.1 𝑣0 = √2𝑔ℎ 

 0.2 𝑃0 = 𝑃a. 

(C.2) 

1.2 
Pressure 𝑃(𝑡) and flow velocity 𝑣(𝑡) as 𝑡 → 𝜏/2 and 𝑡 → 𝜏. 

 0.3 for 𝑃(→ 𝜏/2) = 𝑃0 + 𝜌0𝑐𝑣0 

    {0.1 for 𝑃(→ 𝜏/2) = 𝜌0𝑐𝑣0} 

 0.3 for 𝑣(→ 𝜏/2) = 0 

 0.3 for 𝑃(→ 𝜏) = 𝑃0 + 𝜌0𝑔ℎ = 𝑃ℎ 

    {0.1 for 𝑃(→ 𝜏) = 𝑃0} 

 0.3 for 𝑣(→ 𝜏) = −𝑣0 + 𝑔ℎ/𝑐 

    {0.1 for 𝑣(→ 𝜏) = −𝑣0} 
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Part D 

5.0 

(D.1) 

3.0 
Recursion relations for Δ𝑃𝑛 and 𝑣𝑛. 

 
∆𝑃𝑛

𝜌0𝑐
= −(𝑣𝑛 − 𝑣𝑛−1) −

∆𝑃𝑛−1

𝜌0𝑐
              (𝑛 = 1,2,3,4)          

𝑣𝑛

𝑐
=

−1+√1+2𝑘𝑛(
𝑣𝑛−1

𝑐
−

∆𝑃𝑛−1
𝜌𝑐2 )

𝑘𝑛
       (𝑛 = 1,2,3)              

 0.2 setting ℎ = 0 to simplify equations. 

 0.2 use ∆𝑃 = ∓𝜌0𝑐∆𝑣 for waves moving in ∓𝑥 direction. 

 0.2 sign change of ∆𝑃 upon reflection at reservoir end. 

 0.2 no sign change of ∆𝑣 upon reflection at reservoir end. 

 0.2 no sign change of ∆𝑃 upon reflection at valve end. 

 0.2 sign change of ∆𝑣 upon reflection at valve end. 

 1.0 correct recursion formula for Δ𝑃𝑛, n = 1,2,3,4. 

 0.4 use ∆𝑃𝑛 =
1

2
𝑘𝑛𝜌0𝑣𝑛

2 to eliminate ∆𝑃𝑛 in recursion formula 

 0.2 take positive root when solving for 
𝑣𝑛

𝑐
, 𝑛 = 1,2,3 

(D.2) 

2.0 
Δ𝑃𝑛 and 𝜌0𝑐𝑣𝑛 by graphical method. 

∆𝑃𝑛

𝜌0𝑐
= −(𝑣𝑛 − 𝑣𝑛−1) −

∆𝑃𝑛−1

𝜌0𝑐
 

 0.4 (0.1 each) ∆𝑃𝑛 vs. 𝜌0𝑐𝑣𝑛 line (𝑛 = 1,2,3,4) passing through 
(𝜌0𝑐𝑣𝑛−1, −∆𝑃𝑛−1) with slope = −1 (𝑛 = 1,2,3,4). 

 0.3 (0.1 each) parabola for ∆𝑃𝑛 vs. 𝑣𝑛 curve (𝑛 = 1,2,3). 

 0.1 Start with (𝜌0𝑐𝑣0 = 6.0 MPa, ∆𝑃0 = 0) 

 0.1 End with 𝑣4 = 0 

 0.4 (0.1 each) each label 𝑛 at (𝜌
0
𝑐𝑣𝑛, ∆𝑃𝑛) (𝑛 = 1,2,3,4)  

 0.4 (0.1 each) estimate of ∆𝑃𝑛 (𝑛 = 1,2,3,4) . 

 0.3 (0.1 each) each estimate of 𝜌0𝑐𝑣𝑛 (𝑛 = 1,2,3) 

Refer to plot and table on next page for values of (𝜌0𝑐𝑣𝑛, ∆𝑃𝑛). 

 

Partial outcomes obtained for later problems which are incorrect solely because of 

errors being carried forward but are otherwise reasonable will not be further penalized. 

However, this rule does not apply to incorrect final outcomes. 
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𝜌0𝑐 = 1.50 × 106 kg m−2 s−1               𝑣0 = 4.0 m/s 
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1

1.5

2
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P

/M
Pa

 

cv/MPa 

P-cv at valve 

n=3, r/R=0.2 n=2, r/R=0.3 n=1, r/R=0.4

𝑛 = 1 

𝑛 = 2 𝑛 = 3 

𝑛 = 4 

𝜌0ܿ𝑣1,−∆𝑃1  

𝜌0𝑐𝑣2, −∆𝑃2  𝜌0𝑐𝑣3, −∆𝑃3  

0, ∆𝑃4  

Excess Pressures and particle velocities at the valve for slow closing 
𝑛 𝑟𝑛/𝑅 𝐶𝑛 𝑘𝑛 𝑣𝑛/(m/s) 𝜌0𝑐𝑣𝑛/MPa ∆𝑃𝑛/(MPa) ∆𝑃𝑛/(𝜌0c𝑣0) 
0 1.00 1.00 0.0 4.0 6.0 0.0 0.0 
1 0.40 0.631 97.1 3.6 5.8 0.62 10 % 
2 0.30 0.622 318. 2.5 3.8 1.0 17 % 
3 0.20 0.616 1646. 1.1 1.7 1.1 18 % 
4 0.00   0.0 0.0 0.64 11 % 



Theoretical Question 2: Ray tracing and generation of entangled light

Part A. Light propagation in isotropic dielectric media

A.1 0.4 pt

Ans: 1√
µ0ε

Solution:

From ~k× ~E = ω ~B = ωµ0
~H and ~k× ~H = −ω ~D, one obtains ~k×(~k× ~E) = −ω2µ0

~D. By using

the given identity ~A× ( ~B× ~C) = ~B( ~A · ~C)− ~C( ~A · ~B), one finds ~k× (~k× ~E) = ~k(~k · ~E)−k2 ~E.

Since ~D · ~k = 0 and ~D = ε ~E, we find ~k × (~k × ~E) = −k2 ~E and the relation

~k × (~k × ~E) = −ω2µ0
~D reduces to −k2 ~E = −ω2µ0ε ~E.

Now the phase delocity is determined by d(~k·~r−ωt)
dt

= 0, we find that the phase velocity

~vp = d~r
dt

= ω
k
k̂. Clearly, we have ω

k
= 1√

µ0ε
. Hence vp = 1√

µ0ε
.

A.2 0.2 pt

Ans: c
√
µ0ε

Solution:

From vp = 1√
µ0ε

= c
n
, we find n = c

√
µ0ε

A.3 0.4 pt

Ans: k̂, vr = vp = 1√
µ0ε

Solution:

To find the speed of the ray, we first note that the direction of the energy flow, given by

the Poynting vector ~S = ~E × ~H, is in the same direction of ~k. The electromagnetic energy

density u = ue + um with ue = 1
2
~E · ~D and um = 1

2
~B · ~H.

Now, from ~k× ~H = −ω ~D, one has ~D = − 1
vp
k̂× ~H. Hence ue = − 1

2vp
~E · k̂× ~H = 1

2vp
k̂ · ~E× ~H.

Similarly, from ~k× ~E = ω ~B, we find um = 1
2vp

~B · k̂× ~E = 1
2vp
k̂ · ~E× ~H. Hence u = 1

vp
k̂ · ~E× ~B.

We find vr = S/u = vp = 1√
µ0ε

.

Part B. Light propagation in in uniaxial dielectric media

B.1 1.5pt

Ans: n = no, B̂ = ±k̂ × ŷ = ±(− cos θ, 0, sin θ), D̂ = ±ŷ or n = none√
n2
o sin2 θ+n2

e cos2 θ
, B̂ = ±ŷ,

D̂ = ±ŷ × k̂ = ±(cos θ, 0,− sin θ). For θ = 0, there is only one permitted value for the

refractive index

Solution:

From ~k × ~E = ωµ0
~H and ~k × ~H = −ω ~D, one obtains ~k × (~k × ~E) = −ω2µ0

~D. Writing out

1



components and using ω = c
n
k, we find

− cos2 θEx + cos θ sin θEz = −n
2
o

n2
Ex,

− cos2 θEy − sin2 θEy = −n
2
o

n2
Ey,

− sin2 θEz + cos θ sin θEx = −n
2
e

n2
Ez.

After a bit rearrangement, we obtain (
1− n2

o

n2

)
Ey = 0(

n2
o

n2
− cos2 θ

)
Ex + cos θ sin θEz = 0

cos θ sin θEx +

(
n2
o

n2
− sin2 θ

)
Ez = 0.

The vanishing of the determinant yields(
1− n2

o

n2

)[
(
n2
o

n2
− cos2 θ)(

n2
e

n2
− sin2 θ)− sin2 θ cos2 θ

]
= 0. (1)

Clearly, for a general θ, we have two solutions for n:

(1) n = no

In this case, Ex = Ez = 0. ~E is parallel to the y axis. From ~k × ~E = ω ~B and ~k × (µ0
~B) =

−ω ~D, we obtain the directions of ~B and ~D as B̂ = ±k̂ × ŷ = ±(− cos θ, 0, sin θ) and

D̂ = −k̂ × B̂ = ±(0, 1, 0) = ±ŷ.

(2) (n
2
o

n2 − cos2 θ)(n
2
e

n2 − sin2 θ)− sin2 θ cos2 θ = 0.

After rearrangement, we find n = none√
n2
o sin2 θ+n2

e cos2 θ
. Clearly, at θ = 0, n = no, there is only

one refractive index. This is the direction of the optic axis.

In this case, Ey = 0. Hence ~E lies in the xz plane. Hence the relation ~k × ~E = ω ~B implies

B̂ = ±ŷ. The relation ~k × (µ0
~B) = −ω ~D implies D̂ = ±ŷ × k̂.

B.2 0.8 pt

Ans: (1) when n = no, Ê = ±ŷ and this is an ordinary ray. tanα = 0.

(2) when n = none√
n2
o sin2 θ+n2

e cos2 θ
, Ê = ± 1√

n4
e cos2 θ+n4

o sin2 θ
(−n2

e cos θ, 0, n2
o sin θ) and this is an

extraordinary ray. tanα = (n2
o−n2

e) tan θ
n2
e+n2

o tan2 θ
.

Solution:

(1) For n = no, both ~E and ~D are parallel to the y axis. This is an ordinary ray with

tanα = 0.

2



(2) For n = none√
n2
o sin2 θ+n2

e cos2 θ
, n 6= no, Ey = 0. By substituting n back into the equations of

Ex and Ez, we find that n2
o

n2
e

sin θEx + cos θEz = 0. Hence the electric field lies in xz plane

with Ê = ± 1√
n4
e cos2 θ+n4

o sin2 θ
(−n2

e cos θ, 0, n2
o sin θ) ( ~B points in ∓y direction.). Therefore,

~E is not perpendicular to ~k and lies in the xz plan in together with ~D and ~k. This is the

extraordinary ray.

Since ~k × ~H = −ω ~D, ~D is perpendicular to k̂. Hence D̂ = ±(− cos θ, 0, sin θ). Let ~B = ŷ,

the relative orientation of ~E and ~D for a given θ are shown in the following figure for the

case when ne < no.

x

z

B

!𝑘

𝜃 𝐷 ⊥ $𝑘

𝛼 𝐷
𝐸

X

Let the angle relative to x axis be θ1 and θ2 for ~E and ~D. We have tan θ2 = − tan θ and

tan θ1 = −n2
o

n2
e

tan θ. Hence tanα = tan(θ2 − θ1) = tan θ2−tan θ1
1+tan θ1 tan θ2

= (n2
o−n2

e) tan θ
n2
e+n2

o tan2 θ
. The same

result remains when ne > no except that tanα < 0, indicating that the relative orientation

of ~E and ~D is reversed.

B.3 0.6 pt

Ans: n = no, ~E = ±k̂ × ẑ/ sin θ and this is an ordinary ray.

when n = none√
n2
o sin2 θ+n2

e cos2 θ
, Ê = ± 1√

n4
e cos2 θ+n4

o sin2 θ

−n2
e cos θk̂+(n2

o sin2 θ−n2
e cos2 θ)ẑ

sin θ
and this is an

extraordinary ray.

Solution: The problem has an axial symmetry so that in the plane formed by the z

axis and k̂, one can write ~k = kz ẑ + k⊥k̂⊥ and ~E = Ez ẑ + E⊥k̂⊥, where k̂⊥ is perpen-

dicular to ẑ. Clearly, we kz = k cos θ, k⊥ = k sin θ, Ez = E cos θ, and E⊥ = E sin θ.

Writing out the components for the equation: ~k × (~k × ~E) = −ω2µ0
~D, we get ex-

actly the same equations except that Ex is replaced by E⊥. Hence all of the solu-

tions are the same except x̂ is replaced by k̂⊥. Since k̂⊥ sin θ = k̂ − cos θẑ, we obtain

that when n = none√
n2
o sin2 θ+n2

e cos2 θ
, Ê = ± 1√

n4
e cos2 θ+n4

o sin2 θ
[−n2

e cos θ (k̂−cos θẑ)
sin θ

+ n2
o sin θẑ] =

3



± 1√
n4
e cos2 θ+n4

o sin2 θ

−n2
e cos θk̂+(n2

o sin2 θ−n2
e cos2 θ)ẑ

sin θ
.

B.4 0.8 pt

Ans: (1) n = no, tanαr = 0, vr = c
no

, Ŝ = (sin θ, 0, cos θ)

(2) n = none√
n2
o sin2 θ+n2

e cos2 θ
, tanαr = (n2

o−n2
e) tan θ

n2
e+n2

o tan2 θ
, vr = c

none

√
n4
e cos2 θ+n4

o sin2 θ

n2
e cos2 θ+n2

o sin2 θ
.

Ŝ = 1√
n4
e cos2 θ+n4

o sin2 θ
(n2

o sin θ, 0, n2
e cos θ)

(3) ns =

√
(Ŝ · x̂)2n2

e + (Ŝ · ẑ)2n2
o

Solution:

The direction of the energy flow is given by the Poynting vector, ~S = ~E× ~H. Let the energy

density of EM wave be u and the ray velocity be vr. Then vr = S
u
. Here u = ue + um with

ue = 1
2
~E · ~D and um = 1

2
~B · ~H. There are two cases:

(i)n = no, ~E = (0, E, 0), ~D = ε ~E, ~k × ~E = ωµ0
~H, ~k × ~H = −ω ~D.

k̂, ~E and ~H are mutually perpendicular to each other. Hence ~S is parallel to k̂, i.e.,

Ŝ = (sin θ, 0, cos θ) and tanαr = 0.

Now from ~k× ~H = −ω ~D, one has ~D = − 1
vp
k̂× ~H. Hence ue = − 1

2vp
~E · k̂× ~H = 1

2vp
k̂ · ~E× ~H.

Similarly, we find um = 1
2vp

~H · k̂ × ~E = 1
2vp
k̂ · ~E × ~H. Hence u = 1

vp
k̂ · ~E × ~H. Since Ŝ = k̂,

we find u = S
vp

. Hence vr = S
u

= vp = ω
k

= c
no

.

(ii) n = none√
n2
o sin2 θ+n2

e cos2 θ
. In this case, we can tak ~B = (0, B, 0) (negative y direction works

as well). ~D, ~E and k̂ are in the xz plane and ~D is perpendicular to k̂. Therefore, the angle

between ~S = 1
µ0
~E × ~B and k̂ is equal to the angle between ~D and ~E, i.e., αr = α. This is

shown in the following figure when ne < no (for ne > no, both α and αr are negative, the

relative orientation of ~E and ~D is reversed and ordering of Ŝ and k̂ are switched).

x

z

B

!𝑘

𝜃
!S𝛼! 𝐸 ⊥ %𝑆

𝐷 ⊥ (𝑘

𝛼 𝐷
𝐸

X
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Therefore, from problem (d) (ii), we get tanαr = tanα = (n2
o−n2

e) tan θ
n2
e+n2

o tan2 θ
. Now, because

u = 1
vp
k̂ · ~E × ~H = 1

vp
| ~E × ~H| cosα, we obtain vr = S

u
= vp

cosα
. Hence the phase speed vp and

the ray speed are related by vp = vr cosα. From tanα, one finds cosα = n2
e cos2 θ+n2

o sin2 θ√
n4
e cos2 θ+n4

o sin2 θ
.

Hence vr = c
n cosα

= c
none

√
n4
e cos2 θ+n4

o sin2 θ

n2
e cos2 θ+n2

o sin2 θ
.

Clearly, Ŝ = (sin(θ + α), cos(θ + α)). Since sinα = (n2
o−n2

e) sin θ cos θ√
n4
e cos2 θ+n4

o sin2 θ
and cosα =

n2
ec cos2 θ+n2

o sin2 θ√
n4
ec cos2 θ+n4

o sin2 θ
, we find Ŝ = 1√

n4
ec cos2 θ+n4

o sin2 θ
(n2

o sin θ, 0, n2
e cos θ).

From n2
s =

(
c
vr

)2

= n2
on

2
e
n2
e cos2 θ+n2

o sin2 θ

n4
e cos2 θ+n4

o sin2 θ
= (n2

o sin θ)2n2
e+(n2

e cos θ)n2
o

n4
e cos2 θ+n4

o sin2 θ
, we find ns = (Ŝ · x̂)2n2

e + (Ŝ ·

ẑ)2n2
o .

B.5 1.1 pt

Ans: Ā = P1(n2 sin2 θ1 − P1), B̄ = −2P3(n2 sin2 θ1 − P1), C̄ = P2n
2 sin2 θ1 − P 2

3 .

φ = 0, tan θ2 = nne sin θ1

no

√
n2
o−n2 sin2 θ1

.

φ = π/2, tan θ2 = nno sin θ1

ne

√
n2
e−n2 sin2 θ1

.

Solution:

Let the distance along z axis between A and B be d and the point of the interface that

the ray passes be the origin O. The coordinates of B and A points can be expressed as

(h2, 0, z) and (h1, 0, d− z). The distances are then given by AO ≡ d1 =
√
h2

1 + (d− z)2 and

OB ≡ d2 =
√
h2

2 + z2. The propagation time from A to B is determined by the ray speed

vr as (d1ns1 + d2ns2)/c, where nsi are ray indices for medium i. According to the Fermat’s

principle, we need to minimize the optical path length defined by ∆ ≡ d1ns1 + d2ns2. Ac-

cording to problem (e), we have n2
s2 = (

−−→
OB
OB
· x̂2)2n2

e + (
−−→
OB
OB
· ẑ2)2n2

o. For an isotropic medium,

the ray index is simply the refractive index, i.e., ns1 = n. Using the following relations

−−→
OB

OB
· x̂2 = cos(φ− θ2) =

h2

d2

cosφ+
z

d2

sinφ,

−−→
OB

OB
· ẑ2 = cos(

π

2
+ φ− θ2) = sin(θ2 − φ) =

z

d2

cosφ− h2

d2

sinφ,

we find

∆ = n
√
h2

1 + (d− z)2 +
√

(h2 cosφ+ z sinφ)2n2
e + (−h2 sinφ+ z cosφ)2n2

o.

The minimum occurs when d∆
dz

= 0. We obtain

n
z − d√

h2
1 + (d− z)2

+
(h2 sinφ cosφ(n2

e − n2
o) + z(n2

e sin2 φ+ n2
o cos2 φ)√

(h2 cosφ+ z sinφ)2n2
e + (−h2 sinφ+ z cosφ)2n2

o

= 0.

5



Recognizing d−z√
h21+(d−z)2

= sin θ1, moving the second term to the left and taking square of

the equation, we obtain

n2 sin2 θ1 =
(P3 − P1 tan θ2)2

P1 tan2 θ2 − 2P3 tan θ2 + P2

,

where P1 = n2
o cos2 φ + n2

e sin2 φ, P2 = n2
o sin2 φ + n2

e cos2 φ, and P3 = (n2
o − n2

e) sinφ cosφ.

By expanding the above equation out, we find

P1(n2 sin2 θ1 − P1) tan2 θ2 − 2P3(n2 sin2 θ1 − P1) tan θ1 + P2n
2 sin2 θ1 − P 2

3 = 0.

Hence Ā = P1(n2 sin2 θ1 − P1), B̄ = −2P3(n2 sin2 θ1 − P1), and C̄ = P2n
2 sin2 θ1 − P 2

3 .

For φ = 0, we have P3 = 0, P1 = n2
o, and P2 = n2

e. We find n2
o(n

2 sin2 θ1 − n2
o) tan2 θ2 +

n2
en

2 sin2 θ1 = 0. Hence tan θ2 = nne sin θ1

no

√
n2
o−n2 sin2 θ1

.

For φ = π/2, we have P3 = 0, P1 = n2
e, and P2 = n2

o. We find

n2
e(n

2 sin2 θ1 − n2
e) tan2 θ2 + n2

on
2 sin2 θ1 = 0. Hence tan θ2 = nno sin θ1

ne

√
n2
e−n2 sin2 θ1

.

Part C. Entanglement of light

C.1 0.8 pt

Ans:(1) ω = ω1 ± ω2, ~k = ~k1 ± ~k2

(2) ~ω = ~ω1 ± ~ω2, ~~k = ~~k1 ± ~~k2 represents the energy conservation and momentum

conservation of photons.

(3) Splitting of photon: Energy conservation ω = ω1 + ω2, momentum conservation: ~k =

~k1 + ~k2.

Solution:

For a light wave with frequency ω and ~k, the corresponding polarization density and the

electric field are in the form of ~A cos(ωt − ~k · ~r), which can be rewritten as
~A
2
(ei(ωt−

~k·~r) +

e−i(ωt−
~k·~r)). By substituting the above form into the equation PNL

i =
∑

j

∑
k χ

(2)
ijkEjEk and

equating the relevant exponents, we find all possible relations are

ω = ω1 + ω2, ~k = ~k1 + ~k2.

or ω = ω1 − ω2, ~k = ~k1 − ~k2,

where we have made use of the fact that the frequency is positive. The meaning for the these

relations is clear if one recall that the energy and momentum of a photon is given by ~ω and

~~k. The relation of ~ω = ~ω1 + ~ω2, ~~k = ~~k1 + ~~k2 represents the energy and momentum
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conservations when a photon with (ω, ~k) is annihilated and split into two photons with (ω1,

~k1) and (ω2, ~k2), while the relation of ~ω = ~ω1− ~ω2, ~~k = ~~k1− ~~k2 represents the energy

and momentum conservations when a photon with (ω1, ~k1) is annihilated and split into two

photons with (ω, ~k) and (ω2, ~k2).

C.2 0.8 pt

Ans: o→ o + o, e→ e + e

Solution:

For the collinear case, the phase matching conditions become ω = ω1 +ω2, ni(ω)ω
c

=
nj(ω1)ω1

c
+

nk(ω2)ω2

c
, where i, j, and k are indices of either o or e. Assuming that ω1 ≥ ω2, one can solve

ω1 as ω1 = ω − ω2. We obtain

ni(ω)− nj(ω1) =
ω2

ω
[nk(ω2)− nj(ω1)] .

(2)

Clearly, because ω > ω1 ≥ ω2, if i = j = k, ni(ω)− nj(ω1) > 0 and nk(ω2)− nj(ω1) ≤ 0, the

above equation cannot be satisfied. For other cases, because there is no relation between no

and ne, the phase matching conditions can be satisfied. Hence only o→ o+o and e→ e+e

are not possible.

C.3 1.5 pt

Ans: (1) M = Ko[1−Ne(Ωe,θ) cot θ]+Ke

2KeKo
, E = −Ne/2M and F = −(Ω− Ωe)(

1
uo
− 1

ue
) + N2

e

4M

(2) the angle between the axis of the cone and z′ is N/Ko = − 2KeNe

Ko[1−Ne(Ωe,θ) cot θ]+Ke

(3) the angle of cone is about

√
L/M

Ko
= − (Ω−Ωe)

MKo
( 1
uo
− 1

ue
) + N2

e

4M2Ko
.

Solution:

To satisfy the phase matching condition, we expand the angular frequencies ω1 and ω2 into

ω1 = Ωe + ν and ω2 = Ωo + ν ′. Clearly, because Ωe + Ωo = Ωp, to satisfy ω1 + ω2 = ω,

ν ′ = −ν. Similarly, the conditions for the wavevectors, ~k = ~k1 + ~k2, can be written as

kz = k = Kp = k1z + k2z and ~k2⊥ = −~k1⊥ ≡ ~q⊥. For the o light ray, we have k2
2⊥ + k2

2z = k2
2

with k2 = no(ω2)ω2

c
. One finds that k2z =

√
k2

2 − k2
2⊥ = k2 −

k22⊥
2k2

. Expanding the dependence

of ω2 in k2 to ν, we obtain

k2 =
no(ω2)ω2

c
=
no(Ωo)Ωo

c
+
dk2

dω2

(ω2 − Ωo) = Ko −
ν

uo
,

where uo is the group velocity for the ordinary ray. Hence to the second order of corrections,
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we get

k2z = Ko −
ν

uo
− q2

⊥
2Ko

.

Similarly, for the e light ray, we have k2
1⊥ + k2

1z = k2
1 with k1 = ne(ω1,θp)ω1

c
. One finds that

k1z =
√
k2

1 − k2
1⊥ = k1 −

k21⊥
2k1

. The expansion of k1 is different from that for k2 due to its

angle dependence. Let the spherical angles for ~k1 be θ1 and φ1. We have

k1 =
ne(ω1, θ1)ω1

c
=
ne(Ωe, θ)Ωe

c
+
dk1(Ωe, θ)

dΩe

(ω1 − Ωe) +
Ωe

c

dne(Ωe, θ)

dθ
(θ1 − θ) + · · ·

Here ne(Ωe,θ)Ωe

c
= Ke,

dk1(Ωe,θ)
dΩe

is 1/ue with ue being the group velocity for the extraordinary

ray and is given by

dk1(Ωe, θ)

dΩe

=
ne(Ωe, θ)

c
+

Ωe

c

dne(Ωe, θ)

dΩe

.

Because dne(Ωe,θ)
dθ

= none(n2
e−n2

o) sin θ cos θ

(n2
o sin2 θ+n2

e cos2 θ)3/2
= ne(Ωe, θ)Ne(Ωe, θ), we find Ne(Ωe, θ) =

(n2
e−n2

o) sin θ cos θ

n2
o sin2 θ+n2

e cos2 θ
. Note that for ne < no, Ne(Ωe, θ) < 0. To find δθ = θ1 − θ, we note

that for any ~kα, one has (cf. Fig. 2(a))

k̂α · ÔA = cos θα = cos θ cosψα + sin θ sinψα cosφα.

Since sinψ1 = |~k⊥,1|/|~k1| = q⊥/k1 � 1 and cosψ1 =
√

1− sin2 ψ1 = 1− 1/2 sin2 ψ1 + · · · , to

the second order, we can replace k1 by Ke and obtain

k̂1 · ÔA = cos θ1 = cos θ

[
1− 1

2

q2
⊥
K2
e

+ · · ·
]

+ sin θ

[
q⊥
Ke

+ · · ·
]

cosφ1.

On the other hand, cos θ1 = cos θ+ d cos θ
dθ

(θ1−θ)+ · · · = cos θ−sin θ(θ1−θ)+ · · · . Comparing

this equation to the equaton for k̂1 · ÔA, we obtain

θ1 − θ =
1

2

q2
⊥
K2
e

cot θ − q⊥
Ke

cosφ1 · · · =
1

2

q2
⊥
K2
e

cot θ +
qx′

Ke

+ · · ·

Putting all together, we find

k1z = Ke +
1

ue
(Ω− Ωe) +Ne(Ωe, θ)qx′ +

q2
⊥

2Ke

[Ne(Ωe, θ) cot θ − 1] + · · · .

The above equation when combined with the equation of k1z and the relation Kp = k1z+k2z,

we find

(Ω− Ωe)(
1

ue
− 1

uo
) +Ne(Ωe, θ)qx′ + q2

⊥

{
Ko [Ne(Ωe, θ) cot θ − 1]−Ke

2KeKo

}
= 0.
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Because ne < no, Ne(Ωe, θ) < 0. The above equation can be rewritten in the form

M

[
qx′ −

Ne

2D

]2

+Mq2
y′ = −(Ω− Ωe)(

1

uo
− 1

ue
) +

N2
e

4M
.

Here D = Ko[1−Ne(Ωe,θ) cot θ]+Ke

2KeKo
> 0. Hence E = −Ne/2M > 0 (Ne < 0) and

L = −(Ω − Ωe)(
1
uo
− 1

ue
) + N2

e

4M
. Clearly, the cone axis formed by ~k2 is characterized by

~q⊥. We find that the angle between the axis of the cone and z′ is tan−1(N/k1z), which

is about N/k1z ≈ N/Ko = − 2KeNe

Ko[1−Ne(Ωe,θ) cot θ]+Ke
. The angle of the cone is given by

sin−1

√
L/M

k2
≈
√
L/M

Ko
= − (Ω−Ωe)

MKo
( 1
uo
− 1

ue
) + N2

e

4M2Ko
.

C.4 0.8pt

Ans: P (α, β) = 1
2

sin2(α + β), P (α, β⊥) = 1
2

cos2(α + β), P (α⊥, β) = 1
2

cos2(α + β),

P (α⊥, β⊥) = 1
2

sin2(α + β)

Solution:

For a-photon, let the electric field along the polarizer and perpendicular to the polarization

represented by |αx〉 and |αy〉. Here αx and αx are essentially the electric field amplitudes in

appropriate units. The electric fields (the states) along x̂′ and ŷ′ can be written as

|x̂′a〉 = cosα|αx〉 − sinα|αy〉,

|ŷ′a〉 = sinα|αx〉+ cosα|αy〉.

Similarly, for b-photon, we have

|x̂′b〉 = cos β|βx〉 − sin β|βy〉,

|ŷ′b〉 = sin β|βx〉+ cos β|βy〉.

Hence we obtain

|x̂′a〉|ŷ′b〉 = (cosα|αx〉 − sinα|αy〉)(sin β|βx〉+ cos β|βy〉),

|ŷ′a〉|x̂′b〉 = (sinα|αx〉+ cosα|αy〉)(cos β|βx〉 − sin β|βy〉).

The state of the entangled photon pair can be written as

1√
2

(|x̂′a〉|ŷ′b〉+ |ŷ′a〉|x̂′b〉)

=
1√
2

[(cosα sin β + sinα cos β)(|αx〉|βx〉 − |αy〉|βy〉)

+ (cosα cos β − sinα sin β)(|αx〉|βy〉 − |αy〉|βx〉)]

=
1√
2

[sin(α + β)(|αx〉|βx〉 − |αy〉|βy〉) + cos(α + β)(|αx〉|βy〉 − |αy〉|βx〉)]
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From the above equation, we obtain

P (α, β) =
1

2
sin2(α + β),

P (α⊥, β⊥) =
1

2
sin2(α + β),

P (α, β⊥) =
1

2
cos2(α + β),

P (α⊥, β) =
1

2
cos2(α + β).

C.5 0.5pt

Ans: S = | cos 2(α− β)− cos 2(α− β′)|+ | cos 2(α′ − β) + cos 2(α′ − β′)|

S = 2
√

2. S > 2 indicates that it is not consistent with classical theories.

Solution:

One first realizes that E(α, β) = P (α,β)+P (α⊥,β⊥)−P (α,β⊥)−P (α⊥,β)
P (α,β)+P (α⊥,β⊥)+P (α,β⊥)+P (α⊥,β)

. Using expressions for P , we

find

E(α, β) = sin2(α + β)− cos2(α + β)

= (sinα cos β + cosα sin β)2 − (cosα cos β − sinα sin β)2

= −(cos2 α− sin2 α)(cos2 β − sin2 β) + 4 sinα sin β cosα cos β

= sin(2α) sin(2β)− cos(2α) cos(2β) = − cos 2(α− β).

Hence S = | cos 2(α−β)− cos 2(α−β′)|+ | cos 2(α′−β) + cos 2(α′−β′)|. For α = π
4
, α′ = 0,

β = −π
8
, β′ = π

8
, we find S = | − 1√

2
− 1√

2
|+ | 1√

2
+ 1√

2
| = 2

√
2 > 2. Hence classical theories

do not apply.
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Ray tracing and generation of entangled light – Marking Scheme 

 
Remark: When student’s solutions are correct and also show how 
solutions were obtained, it gets full credit. Only when student’s solutions 
are incorrect or partially correct, the followings apply. 

Part A. Light propagation in isotropic dielectric media 

A.1 0.4 pt 

Solution:  
1

"𝜇!𝜖
 

Realize that the phase velocity is given 
by !

"
 

0.2 pt 

Correct expression for  !
"
= 1

#𝜇0𝜖
 0.2 pt 

A.2 0.2 pt 

Solution: 𝑛 = 𝑐$𝜇0𝜖 
Correct relation  !

"
= $

%
  

 

0.1 pt 

 Correct expression 𝑛 = 𝑐$𝜇0𝜖 0.1 pt 

A.3 0.4 pt 

Solution: 
       𝑆& = 𝑘( 

𝑣& = 𝑣' =
1

"𝜇!𝜖
 

Correct expression for direction of 𝑆) 0.2 pt 

Correct result of computing the ratio 
𝑆/𝑢   

0.1 pt 

Correct expression for  	
𝑣& = 𝑣' =

1
"𝜇!𝜖

 
0.1 pt 

Part B. Light propagation in uniaxial dielectric media 

B.1 1.5pt 

Solution: 
𝑛 = 𝑛&  
𝐵( = ±𝑘( × 𝑦0 =
±(− cos 𝜃 , 0 sin 𝜃)  
𝐷) = ±𝑦0  
 
𝑛 = %(%)

'%(* ()** +,%)	* -.(* +
  

𝐵( = ±𝑦0  
𝐷) = ±𝑦0 × 𝑘( =
±(cos 𝜃 , 0, − sin 𝜃)  
 
𝜃 = 0 or 𝜋 only one refractive 
index is allowed. 

Realize that the determinant associated 
with equations for electric field has to 
vanish and correctly write out the form 
of the determinant. 

0.2 pt       

 

Correct equation for 	𝑛 0.1 pt 

Correct expressions for 𝑛  

𝑛!: 0.1pt, 
"!""

#""# $%&# '("!# )*$# '
: 0.2pt 

0.3 pt 

Correct expressions for 𝐵)  (each 
direction is 0.2 pt, both	+ and – are 
given the fill credit)  

0.4 pt 



 

 

Correct expressions for 𝐷)  (each 
direction is 0.2 pt, both	+ and – are 
given the fill credit) 

0.4 pt 

Correct value for the angle with only 
one refractive index 

0.1 pt 

B.2 0.8pt      

Solution: 
𝑛 = 𝑛!             
𝐸) = ±𝑦,	 ordinary light ray 
tan 𝛼 = 0  
 
𝑛 = "!""

#"!# $%&# '(""# )*$# '
  

 
𝐸) = ± +

#""$ ,!-# '("!$ $%&# '
  

(−𝑛./ cos 𝜃 , 0, 𝑛!/ sin 𝜃)  
 
Extraordinary light ray 
 

tan 𝛼 = ("!#1""#) 34&'
""#("!# 34&# '

  

 

Correct ratio of 𝐸5:	𝐸6 for the case 
of 	𝑛 = "!""

#""# $%&# '("!# )*$# '
: 0.1 pt 

Correct expression for the 
polarization of the corresponding 
refractive index: 

𝐸) = ±𝑦,: 0.1 pt 
 
𝐸) = ± +

#""$ ,!-# '("!$ $%&# '
  

(−𝑛./ cos 𝜃 , 0, 𝑛!/ sin 𝜃): 0.1pt 

0.3 pt 

Correct expressions for the angle of 
𝐸=⃗  and 𝐷==⃗  relative to x axis: 0.1 pt 
Correct expression for tan 𝛼:  

tan 𝛼 = 0: 0.1 pt 

tan 𝛼 = ("!#1""#) 34&'
""#("!# 34&# '

 : 0.1 pt 

 

0.3 pt 

Correctly indicate types of light rays: 

Ordinary light ray 0.1 pt  
 
Extraordinary light ray 0.1pt 

0.2 pt 

B.3 0.6pt  
Solution: 
𝑛 = 𝑛!             
𝐸) = ±�̂� × 𝑘)	/ sin 𝜃  
ordinary light ray 
 
𝑛 = "!""

#"!# $%&# '(""# )*$# '
  

𝐸) = ± +

#""$ ,!-# '("!$ $%&# '
  

1""# )*$# '78((""# $%&# '("!# )*$# ')5̂
$%&'

  
 

Realize that the axial symmetry and 
replace 𝑥, by 𝑘): 

0.2pt 

Correct expressions for the 
polarization of the corresponding 
refractive index: 

𝐸) = ±𝑦,: 0.1 pt 
 
𝐸) = ± +

#""$ ,!-# '("!$ $%&# '
×  

 
1""# )*$# '78((""# $%&# '("!# )*$# ')5̂

$%&'
: 0.1pt 

0.2pt 



 

 

extraordinary 
light ray 

Correct expressions for 𝑛 (0.1pt) and 
indications for type of light rays 
(0.1pt) 

0.2pt 

B.4 0.8 pt 

Solution: 
𝑛 = 𝑛!	:             
tan α; = 0	  
𝑣; =

,
"!

  

S) = (sin 𝜃 , 0, cos 𝜃)  
 
 
𝑛 = "!""

#"!# $%&# '(""# )*$# '
 : 

 

tan α; =
("!#1""#) 34&'
""#("!# 34&# '

= tan𝛼  

𝑣; =
,

"!""

#""$ ,!-# '("!$ $%&# '

#""# ,!-# '("!# $%&# '
  

S) =
1

$𝑛.< 𝑐𝑜𝑠/ 𝜃 + 𝑛!< sin/ 𝜃
× 

(𝑛!/ sin 𝜃 , 0, 𝑛./cos 𝜃)  
 
 
𝑛- = $(S) ∙ 𝑥,)/𝑛./ + (S) ∙ �̂�)/𝑛!/  

Correct expressions for tan α; 

(each expression 0.1pt for different n) 

0.2 pt 

Correct expressions for 𝑣; (each 
expression 0.1pt for different n) 

0.2 pt 

Correct expressions for S) (each 
expression 0.1pt for different n) 

0.2 pt 

Correct expression for 𝑛- 0.2 pt 

B.5 1.1 pt 

Solution: 
 
�̅� = 𝑃+(𝑛/ sin/ 𝜃+ − 𝑃+)  
𝐵P = −2𝑃=(𝑛/ sin/ 𝜃+ − 𝑃+)  
 
�̅� = 𝑃/𝑛/ sin/ 𝜃+ − 𝑃=/  
 
𝜙 = 0 : tan 𝜃/ =

""" $%&'%

"!#"!#1"# $%&# '%
  

 
 
𝜙 = 𝜋/2 : tan 𝜃/ =

""! $%&'%

"!#"!#1"# $%&# '%
 

Indicate that the path is determined by  
the optical path length 𝑑/𝑛0, + 𝑑1𝑛0*  
where 𝑑/ and 𝑑1 are 
distances ,connecting A to O and O to B 
(0.1 pt). 

𝑛0,  and 𝑛0*  are the corresponding 
refractive indices of the path  𝑑/ and 𝑑1 
(0.2 pt) 

0.3 pt 

Correct expression for the optical path 
length in terms of geometric factors 
(such as 𝜃/, 𝜙, 𝜃1 and coordinates of 
points A and B)  

Each minor error in expression: -0.1 
pt 

0.3 pt 

Correct expression for �̅� 0.1 pt 

Correct expression for 𝐵E  0.1 pt 



 

 

Part C. Entanglement of light 

Correct expression for 𝐶̅ 0.1 pt 

Correct expression for tan 𝜃/ when 
𝜙 = 0 

0.1 pt 

Correct expression for tan 𝜃/ when 
𝜙 = 𝜋/2 

0.1 pt 

C.1 0.8 pt 

Solution: 
Relations:  
𝜔 = 𝜔+ ± 𝜔/  
𝑘=⃗ = 𝑘=⃗ + ± 𝑘=⃗ /  
 
𝑘=⃗ = 𝑘=⃗ + ± 𝑘=⃗ / : momentum 
conservation 
 
𝜔 = 𝜔+ ± 𝜔/ : energy conservation 
 
Splitting: 
𝜔 = 𝜔+ + 𝜔/  
𝑘=⃗ = 𝑘=⃗ + + 𝑘=⃗ /  
 

Correct expressions for 
𝜔 = 𝜔+ ± 𝜔/  
(+: 0.1pt, −: 0.1pt) 

0.2 pt 

Correct expressions for 
𝑘=⃗ = 𝑘=⃗ + ± 𝑘=⃗ /  
(+: 0.1pt, −: 0.1pt) 

0.2 pt 

Adding ℏ and interpretate 
ℏ𝑘=⃗ = ℏ𝑘=⃗ + ± ℏ𝑘=⃗ / as 
momentum conservation 

0.1 pt 

Adding ℏ and 
interpretate ℏ𝜔 =
ℏ𝜔+ ± ℏ𝜔/ as energy 
conservation 

0.1 pt 

Correct expressions for 
splitting of   

𝜔 = 𝜔+ + 𝜔/ (0.1pt) and 
𝑘=⃗ = 𝑘=⃗ + + 𝑘=⃗ / (0.1pt)  

0.2 pt 

C.2 0.8 pt 
Solution: 
𝑜 → 𝑜 + 𝑜  
𝑒 → 𝑒 + 𝑒  
 
 
 
 
 
 
 
 
 
 
 
 
 

Indicating that there is a 
confliction for splitting into 
the same type of the light 
ray due to that the refractive 
indices 𝑛! and 𝑛. are 
both increasing functions of 
ω. 

0.4 pt 

Correctly listing 𝑜 → 𝑜 + 𝑜 
 

0.2 pt 

Correctly listing e→ 𝑒 + 𝑒 
 

0.2 pt 

Extra listing of splitting: -
0.2 pt for each listing 

 



 

 

C.3 1.3 pt 
Solution: 

 𝑀 =	>!(+1?&(@",') )*3')(>"
/>!>"

    

 𝑁 = − ?"
/B

 

		𝐿 = −(Ω − Ω.) ]
+
C"
− +

C!
^ + ?"#

<B
  

Angle between the axis of the cone and 
𝑧’	is ?

>!
 

(= − >"?"
>!(+1?&(@",') )*3')(>"

)  

 

Angle of the cone is DE/B
>!

 
 
(= − (@1@")

B>!
] +
C"
− +

C!
^ + ?"#

<B#>!
)  

 

Realize the conservation of 
momentum along z 
direction: 𝐾G = 𝑘+5 + 𝑘/5 

0.1 pt 

Correct expansion of 𝑘/5  
Minor errors for numerical 
factors: -0.1 pt 

0.3 pt 

Correct expansion of 𝑘+5 
in frequency  
Minor errors for numerical 
factors: -0.1 pt 

0.2 pt 

Correct expansion of 𝑘+5 
in momentum 
Minor errors for numerical 
factors: -0.1 pt 

0.2 pt 

Correct expression for 𝑀 0.1 pt 

Correct expression for 𝑁 0.1 pt 

Correct expression for 𝐿 0.1 pt 

Correct expression for the 
angle between the axis of 
the cone and 𝑧’	 (using 𝑁 
and 𝐾!) 

0.1 pt 

Correct expression for the 
angle of the cone (using 𝐿, 
M and 𝐾!) 

0.1pt 

C.4 0.9 pt 
Solution: 

𝑃(𝛼, 𝛽) = +
/
sin/(𝛼 + 𝛽)   

𝑃(𝛼, 𝛽:) =
+
/
cos/(𝛼 + 𝛽)  

𝑃(𝛼:, 𝛽) =
+
/
sin/(𝛼 + 𝛽)  

𝑃(𝛼:, 𝛽:) =
+
/
cos/(𝛼 + 𝛽)  

Correctly expressing the 
electric fields along 𝑥0′ and 
𝑦0′ direction in terms of the 
electric fields along the 
direction of the polarizer and 
perpendicular to the direction 
of polarizer for individual 𝑎-
photon (0.1pt) and 𝑏-photon 
(0.1pt) 

0.2 pt 

Correctly expressing the 
entangled photon pair state   
+
√/
(|𝑥,IJ ⟩|𝑦,KJ ⟩ + |𝑦,IJ⟩|𝑥,KJ ⟩) in 

terms of combination of 
states using directions of 

0.3 pt 



 

 

 

 
 

 

 
 

the polarizer: |𝛼6⟩|𝛽6⟩ −
d𝛼Led𝛽Le, |𝛼6⟩|𝛽Le −
d𝛼Led𝛽6⟩ 

Correct expression of 
𝑃(𝛼, 𝛽)  

0.1 pt 

Correct expression of 
𝑃(𝛼, 𝛽:) 

0.1 pt 

Correct expression 
of	𝑃(𝛼:, 𝛽) 

0.1 pt 

Correct expression of 
𝑃(𝛼:, 𝛽:) 

0.1 pt 

C.5 0.5 pt 
Solution: 
𝑆 = |cos 2(𝛼 − 𝛽) − cos 2(𝛼 − 𝛽J)| +
|cos 2(𝛼′ − 𝛽) + cos 2(𝛼′ − 𝛽J)|  
 
Value of 𝑆 = 2√2 > 2 

Inconsistent with classical theories 

Correct expression of 
𝐸(𝛼, 𝛽) in terms 
of	𝑃(𝛼, 𝛽:), 𝑃(𝛼:, 𝛽), 
𝑃(𝛼:, 𝛽) and 𝑃(𝛼:, 𝛽:) 

0.3 pt 

Correct expression of 
𝐸(𝛼, 𝛽) in terms of 𝛼 and 
𝛽 

0.1 pt 

Correct value of 𝑆 and 
consistency with classical 
theories. 

0.1 pt 
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Theory 3 Magnetic Levitation:  Solution 
Part A.   Sudden appearance of a magnetic monopole: initial response and subsequent  

               time evolution of the response in the thin film 

Initial response 
A.1 In the 𝑧 ≥ 0 region, excluding the point occupied by the monopole, the magnetic field  

       �⃗� = �⃗� ′ + �⃗� mp at 𝑡 = 𝑡0 = 0  is given by 

�⃗� mp =
𝜇0𝑞m

4𝜋

(𝑧−ℎ)�̂�+�⃗⃗� 

[(𝑧−ℎ)2+𝜌2]3 2⁄
 ,                                           (A-1) 

�⃗� ′ =  
𝜇0𝑞m

4𝜋

(𝑧+ℎ)�̂�+�⃗⃗� 

[(𝑧+ℎ)2+𝜌2]3 2⁄  ,                                             (A-2) 

 �⃗� =
𝜇0𝑞m

4𝜋
[

(𝑧−ℎ)�̂�+�⃗⃗� 

[(𝑧−ℎ)2+𝜌2]3 2⁄ +
(𝑧+ℎ)�̂�+�⃗⃗� 

[(𝑧+ℎ)2+𝜌2]3 2⁄ ] .        (A-3) 

A.2 In the 𝑧 ≤ −𝑑 region, the magnetic field �⃗� = �⃗� ′ + �⃗� mp at 𝑡 = 𝑡0 = 0 is given by 

        �⃗� = 0.                                                                                                (A-4)                                                                                              

A.3 From Eq. (A-3),   𝐵𝑧
′ = 0 at 𝑧 = 0 for all 𝜌.     

       Therefore, the total magnetic flux ΦB = 0 at 𝑧 = 0.                        (A-5) 

       From Eq. (A-4),  𝐵𝑧
′ = 0 at 𝑧 = −𝑑.   

       Therefore, the total magnetic flux ΦB = 0 at 𝑧 = −𝑑.                     (A-6) 

A.4  Applying Ampere’s law along the path shown in the figure below, and using the            

approximation 𝑑 ≪ ℎ, we have 

 

𝐵𝜌(𝜌, 𝑧 = 0)𝑑𝜌 = 𝜇0 𝑗(𝜌) 𝑑𝜌 ∙ 𝑑,                          (A-7) 

 

where the contributions from the 𝐵𝑧𝑑 terms are smaller by a factor 𝑑 ℎ⁄  and neglected.  

 

 

The induced current density is given by 

 

𝑗 (𝜌 ) =
1

𝜇0𝑑
�̂� × �⃗� (𝜌 , 𝑧 = 0) =

𝑞m

2𝜋𝑑

�̂�×�⃗⃗� 

(ℎ2+𝜌2)3 2⁄  .                (A-8) 

 

Subsequent response 

A.5 Consider the form of an integral of Eq.(2), in the Question sheet, over the film thickness, we 

get, for 𝑧 ≈ 0 inside the film (that is  𝑧 < 0 and |𝑧| ≪ 𝑑), that  

 

        
𝜕𝐵𝑧

′

𝜕𝑧
|
𝑧
−

𝜕𝐵𝑧
′

𝜕𝑧
|
−𝑑−𝑧

= 𝜇0𝜎(𝑑 + 2𝑧)
𝜕𝐵𝑧

′

𝜕𝑡
≈ 𝜇0𝜎𝑑

𝜕𝐵𝑧
′

𝜕𝑡
.                           (A-9) 
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       Since 𝐵𝑧
′ is an even function of 𝑧′ = 𝑧 + 𝑑 2⁄ , therefore we have 

𝜕𝐵𝑧
′

𝜕𝑧
|
𝑧
= −

𝜕𝐵𝑧
′

𝜕𝑧
|
−𝑑−𝑧

 so that 

the left-hand side of Eq.(A-9) becomes 2
𝜕

𝜕𝑧
𝐵𝑧

′(𝜌, 𝑧; 𝑡). The right-hand side is approximated by 

the 𝑧-independent term of 𝐵𝑧
′ inside the film thickness. On the other hand,  the 𝑧-dependent term 

of 𝐵𝑧
′ is even in 𝑧′ and is of order ~𝑧′2𝑑 ℎ⁄  so that it can be neglected based on the ℎ ≫ 𝑑 

condition. As such the right-hand side is represented by 𝐵𝑧
′(𝜌, 𝑧; 𝑡).  Putting these results together, 

we get 

       2
𝜕

𝜕𝑧
𝐵𝑧

′(𝜌, 𝑧; 𝑡) = 𝜇0𝜎𝑑
𝜕

𝜕𝑡
𝐵𝑧

′(𝜌, 𝑧; 𝑡) 

     ⇒    
𝜕

𝜕𝑡
𝐵𝑧

′(𝜌, 𝑧; 𝑡) = 𝑣0  
𝜕

𝜕𝑧
𝐵𝑧

′(𝜌, 𝑧; 𝑡).                                     (A-10) 

Here 𝑧 ≈ 0,  and   𝑣0 = 2 (𝜇0𝜎𝑑)⁄ . 

A.6 The equation in A.5, namely, Eq.(A-10) supports a solution of the form 

 

            𝐵′
𝑧(𝜌, 𝑧; 𝑡) = 𝑓(𝜌, 𝑧 + 𝑣0𝑡),                                                          (A-11) 

       and at 𝑧 ≈ 0. 

A.7 At 𝑡 = 0, 𝐵𝑧
′(𝜌, 𝑧 ≥ 0) =  

𝜇0𝑞m

4𝜋

(𝑧+ℎ)

[(𝑧+ℎ)2+𝜌2]3 2⁄ , which is of the form 

       𝐵𝑧
′(𝜌, 𝑧 ≥ 0) = 𝐹(𝜌, 𝑧 + ℎ).                                                               (A-12)                      

 

      For 𝑡 > 0, we have according to Eq.(A-11), the replacement  

      𝑧 → 𝑧 + 𝑣0𝑡,  to the 𝐵𝑧
′(𝜌, 𝑧; 𝑡 = 0).                                                    (A-13) 

     In other words,  𝐵𝑧
′(𝜌, 𝑧 ≈ 0; 𝑡) = 𝐹(𝜌, 𝑧 + 𝑣0𝑡 + ℎ).  

     This corresponds to a physical picture of a moving image monopole, with its position   

     𝑧mp = −ℎ − 𝑣0𝑡.                                                                                  (A-14) 

    Finally,      𝑣0 = 2 (𝜇0𝜎𝑑)⁄ .                                                                  (A-15) 

 

Part B.  Magnetic force acting on a point-like magnetic dipole moving at a constant 𝒉 with 

a constant velocity 

A moving monopole 

B.1 The present locations of all the image magnetic monopoles of type 𝑞m are at 

 

          (𝑥, 𝑧) = [−𝑛𝑣𝜏,−ℎ − 𝑛𝑣0𝜏],  for 𝑛 ≥ 0.                                          (B-1)                                     
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 The locations of all the image magnetic monopoles −𝑞m are at 

       (𝑥, 𝑧) = [−(𝑛 + 1)𝑣𝜏, −ℎ − 𝑛𝑣0𝜏 ], for  𝑛 ≥ 0.                                   (B-2) 

B.2 The magnetic potential Φ+(𝑥, 𝑧) due to all the image magnetic monopoles at 𝑡 = 0 is given 

by, in summation form 

         Φ+(𝑥, 𝑧) =
𝜇0𝑞𝑚

4𝜋
∑

1

√(𝑥+𝑛𝑣𝜏)2+(𝑧+ℎ+𝑛𝑣0𝜏)2
−

𝜇0𝑞𝑚

4𝜋
∑

1

√(𝑥+(𝑛+1)𝑣𝜏)2+(𝑧+ℎ+𝑛𝑣0𝜏)2
∞
𝑛=0

∞
𝑛=0  , 

     ⇒       Φ+(𝑥, 𝑧) =
𝜇0𝑞𝑚

4𝜋
∑ [

1

√(𝑥+𝑛𝑣𝜏)2+(𝑧+ℎ+𝑛𝑣0𝜏)2
−

1

√(𝑥+(𝑛+1)𝑣𝜏)2+(𝑧+ℎ+𝑛𝑣0𝜏)2
]∞

𝑛=0 .         (B-3) 

 

        In integral form 

        Φ+(𝑥, 𝑧) =
𝜇0𝑞𝑚

4𝜋𝜏
∫ 𝑑𝑡′∞

0
[

1

√(𝑥+𝑣𝑡′)2+(𝑧+ℎ+𝑣0𝑡′)2
−

1

√(𝑥+𝑣𝑡′+𝑣𝜏)2+(𝑧+ℎ+𝑣0𝑡′)2
],                (B-4) 

                        = 
𝜇0𝑞𝑚

4𝜋𝜏
∫ 𝑑𝑡′∞

0

(𝑥+𝑣𝑡′)𝑣𝜏

[(𝑥+𝑣𝑡′)2+(𝑧+ℎ+𝑣0𝜏)2]3 2⁄  ,                                                        (B-5) 

    ⇒   Φ+(𝑥, 𝑧) =
𝜇0𝑞𝑚𝑣

4𝜋
 

1
(𝑧+ℎ)𝑣−𝑣0𝑥

[
𝑧+ℎ

√𝑥2+(𝑧+ℎ)
2
− 𝑣0

√𝑣2+𝑣0
2
].                           (B-6) 

 

A moving dipole 

B.3 

    The total magnetic potential  

 

    ΦT(𝑥, 𝑧) = Φ+(𝑥, 𝑧) + Φ−(𝑥, 𝑧),                                                                                   (B-7) 

    where   Φ−(𝑥, 𝑧) = −Φ+(𝑥, 𝑧 − 𝛿m). 

    ΦT(𝑥, 𝑧) = Φ+(𝑥, 𝑧) − Φ+(𝑥, 𝑧 − 𝛿m) 

                               = 𝛿m × 𝜕Φ+(𝑥, 𝑧) 𝜕𝑧⁄ .                                                                        (B-8) 
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ΦT(𝑥, 𝑧) = −
𝜇0𝑚𝑣

4𝜋
[

𝑣

[(𝑧+ℎ)𝑣−𝑣0𝑥]2
(

𝑧+ℎ

√𝑥2+(𝑧+ℎ)2
−

𝑣0

√𝑣2+𝑣0
2
) −

𝑥2

[(𝑧+ℎ)𝑣−𝑣0𝑥][𝑥2+(𝑧+ℎ)2]3/2].    (B-9) 

 Force acting on the point-like magnetic dipole: 

 

                𝐹𝑧 = −𝑞𝑚
𝑑

𝑑𝑧
ΦT(0, 𝑧)|

𝑧=ℎ
+ 𝑞𝑚

𝑑

𝑑𝑧
ΦT(0, 𝑧)|

𝑧=ℎ−𝛿m

.                                        (B-10) 

 

                     𝐹𝑧 = −
𝜇0𝑚𝑞m

2𝜋
(1 −

𝑣0

√𝑣2+𝑣0
2
) [

1

(2ℎ)3
−

1

(2ℎ−𝛿m)3
].                                           (B-11) 

 

            ⇒        𝐹𝑧 =
3𝜇0𝑚2

32𝜋ℎ4 [1 −
𝑣0

√𝑣2+𝑣0
2
].                                                                           (B-12) 

  

                𝐹𝑥 = −𝑞𝑚
𝑑

𝑑𝑥
ΦT(𝑥, ℎ)|

𝑥=0
+ 𝑞𝑚

𝑑

𝑑𝑥
ΦT(𝑥, ℎ − 𝛿m)|

𝑥=0
,                                 (B-13) 

 

       ⇒             𝐹𝑥 = −
3𝜇0𝑚2

32𝜋ℎ4

𝑣0

𝑣
[1 −

𝑣0

√𝑣2+𝑣0
2
].                                                                   (B-14) 

                 

Relation between  𝒗𝟎 and 𝒗 and their relation 

B.4                𝑣0 =
2

𝜇0𝜎𝑑
=

2

4𝜋×10−7×5.9×107×0.5×10−2 = 5.4 m s⁄  .                                          (B-15) 

 

B.5    In the small  𝑣 regime, meaning that 𝑣 is smaller than a certain typical velocity of the 

system (or a critical velocity 𝑣c to be considered in the next task B.6) we have the characteristics 

basically akin to that of 𝑣 ≈ 0. For 𝑣 = 0, the frequency 𝜔 is associated with 𝑣0 ℎ⁄ . Making use 

of the parameters given in B.4, the skin depth (Eq.(3) in the question sheet) 𝛿 is given by 

𝛿 = √
2

𝜔𝜇0𝜎
= √

2ℎ

𝑣0𝜇0𝜎
= 1.58 c.m., which is more than three times greater than 𝑑. 

Thus we have, in the small 𝑣 regime, 

  𝑣0(𝑣) = 𝑣0.                                                                                                                       (B-16) 
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 In the large  𝑣 regime, we have the skin depth 𝛿 < 𝑑 so that the effect thin film thickness  

𝑑eff = 𝛿,                                                                                                            (B-17) 

within which the field is more or less uniform (i.e. 𝑧 independent). 

In this case,  𝜔 = 𝑣 ℎ⁄ ,                                                                                      (B-18) 

so the  

 𝑣0(𝑣) =
2

𝜇0𝜎𝛿
=

2

𝜇0𝜎
√

𝜔𝜇0𝜎

2
= √

2

𝜇0𝜎

𝑣

ℎ
= √

𝑑

ℎ
𝑣 𝑣0,    or     

  𝑣0(𝑣) = 𝑣0√
𝑑

ℎ
 √

𝑣

𝑣0
    .                                                                                       (B-19) 

 

B.6   The critical velocity 𝑣c is determined from the condition 𝛿 = 𝑑 : 

            𝑑 = √
2

𝜇0𝜎𝑣c ℎ⁄
   ⇒     𝑣c =

2ℎ

𝑑2𝜇0𝜎
= 𝑣0

ℎ

𝑑
  .                                                         (B-20) 

 
Part C   Motion of the magnetic dipole when the conducting thin film is superconducting 

    When the electrical conductivity 𝜎 → ∞, the receding velocity 𝑣0 → 0 so that there will not be 

a whole series of image magnetic monopoles. Instead, the image is simply one image magnetic 

dipole mirroring the instantaneous position of the magnetic dipole. In this case, the image 

magnetic dipole is �⃗⃗� = 𝑚�̂� located at the location (𝑥, 𝑦, 𝑧) = (0,0,−ℎ). It is then clear, from the 

symmetry of the image configuration, that the force on the magnetic dipole from the image 

aligns only along �̂�. For our convenience, we take the magnetic monopole −𝑞m to locate at 𝑥 =

0, and for the magnetic monopole 𝑞m the location 𝑥 = 𝛿m. 

C.1 

The total magnetic potential ΦT(𝑥, 𝑧) from the image magnetic dipole is 

ΦT(𝑥, 𝑧) = −
𝜇0𝑞m

4𝜋

1

√𝑥2+(𝑧+ℎ)2
+

𝜇0𝑞m

4𝜋

1

√(𝑥−𝛿m)2+(𝑧+ℎ)2
.                                       (C-1)                       

Approach 1: 

The total vertical force 𝐹𝑧
′ acting on the magnetic dipole from the image magnetic dipole is given 

by 

𝐹𝑧
′ = (−𝑞m) [−

𝜕

𝜕𝑧
ΦT]|𝑥=0,

𝑧=ℎ

+ 𝑞m [−
𝜕

𝜕𝑧
ΦT]|𝑥=𝛿,

𝑧=ℎ

                                                 (C-2) 
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𝐹𝑧
′ =

𝜇0𝑞m
2

4𝜋

𝑧 + ℎ

[𝑥2 + (𝑧 + ℎ)2]3 2⁄
|
𝑥=0,
𝑧=ℎ

−
𝜇0𝑞m

2

4𝜋

𝑧 + ℎ

[(𝑥 − 𝛿m)2 + (𝑧 + ℎ)2]3 2⁄
|
𝑥=0,
𝑧=ℎ

 

                          −
𝜇0𝑞m

2

4𝜋

𝑧+ℎ

[𝑥2+(𝑧+ℎ)2]3 2⁄ |
𝑥=𝛿m,
𝑧=ℎ

+
𝜇0𝑞m

2

4𝜋

𝑧+ℎ

[(𝑥−𝛿m)2+(𝑧+ℎ)2]3 2⁄ |
𝑥=𝛿m,
𝑧=ℎ

  , 

                 𝐹𝑧
′ = 2

𝜇0𝑞m
2

4𝜋
(

1

2ℎ
)
2

[1 − 
1

(1+(
𝛿

2ℎ
)
2
)
3 2⁄ ]  .                                                                 (C-3) 

     𝐹𝑧
′ =

3𝜇0𝑚2

64𝜋ℎ4
.                                                                                                    (C-4)                   

Equilibrium condition: 

𝐹𝑧
′ − 𝑀0𝑔 = 0,                                                                                                    (C-5) 

⇒     
3𝜇0𝑚2

64𝜋ℎ0
4 =  𝑀0𝑔, 

⇒            ℎ0 = [
3𝜇0𝑚2

64𝜋𝑀0𝑔
]

1

4
 .                                                                            (C-6) 

 

Approach 2: 

We can use the direct force calculation. 

𝐹𝑧
′ = 2

𝜇0𝑞m
2

4𝜋
[(

1

2ℎ
)
2
−

2ℎ

(𝛿𝑚
2 +(2ℎ)2)

3 2⁄ ]                                                   (C-7) 

     =  
𝜇0𝑞m

2

2𝜋
(

1

2ℎ
)
2

[1 − 
1

(1+(
𝛿

2ℎ
)
2
)
3 2⁄ ]                                                   (C-8) 

     =
3𝜇0𝑚

2

64𝜋ℎ4
. 

The equilibrium condition 𝐹𝑧
′ − 𝑀0𝑔 = 0 gives the same equilibrium position ℎ0 as in Eq. (C-6), 

⇒        ℎ0 = [
3𝜇0𝑚2

64𝜋𝑀0𝑔
]

1

4
. 

 

C.2 

The oscillation frequency about the equilibrium is obtained from 
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𝐹𝑧
′ ≈ 𝑀0 +

𝑑𝐹𝑧
′

𝑑𝑧
∆𝑧,                                                                                                 (C-9) 

where ∆𝑧 = 𝑧 − ℎ0. 

And from 
𝑑𝐹𝑧

′

𝑑𝑧
= −𝑘 = −𝑀0Ω

2                                                                             (C-10) 

we have 

𝑘 = −
𝑑

𝑑𝑧

3𝜇0𝑚2

64𝜋ℎ4 =
3𝜇0𝑚2

16𝜋ℎ0
5 =

4

ℎ0

3𝜇0𝑚2

64𝜋ℎ0
4 =

4𝑀0𝑔

ℎ0
= 𝑀0Ω

2                                          (C-11) 

The angular oscillation frequency 

        Ω = √
4𝑔

ℎ0
 .                                                                                                        (C-12) 

 

C.3             

     ℎ0 = [
3𝜇0(

4

3
𝜋𝑅3𝑀)

2

64𝜋(
4

3
𝜋𝑅3𝜌0𝑔)

]

1 4⁄

= [
𝑅3𝑀2𝜇0

16𝜌0𝑔
]
1 4⁄

                                                               (C-13) 

 

         ℎ0 = [
10−18×752×10−4

16×7400×9.8×𝜇0
]
1 4⁄

m = 25. μm.                                                            (C-14) 

 

C.4        Ω = √
4𝑔

ℎ0
= √

4×9.8

30×10−6  s
−1 = 1.3 kHz.                                                      (C-15) 
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Theory 3:   Magnetic Levitation – Marking Scheme 

Part A  Sudden appearance of a magnetic monopole    (3.0 points) 
Initial response                                                                                                            (1.6 points) 

A.1 
�⃗� mp =

𝜇0𝑞m

4𝜋

(𝑧 − ℎ)�̂� + 𝜌 

[(𝑧 − ℎ)2 + 𝜌2]3 2⁄
 

0.1 0.4 

 �⃗� ′ = 
𝜇0𝑞m

4𝜋

(𝑧 + ℎ)�̂� + 𝜌 

[(𝑧 + ℎ)2 + 𝜌2]3 2⁄
 0.2 

 
�⃗� =

𝜇0𝑞m

4𝜋
[

(𝑧 − ℎ)�̂� + 𝜌 

[(𝑧 − ℎ)2 + 𝜌2]3 2⁄
+

(𝑧 + ℎ)�̂� + 𝜌 

[(𝑧 + ℎ)2 + 𝜌2]3 2⁄
] 0.1 

A.2 �⃗� = 0 0.2 0.2 

A.3 𝐵𝑧
′ = 0   at   𝑧 = 0 0.1 0.4 

      ΦB = 0  at   𝑧 = 0 0.1 

 𝐵𝑧
′ = 0     at 𝑧 = −𝑑 0.1 

 ΦB = 0  at 𝑧 = −𝑑 0.1 

A.4 𝐵𝜌(𝜌, 𝑧 = 0)𝑑𝜌 = 𝜇0 𝑗(𝜌) 𝑑𝜌 ∙ 𝑑 0.4 0.6 

 
𝑗 (𝜌 ) =

1

𝜇0𝑑
�̂� × �⃗� (𝜌 , 𝑧 = 0) =

𝑞m

2𝜋𝑑

�̂� × 𝜌 

(ℎ2 + 𝜌2)3 2⁄
 

0.2 

 

Subsequent response                                                                                                   (1.4 points) 

A.5 𝜕𝐵𝑧
′

𝜕𝑧
|
𝑧

−
𝜕𝐵𝑧

′

𝜕𝑧
|
−𝑑−𝑧

= 𝜇0𝜎(𝑑 + 2𝑧)
𝜕𝐵𝑧

′

𝜕𝑡
≈ 𝜇0𝜎𝑑

𝜕𝐵𝑧
′

𝜕𝑡
 

0.2 0.6 

 𝜕𝐵𝑧
′

𝜕𝑧
|
𝑧

= −
𝜕𝐵𝑧

′

𝜕𝑧
|
−𝑑−𝑧

 0.2 

 𝜕

𝜕𝑡
𝐵𝑧

′(𝜌, 𝑧; 𝑡) = 2 (𝜇0𝜎𝑑)⁄ × 
𝜕

𝜕𝑧
𝐵𝑧

′(𝜌, 𝑧; 𝑡) 0.2 

A.6 𝐵′
𝑧(𝜌, 0; 𝑡) = 𝑓(𝜌, 𝑧 + 𝑣0𝑡) near  𝑧 ≈ 0 0.4 0.4 

A.7 At 𝑡 = 0   𝐵𝑧
′(𝜌, 𝑧 ≥ 0) is of the form 𝐹(𝜌, 𝑧 + ℎ) 0.1 0.4 

 For 𝑡 > 0    𝑧 ⟶ 𝑧 + 𝑣0𝑡 0.1 

 𝑣0 = 2 (𝜇0𝜎𝑑)⁄  0.2 

Part B  Magnetic force acting on a point-like magnetic dipole    

              moving at a constant 𝒉 with a constant velocity   (4.0 points) 
A moving monopole                                                                                                     (1.5 points) 

B.1 Present positions of 𝑞m :   

                        (𝑥, 𝑧) = [−𝑛𝑣𝜏,−ℎ − 𝑛𝑣0𝜏],  for 𝑛 ≥ 0. 
0.4 0.8 

 Present positions of −𝑞m : 

                        (𝑥, 𝑧) = [−(𝑛 + 1)𝑣𝜏, −ℎ − 𝑛𝑣0𝜏 ], for  𝑛 ≥ 0. 
0.4 
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B.2 Magnetic potential : 

 Φ+(𝑥, 𝑧) =
𝜇0𝑞𝑚

4𝜋
[∑

1

√(𝑥+𝑛𝑣𝜏)2+(𝑧+ℎ+𝑛𝑣0𝜏)2
− ∑

1

√(𝑥+(𝑛+1)𝑣𝜏)2+(𝑧+ℎ+𝑛𝑣0𝜏)2
∞
𝑛=0

∞
𝑛=0 ]  0.3 

0.7 

 Φ+(𝑥, 𝑧) =
𝜇0𝑞𝑚

4𝜋𝜏
∫ 𝑑𝑡′

∞

0

[
1

√(𝑥 + 𝑣𝑡′)2 + (𝑧 + ℎ + 𝑣0𝑡
′)2

−
1

√(𝑥 + 𝑣𝑡′ + 𝑣𝜏)2 + (𝑧 + ℎ + 𝑣0𝑡
′)2

] 

0.2 

 
Φ+(𝑥, 𝑧) =

𝜇0𝑞𝑚𝑣

4𝜋
 

1

(𝑧 + ℎ)𝑣 − 𝑣0𝑥
[

𝑧 + ℎ

√𝑥2 + (𝑧 + ℎ)2
−

𝑣0

√𝑣2 + 𝑣0
2
] 

0.2 

A moving dipole                                                                                                           (1.5 points) 

B.3 ΦT(𝑥, 𝑧) = Φ+(𝑥, 𝑧) + Φ−(𝑥, 𝑧) where  

                             Φ−(𝑥, 𝑧) = −Φ+(𝑥, 𝑧 − 𝛿m) 
0.2 1.5 

 ΦT(𝑥, 𝑧) = Φ+(𝑥, 𝑧) − Φ+(𝑥, 𝑧 − 𝛿m) 

                                       = 𝛿m × 𝜕Φ+(𝑥, 𝑧) 𝜕𝑧⁄  
0.2 

 
 ΦT(𝑥, 𝑧) = −

𝜇0𝑚𝑣

4𝜋
[

𝑣

[(𝑧 + ℎ)𝑣 − 𝑣0𝑥]2
(

𝑧 + ℎ

√𝑥2 + (𝑧 + ℎ)2
−

𝑣0

√𝑣2 + 𝑣0
2
)

−
𝑥2

[(𝑧 + ℎ)𝑣 − 𝑣0𝑥][𝑥2 + (𝑧 + ℎ)2]3/2
] 

0.3 

  𝐹𝑧 = −𝑞𝑚
𝑑

𝑑𝑧
ΦT(0, 𝑧)|

𝑧=ℎ
+ 𝑞𝑚

𝑑

𝑑𝑧
ΦT(0, 𝑧)|

𝑧=ℎ−𝛿m

 0.2 

 𝐹𝑧 =
3𝜇0𝑚

2

32𝜋ℎ4
[1 −

𝑣0

√𝑣2 + 𝑣0
2
] 

0.2 

 
𝐹𝑥 = −𝑞𝑚

𝑑

𝑑𝑥
ΦT(𝑥, ℎ)|

𝑥=0
+ 𝑞𝑚

𝑑

𝑑𝑥
ΦT(𝑥, ℎ − 𝛿m)|

𝑥=0
 

0.2 

 𝐹𝑥 = −
3𝜇0𝑚

2

32𝜋ℎ4

𝑣0

𝑣
[1 −

𝑣0

√𝑣2 + 𝑣0
2
] 

0.2 

Relation between 𝒗𝟎 and 𝒗                                                                                          (1.0 points) 

B.4 
𝑣0 =

2

𝜇0𝜎𝑑
=

2

4𝜋 × 10−7 × 5.9 × 107 × 0.5 × 10−2

= 5.4 m s⁄  
0.3 

0.3 

B.5 In the 𝑣 < 𝑣c  regime:          𝑣0(𝑣) = 𝑣0  0.1 0.4 

 
In the 𝑣 > 𝑣c  regime:      𝑣0(𝑣) =

2

𝜇0𝜎𝛿
=

2

𝜇0𝜎
√

𝜔𝜇0𝜎

2
 

0.1 

 𝜔 = 𝑣 ℎ⁄  0.1 

 

𝑣0(𝑣) = 𝑣0√
𝑑

ℎ
 √

𝑣

𝑣0
 

0.1 

B.6 𝛿 = 𝑑 0.1  0.3 

 𝑣c =
2ℎ

𝑑2𝜇0𝜎
= 𝑣0

ℎ

𝑑
 0.2  
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Part C  Motion of the magnetic dipole when the conducting thin  

               film is superconducting                                          (3.0 points) 

C.1 Approach 1:  Start from the total magnetic potential  1.2 

 
ΦT(𝑥, 𝑧) = −

𝜇0𝑞m

4𝜋

1

√𝑥2 + (𝑧 + ℎ)2
+

𝜇0𝑞m

4𝜋

1

√(𝑥 − 𝛿m)2 + (𝑧 + ℎ)2
 

0.3 

 
𝐹𝑧

′ = (−𝑞m) [−
𝜕

𝜕𝑧
ΦT]|𝑥=0,

𝑧=ℎ

+ 𝑞m [−
𝜕

𝜕𝑧
ΦT]|𝑥=𝛿m,

𝑧=ℎ

 
0.3 

 
𝐹𝑧

′ =
3𝜇0𝑚

2

64𝜋ℎ4
 

0.4 

 

ℎ0 = [
3𝜇0𝑚

2

64𝜋𝑀0𝑔
]

1
4

 

0.2 

 Approach 2: Start from the force  

 

𝐹𝑧
′ = 2

𝜇0𝑞m
2

4𝜋
[(

1

2ℎ
)
2

−
2ℎ

(𝛿𝑚
2 + (2ℎ)2)3 2⁄

] 

0.6 

 
𝐹𝑧

′ =
3𝜇0𝑚

2

64𝜋ℎ4
 

0.4 

 

ℎ0 = [
3𝜇0𝑚

2

64𝜋𝑀0𝑔
]

1
4

 

0.2 

C.2 𝑑𝐹𝑧
′

𝑑𝑧
= −𝑘 = −𝑀0Ω

2 0.5 
0.8 

 
Ω = √

4𝑔

ℎ0
 

0.3 

 

C.3 

ℎ0 = [
3𝜇0 (

4
3𝜋𝑅3𝑀)

2

64𝜋 (
4
3𝜋𝑅3𝜌0𝑔)

]

1 4⁄

= [
𝑅3𝑀2𝜇0

16𝜌0𝑔
]

1 4⁄

 

0.3 0.7 

 
ℎ0 = [

10−18 × 752 × 10−4

16 × 7400 × 9.8 × 𝜇0
]

1 4⁄

m 0.2 

 ℎ0 = 25 μm 0.2 

C.4 

Ω = √
4𝑔

ℎ0
= √

4 × 9.8

30 × 10−6
 s−1 = 1.3 kHz 0.3 

0.3 

 

 


