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A. LUMPED ELEMENT MODEL OF A CO-AXIAL TRANSMISSION LINE

A.1 The speed of wave propagation in free space (c0 = 299 792 458m/s) is c0 = 1/
√
ε0 µ0. The speed in the dielectric

& diamagnetic medium is

v =
c0√
εr µr

(A.1)

A.2 Gauss law for the flux through a cylindrical surface with radius r co-axial with the the core, a < r < b:

∆x 2πr E(r) =
∆q

εrε0
⇒ E(r) =

∆q

∆x

1

2πεrε0r
(A.2)

A.3 The capacitance

Cx ∆x =
∆q

φ
(A.3)

where the potential φ of the core with respect to the shield is

0− φ = −
∫ b

a

E(r) dr ⇒ φ =
∆q

∆x

1

2πεrε0
ln

b

a
(A.4)

Cx =
2πεrε0

ln b
a

(A.5)

A.4 The magnetic flux through a rectangular contour paralel to the axis equal inductance times the current:

∆x

∫ b

a

B(r) dr = Lx ∆x I (A.6)

Biot-Savart law B(r) = µrµ0

2π
I
r gives

Lx =
µrµ0

2π
ln

b

a
(A.7)

A.5 i. Adding δx length of the cable should not change its impedance. Hence the impedance Z of the following
circuit must be equal to Z0:

1

Z
=

1

Z0 + jωδL
+

1
1

jωδC

=
1

Z0
(A.8)

Z2
0 + j ω δLZ0 − δL/δC = 0 (A.9)

(here engineering notation for j2 = −1 is used.) δL/δC = Lx/Cx and δL → 0 for δx → 0, hence

Z0 =
√
Lx/Cx (A.10)

ii.

Z0 =
√
Lx/Cx =

ln(b/a)

2π

√
µrµ0

εrε0
= ln(b/a)

√
µr

εr
× 59.96Ω (A.11)

For Z0 = 50Ω, εr = 4.0 and µr = 1.0 this gives b = 5.30 a .
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B. HYPOTHETICAL TRANSMISSION LINE WITH RETURN ALONG A GROUNDED PLANE

B.1 The high-conductance ground plate can be replaced by an image of the wire with opposite direction of the
current at distance 2d from the real wire. The magnetic fields from the real and the imaginary wires add up
and need to be integrated to get the magnetic flux between the wire and the plate:

Lx ∆x I =
µµ0

2π
I

∫ d

a

(
1

r
+

1

2d− r

)
dr∆x (B.1)

Lx =
µµ0

2π
ln

(
2d

a
− 1

)
≈ µµ0

2π
ln

2d

a
(B.2)

The potential difference between the wire and the plate can be obtained similarly by integrating the combined
field for the wire and its image:

φ =
∆q

∆x

1

2πεrε0

∫ d

a

(
1

r
+

1

2d− r

)
dr =

∆q

∆x

ln(2d/a)

2πεrε0
(B.3)

Cx =
∆q

∆x

1

φ
≈ 2πεrε0

ln(2d/a)
(B.4)

Hence the characterstic impedance Z0 =
√
Lx/Cx of the wire-plate system is

Z0 =
ln(2d/a)

2π

√
µrµ0

εrε0
(B.5)

C. BASICS OF RF REFLECTOMETRY

C.1 At the interface, values of the voltage on both transmission lines have to coincide:

Vi + Vr = Vt (C.1)

The current has to be conserved at the interface, however, the incident and the reflected waves carry the current
in opposite directions:

Vi

Z0
− Vr

Z0
=

Vt

Z1
(C.2)

It is clear from the equation above that Vt ̸= 0 if Z0 ̸= Z1 – impedance mismatch has to cause reflection. Solving
the voltage and the current equations for Γ = Vr/Vi gives

Γ =
Z1 − Z0

Z1 + Z0
(C.3)

C.2 A π-shift implies opposite signs of Vi and Vr and hence requires Γ < 0. This implies Z1 < Z0 .

D. THE SINGLE ELECTRON TRANSISTOR

D.1 i. Since any capacitance beyond Cg is neglected in our model, the quantum dot can be thought as a capacitor
plate with the gate being the other plate of the same capacitor with capacitance Cg. The fixed number n of
electrons trapped on the quantum dot sets a fixed-charge (q = −ne) boundary condition for the capacitor
Cg on the QD, while the gate side is kept at a constant potential Vg. (We denote the elementary charge
by e > 0). The implies that an excess charge of opposite sign, −q = ne will accumulate on the gate, to
keep electric field confined between the QD and the gate. The potential jump across the capacitor from
the gate to the QD will be equal to the capacitor q/Cg = −ne/Cg. Hence the potential on the QD is

φn = Vg +
−ne

Cg
(D.1)
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ii. Bringing an infinitesimal charge δq from potential 0 to potential φ(q) requires energy δE = φ(q)δq, and
the dependence of potential φ(q) on the accumulated charge q is linear. For the single-electron transfer,
the additional charge of the electron, −e, changes the potential from φn to φn+1 = φn − e/Cg. Hence the
work necessary to accumulate an extra e on the QD is the integral of δE

∆En = −e
φn + φn+1

2
(D.2)

∆En =
e2

Cg

(
n+

1

2

)
− eVg (D.3)

Alternatively, ∆En can be obtained from energy conservation, by computing the change of the energy of
the capacitor the dork the work done against the electromotive force of the battery (=−“work done by the
battery’) for a charge +e to be brought from the ground potential via the battery to the gate-side plate of
the capacitor:

∆En =
e2(n+ 1)2

2Cg
− e2n2

2Cg
− eVg (D.4)

Note that without Ct ≪ Cg approximation, the answer is ∆En = e2

Cg+2Ct

(
n+ 1

2

)
− eVgCg/(2Ct + Cg)

(not required to receive full marks).

D.2 N is a minimal integer n for which ∆En ≥ 0. Consider the marginal case of ∆EN = 0 which is achieved at
some Vg = V0,

∆EN (V0) = 0 =
e2

Cg

(
N +

1

2

)
− eV0 (D.5)

If Vg would go slightly larger than V0, then ∆En would go negative and then minimal n that makes a positive
∆En would jump from N to N + 1. Hence Ec = ∆EN+1(V0). This gives

∆EN+1(V0) = Ec =
e2

Cg

(
N + 1 +

1

2

)
− eV0 =

e2

Cg
(D.6)

D.3 In a metal, only electrons in an energy range ± ≈ kBT around the Fermi level take part in the thermal motion.
(Here kB is the Boltzmann constant.) Typical energy of these electrons is kBT per particle and it may not

exceed characteristic single-electron addition energy Ec, kBT < Ec .

D.4 i. τ = Rt Ct

ii. Quantum uncertainty of energy (life-time broadening) h/τ must be less than the energy difference between
the states with n and n+ 1 electrons,

h/τ < Ec ⇒
h

RtCt
<

e2

Cg
(D.7)

Rt >
h

e2
Cg

Ct
>

h

e2
(D.8)

E. RF REFLECTOMETRY TO READ OUT SET STATE

E.1

Γ =
ZSET − Z0

ZSET + Z0
(E.1)

ΓON =
105 − 50

105 + 50
≈ 1− 2

50

105
(E.2)

ΓOFF = lim
Z1→∞

Z1 − Z0

Z1 + Z0
= 1 (E.3)

∆Γ = |ΓON − ΓOFF| ≈ 1.0 · 10−3 (E.4)
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E.2 Large change in reflectance requires the impedance Z1 of the circuit to switch between Z1 < Z0 to Z1 > Z0 as
the SET between ON (ZSET = 100kΩ) and OFF (ZSET = ∞).

In the OFF state of the SET, the circuit is an disspationless LC contour with resonance frequency ω0 = 1/
√
L0C0

and its impedance is 0. If we choose

L0 =
1

ω2
rfC0

(E.5)

then the imedance of the ω0 = ωrf.

Since Ztot (the total impedance of the circuit) in the OFF state of the SET equals to 0, the reflectance i
ΓOFF = −1. As we switch to the ON state with ZSET = RSET = 105Ω, the change in reflectance will be large if
|Ztot| in this ON state is on the order of Z0 or larger, which is indeed the case.

For the ON state and ω0 = ωrf

Ztot =

(
1
1

j ω C0

+
1

RSET

)−1

+ j ωL0 =
RSET

1 + j ωC0 RSET
+ j ω L0 =

RSET + j
√

L0/C0

1 +R2
SETC0/L0

(E.6)

For C0 = 0.4 · 10−12 F, Z0 = 50Ω and ωrf = 2π · 108 Hz, we have L0 = 6.33µH , Ztot = (158 + 6.3 j)Ω,

ΓON = 0.5198 + 0.0145 j, and ∆Γ = 1.52 .

F. CHARGE SENSING WITH A SINGLE LEAD QUANTUM DOT

F.1 The SLQD readout circuit contains only reactive elements, so |Γ| = 1 will always be one. The OFF state of the
SLQD corresponds to an inductor L0 and a capacitor C0 connected in parallel. We again choose

ωrf = 1/
√

L0C0 (F.1)

so that Ztot is the OFF state is infinite and ΓOFF = 1.

The ON state corresponds to ZSET = −j 1
ωrfCq

and Ztot at ωrf = ω0 is just the impedance of the SLQD

Ztot =
1

(jωrfL0)−1 + jωrf(C0 + Cq)
= −j

1

ω0Cq
= −j

C0

Cq
ZC (F.2)

For the complex phase of ΓON = (Ztot−Z0)/(Ztot+Z0) to be significantly different from zero, we need |Ztot| ∼ Z0

since Ztot is purely imaginary. Hence

ZC ∼ Cq

C0
Z0 (F.3)

F.2 If L0 is fixed, we can still operate the circuit at the frequency

ωrf = 1/
√

L0C0 (F.4)

that gives ΓOFF = 1. However, we need to deduce a way to increase |Ztot| even if ZC ≪ CqZ0/C0 is not
sufficient. One of the ways to do that is to add an additional capacitance Cm is series with rest of the circuit.

This will give (at ωrf = ω0)

Ztot = −j

(
C0

Cq
ZC +

1

ω0Cm

)
= −jω−1

0

(
C−1

q + C−1
m

)
(F.5)

We can satisfy the condition |Ztot| = Z0 (and hence ΓON = j and ∆Γ =
√
2 ∼ 1) with

Cm =
Cq

Z0Cqωrf − 1
=

Cq

√
L0C0

Z0Cq −
√
L0C0

(F.6)

Cm =
CqZC

Z0Cq/C0 − ZC

ZC≪Z0Cq/C0

≈ 1

Z0 ωrf
(F.7)



Theory

Question 2: X-ray jets from active galactic nuclei

Solutions

Part A: 1d fluid model of a jet

A1

If you consider a prism of plasma in the jet frame, it contains a number of particles N , has length l in the direction
of motion, and cross sectional area A. The total number of particles in the volume is invariant on transformation into
the AGN frame, however the volume occupied by the plasma changes as lengths are contracted in the direction of
motion, while perpendicular lengths are unchanged. Hence, A′ = A, and l′ = l/γ.

This gives us two relationships:

N = n(s)Al (1)

and
N = n′(s)Al/γ (2)

Equating these gives
n(s)Al = n′(s)Al/γ ,

which leads to
n′(s) = γn(s) . (3)

A2

The particles in the jet have a bulk flow speed of v(s), so in a time ∆t a volume V = A(s)v(s)∆t crosses the cross
section of the jet. Using the number density in the AGN frame,

Fp(s) = n′(s)A(s)v(s) (4)

= γ(s)n(s)A(s)v(s) (5)

A3

As the plasma travels along the jet there are no particles passing through the side boundary of the jet. Hence, the
total flux through the curved edges of the jet is zero, and the total flux into the jet is the flux in through the cross
section at s1 is Fp(s1) and the total flux out of the jet is Fp(s2). There is an additional term in the continuity equation
due to the mass injection. There are αV/µpp particles injected.

This gives
γ(s2)v(s2)n(s2)A(s2)− γ(s1)v(s1)n(s1)A(s1) = αV/µpp (6)

A4

Similarly, in the AGN frame the energy flux

FE(s) = n′(s)A′(s)v(s)ǫ′av(s) . (7)

We use previous results for all quantities except average energy per particle.
Consider the total energy in a volume ∆V of the plasma, Etot = ǫavN in the jet frame. As this is the proper frame

v(s)=0.
Transforming to the AGN frame, E′

tot = γ(s)ǫavN , and ǫ′av = γǫav.
Hence,

FE(s) = (γ(s))
2
n(s)A′s)v(s)ǫav(s) . (8)

Energy conservation requires that the total energy flux out of the jet is equal to the energy added through injection
of mass, so

(γ(s2))
2
v(s2)n(s2)A(s2)ǫav(s2)− (γ(s1))

2
v(s1)n(s1)A(s1)ǫav(s1) = αV c2 (9)

1



A5

From the defintion of jet power and also (8),

Pj(s) = (γ(s))2 n(s)A′s)v(s)ǫav(s)− Ṁc2 . (10)

Here Ṁ is the flux of mass flux across the surface, so Ṁ = Fp(s)µpp and

Pj(s) = (γ(s))
2
n(s)A′s)v(s)ǫav(s)− Fp(s)µppc

2 . (11)

In order to find how jet power varies along the jet, we consider jet power at two points along the jet.

Pj(s2)− Pj(s1) = (γ(s2))
2 n(s2)A

′(s2)v(s2)ǫav(s2)− Fp(s2)µppc
2 (12)

−
(

(γ(s2))
2
n(s1)A

′(s1)v(s1)ǫav(s1)− Fp(s1)µppc
2
)

. (13)

We can identify the two terms with ǫav to be those from the left hand side of (8), and the two terms with µpp are
µppc

2 times the left hand side of (6). Making these substitutions,

Pj(s2)− Pj(s1) = αV c2 − αV c2 = 0 . (14)

This argument applies to arbitary s1 and s2, so the jet power is constant along the jet and
dPj

ds = 0.

A6

We start from (10) and substitute ǫav = µppc
2 + 13

4
P
n , to arrive at

Pj(s) = (γ(s))
2
n(s)A(s)v(s)(µppc

2 +
13

4

P

n(s)
)− γ(s)n(s)A(s)v(s)µppc

2 (15)

= (γ(s)− 1)γ(s)n(s)A(s)v(s)µppc
2 + (γ(s))

2
A(s)v(s)

13

4
P (16)

= (γ(s)− 1)Ṁc2 + (γ(s))
2
A(s)v(s)

13

4
P (17)

Rearranging to find Ṁ gives

Ṁ =
Pj − γ(s)2A(s)v(s)134 P

(γ(s)− 1)c2
(18)

Using the relationship P (s) = 5.7 × 10−12
(

s
s0

)

−1.5

and substituting values for s1 and s2 respectively into (18),

give Ṁ1 = 2.8× 1019 kg s−1 and Ṁ2 = 5.2× 1019 kg s−1 .
Note: some of the input values are given to one significant figure only. Hence, answers which are correct to this

degree of precision and are given to one or two significant figures are accepted as correct.

A7

From lorentz transforming ǫav from the jet frame where v = 0 to the AGN frame, the average momentum per particle

is pav = γ(s)v(s)c2 ǫav. As the momentum is directly proportional to the total energy, the flux argument is the same,
and

Π(s) =
FE

c

v(s)

c
. (19)

This can be related to the jet power and Ṁ ,

Π(s) =

(

Pj

c
+ Ṁc

)

v(s)

c
. (20)

Again, there is no particle flux, and hence no momentum flux through the sides of the jet, so the total momentum
flux out of the jet is

Π = Π(s2)−Π(s1) . (21)

Substituting values for the jet at s2 and s1 gives Π = 1.9× 1027 kgm s−2.

2



A8

The total force on the jet due to external pressure has contributions from the cross section at s1, F1 = P (s1)A(s1), at ss,
F2 = P (s2)A(s2), and from the pressure on the curved surface. We have a linear relationship s(r) = s1+

s2−s1
r2−r1

(r−r1).

s
2
=5.94 kpc

s
1
=252 pc

AGN

r
2
=500 pc

r
1
=30 pc

v
1
=0.667c

v
2
=0.52c

dr
ds

The nett pressure force on the surface is only the component in the s direction. As the force is perpendicular to the
surface, this results in a factor of dr

ds . Consequently

dF = 2πrP (s)dr , (22)

where P (s) = 5.7× 10−12
(

s
s0

)

−1.5

.

The total force due to the external pressure,

FPr = F1 − F2 +

∫ r2

r1

dF . (23)

Evaluating the integral gives
∫ r2
r1

dF = 9.8× 1026 N, so FPr = 8.2× 1026 N.

A9

As there are no other forces on the jet, it is expected that Π = FPr.
The % deviation is |(Π− FPr)/FPr| ≈ 40%

Gas of ultrarelativistic electrons

B1

The total energy per volume is
∫

∞

0

ǫf(ǫ)dǫ

B2

Consider the particles colliding with a surface ∆A,with the normal to the surface in the z-direction, in time ∆t. As
the electrons are ultrarelativistic, theirs speeds are all approximately c. We assume that the collisions with wall are
elastic, and electrons depart with their parallel mometnum unchanged and pz, final = −pz. Hence, ∆pz = 2pz, where
pz = ǫ

c cos θ, since the electrons are ultrarelativistic and E ≈ pc.
The distribution is isotropic so electrons are equally likely to be travelling in any direction.
All electrons within a parallelepiped of length c∆t which approach the surface at an angle θ will hit it in the time

∆t. The volume of the paralleleiped is c∆t∆A cos θ. From here, the total change in momentum is

∆pz =

∫

∞

0

∫ π/2

0

∫ 2π

0

2f(ǫ)pzc∆t∆A cos θ
sin θ

4π
dφdθdǫ (24)

=
2∆t∆A

4π

∫ π/2

0

sin θ cos2 θdθ

∫ 2π

0

dφ

∫

∞

0

ǫf(ǫ)dǫ (25)

=
2∆t∆A

4π
×

1

3
× 2π

∫

∞

0

ǫf(ǫ)dǫ (26)

3



B3

As the remaining integral in the expression above was identified as the energy per volume in B1, ∆pz = ∆t∆A1
3
E
V .

The pressure is the force per area normal to the wall, so P = ∆pz

∆t
1

∆A . Combining these gives P = E
3V , or E = 3PV ,

which is the equation of state.

B4

For an adiabatic process dQ = 0 so dE = dW = −PdV . dE = d(3PV ) = 3PdV +3V dP , so equating these expressions
gives

3PdV + 3V dP = −pdV (27)

4PdV = −3V dP (28)

4
dV

V
= −3

dP

P
(29)

4

∫ V

V0

dV ′

V ′
= −3

∫ P

P0

dP ′

P
(30)

4 ln

(

V

V0

)

= −3 ln

(

P

P0

)

(31)

PV 4/3

P0V
4/3
0

= 1 (32)

Synchrotron emission

C1

An electron in a magnetic field has a component of its velocity, v cosφ along the magnetic field, and v sinφ perpen-
dicular to the field. The parallel component of the velocity remains constant, but in the perpendicular direction the
electron experiences a force in a direction perpendicular to its motion, so it undergoes simple harmonic motion. The
perpendicular component of its velocity is Ωr where Ω is its angular frequency and r the radius of the circular motion.
The force on the electron is FB = qv × B = eΩrB sinφ. The acceleration of the electron is perpendicular to the
direction of motion, so FB = γma, where a is the acceleration and m the mass of the electron. For uniform circular
motion, a = −Ω2r, so

FB = γmΩ2r (33)

eΩrB sinφ = γmΩ2r (34)

Ω =
eB sinφ

γm
(35)

C2

The observer only sees the synchrotron emission when they are within the forward light cone. As the electron is
gyrating around the magnetic field, this direction is changing. The observer is in this light cone for time ∆t = 2θ

Ω = 2m
eB .

However, the emitting electron is moving directly toward the observer over this time, so although the light emitted at
the start of the pulse is ahead of the light at the end of the pulse, it is only ahead by c∆t

(

1− v
c

)

. The pulse then has
an apparent duration of

∆ta = ∆t
(

1−
v

c

)

.

Since
(

1− v
c

) (

1 + v
c

)

= 1 − v2

c2 = 1
γ2 , we can write

(

1− v
c

)

= 1

γ2(1+ v

c
)
. As the electrons are ultrarelativistic,

(

1 + v
c

)

= 2, and

∆ta =
me

γ2eB
.

C3

νchr ≈
1

∆ta
=

γ2eB

me

4



C4

Making a linear approximation,

τ ≈ −
E

(

dE
dt

) (36)

=
6πε0m

4c5

e4B2 sin2 φ

1

E
(37)

Synchrotron emission from an AGN jet

D1

As the magnetic field is frozen in, and magnetic flux is constant, the magnetic field must decrease as the area increases
in the expansion.

For a small area A, B0A0 = BA. Since A ∝ V 2/3, B = B0(A0/A) = B0

(

V
V0

)

−2/3

D2

A volume of plasma V0 with number density n0 contains a total number of particles N = n0V0. As the volume expands,
the total number remains constant, so n = N/V = (V/V0)n0.

The internal energy of the plasma E = 3PV , and since PV 4/3 = P0V
4/3
0 , EV 1/3 = E0V

1/3
0 . The scaling for

particle energy with volume is then E = (V/V0)
−1/3E0. This means that the particles initially with energies between

ǫ0 and ǫ+dǫ, will have energies between (V/V0)
−1/3ǫ0 and (V/V0)

−1/3 (ǫ+ dǫ). As ((V/V0)
−1/3ǫ)−p = (V/V0)

−p/3ǫ−p.
Hence, we can write

f(ǫ) = κǫ−p .

The value of κ is determined by the relationship

∫

∞

0

κǫ−pdǫ = N/V .

Given
∫

∞

0

κ0ǫ
−pdǫ = N/V0

κ0V0 = κV , and

f(ǫ) =

(

V

V0

)

−1

κ0ǫ
−p

D3

As the energy loss rate due to synchrotron emission increases as E2, and the cooling time decreases as 1/E, the more
energetic electrons lose energy more rapidly. If we consider electrons with energies ǫ1 < ǫ2, both will move to lower
energies in the distribution, but df/dt ∝ E2, so df

dt |ǫ2 > df
dt |ǫ1 . This will reduce the relative number of electrons with

higher energies, and steepen the power law of the electron energy distribution.

D4

For the knots in Centaurus A there is no change in the x-ray spectrum, so this rules out synchrotron cooling as in
that case the spectrum would steepen (Part D3). Hence adiabatic cooling is more likely for these two knots.

For the knots in M87, there is no change in brightness in other bands. Adiabatic expansion would reduce the number
density at all energies (Part D2) and hence brightness at all wavelengths, so this is not likely. Hence, synchrotron
cooling is more likely for these two knots.

5



Theory

Question 3: Tippe Top

Solutions

Reference sheet for markers

Note: some results below were used for the previous version of part A.10, and are no longer needed.

Coordinate systems for convenience (note: use of matrices not needed) xyz from XY Z





x̂

ŷ

ẑ



 =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1









X̂

Ŷ

Ẑ





123 from xyz





1̂

2̂

3̂



 =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









x̂

ŷ

ẑ





Position of point A from centre of mass, in xyz and 123 frames:

a = αR3̂−Rẑ (1)

= αR sin θx̂+R(α cos θ − 1)ẑ

= R sin θ1̂+R(α− cos θ)3̂

Useful products:

ẑ× 3̂ = sin θŷ (2)

(3)

Note (given in question):

(

∂A

∂t

)

K

=

(

∂A

∂t

)

K̃

+ ω ×A (4)

Time derivatives:

˙̂
3 = ω × 3̂ (5)

˙̂x = φ̇ŷ (6)

˙̂y = −φ̇x̂ (7)

1



Solutions: Tippe Top

1. (1.0 marks)

Free body diagrams:

x

z

mg

F
fr

N

mg
N

F
fr

v
A

x

y

Note: the direction of Ff must be opposite to the direction of vA, but is otherwise unimportant. Sum of
forces:

Fext = (N −mg)ẑ + Ff (sufficient for full marks) (8)

= (N −mg)ẑ −
µkN

|vA|
vA

Sketched vA must be in opposite direction to Ff on xy diagram.

2. (0.8 marks)

Sum of torques:

τ ext = a× (N ẑ+ Ff ) (9)

= (αR3̂−Rẑ)× (N ẑ+ Ff,xx̂+ Ff,yŷ)

= αRN 3̂× ẑ+ αR(sin θx̂ + cos θẑ)× (Ff,xx̂+ Ff,yŷ)−Rẑ× (Ff,xx̂+ Ff,yŷ)

= −αRN sin θŷ + αR sin θFf,yẑ+ αR cos θFf,xŷ − αR cos θFf,yx̂−RFf,xŷ +RFf,xx̂

= RFf,y(1 − α cos θ)x̂+ [RFf,x(α cos θ − 1)− αRN sin θ] ŷ + αR sin θFf,y ẑ (10)

3. (0.4 marks)

Motion at A satisfies

vA = ṡ+ ω × a (11)

where ω is the total angular velocity of the top in the centre of mass frame (this is deteremined in the
next part). Want to show that vA · ẑ = 0.

To show this, take time derivative of contact condition in XY Z or xyz frame (note: either is suitable, as

2



we only need the ẑ component, and ẑ = Ẑ).

Contact condition:

(s + a) · ẑ = 0 at all times (12)

⇒
d

dt
(s+ a) · ẑ = 0 at all times

Note we only care about the z-component, and (ω × ẑ) · ẑ = 0. Then, using 11, 1, and 5,

vA · ẑ = (ṡ+ ω × a) · ẑ

=
(

ṡ+ αRω × 3̂
)

· ẑ

=

(

ṡ + αR
d3̂

dt

)

· ẑ

= (ṡ+ ȧ) · ẑ = 0 (13)

4. (0.8 marks)

Total angular velocity ω of top is the sum of three distinct rotations:

ω = θ̇2̂+ φ̇ẑ+ ψ̇3̂

Use transformations shown in figure 3 or otherwise to transform into xyz or 123 frame:

ω = ψ̇ sin θx̂+ θ̇ŷ + (ψ̇ cos θ + φ̇)ẑ (14)

ω = −φ̇ sin θ1̂+ θ̇2̂+ (ψ̇ + φ̇ cos θ)3̂ (15)

5. (1.0 marks)

Where I is the inertia tensor




I1 0 0
0 I1 0
0 0 I3,





we have

ET = KT +KR + UG

=
1

2
ω · Iω +

1

2
mṡ2 +mgR(1− α cos θ)

From 11,

ṡ = vA − ω × a

= vA − (θ̇2̂+ φ̇ẑ+ ψ̇3̂)× (αR3̂−Rẑ)

= vxx̂+ vyŷ −
(

θ̇αR1̂− θ̇Rẑ+ φ̇αRẑ× 3̂− ψ̇R3̂× ẑ
)

=
(

vx + θ̇R(1− α cos θ)
)

x̂+
(

vy −R sin θ(αφ̇ + ψ̇)
)

ŷ + θ̇αR sin θẑ

using 2. Thus

ET =
1

2

[

I1(φ̇
2 sin2 θ + θ̇2) + I3(ψ̇ + φ̇ cos θ)2

]

+
m

2

[

(

vx + θ̇R(1− α cos θ)
)2

+
(

vy −R sin θ(αφ̇ + ψ̇)
)2

+ θ̇2α2R2 sin2 θ

]

+mgR(1− α cos θ)

3



6. (0.4 marks)

From 10,

dL

dt
· ẑ =

∑

τ · ẑ = αR sin θFf,y (16)

7. (1.4 marks)

Changes in energy: h = s · ẑ increases, so U̇G > 0.

At start and end (phases I and V) there is little translation so KT ∼ 0 at I and V. Thus, energy
transfer is from KR to UG.

Normal force does no work. Frictional force does work at point A. Direction is −vA:

W =

∫

Ff · vA dt < 0

⇒
d

dt
ET = −µkN |vA|

Thus Ff decreases the total energy monotonically.

16 implies only the Ff .ŷ acts to decrease L · ẑ. Energy transfer from KR to UG, caused by compo-
nent of frictional force in ŷ direction, so component of resultant torque is in the a× ŷ direction.

8. (2.0 marks)

Expectation (see figure):

• ET : monotonically decreasing

• KR: monotonically decreasing;
zero at V

• KT : zero at I and V; higher be-
tween; close to zero at IV

• UG: flat at start and finish; higher
at end; increases from I to IV then
flat; increase roughly at same
time that Krot decreases

t
(I) (II) (III) (IV) (V)

E
T

t
(I) (II) (III) (IV) (V)

U
G

t
(I) (II) (III) (IV) (V)

K
T

t
(I) (II) (III) (IV) (V)

K
R

monotonically decreasing

constant, =U
G

on stem

rising

non-zero

at rest
spinning slows

spinning upright,

so K
T
 is small
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9. (0.5 marks)

From 15,

L = Iω = I1

(

−φ̇ sin θ1̂+ θ̇2̂
)

+ I3(ψ̇ + φ̇ cos θ)3̂ (17)

Taking cross product with 3̂:

L× 3̂ = I1

(

φ̇ sin θ2̂+ θ̇1̂
)

= I1(ω × 3̂) (18)

10. (1.7 marks)

About any axis through the centre of mass,

dL

dt
6= 0 ⇔ τext 6= 0

External torque given by 9,

τ ext = a× (N ẑ+ Ff )

⇒ τext · a = 0

dL

dt
· a = 0

Thus, angular momentum in the direction of a must be constant, so v = a.

To demonstrate this mathematically, 5, 10, 18 allow

−λ̇ =
dL

dt
· a+ αRL ·

d3̂

dt

= (a× (N ẑ+ Ff )) · a+
αR

I1
L · (ω × L)

= 0
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