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Theory Q1 
Optical trap of neutral atoms (12 points), 

Solution and Marking Scheme 
 

1.1 
0.75pt 

At the instance when the seperation between charge centers is ,

x  the external field 

E


 exerts 

on them opposite forces .F eE 
 

  
After a time interval ,dt  the seperation is changed to ,

 
x dx  work done by the external field 

on the charges is thus dW Fdx F edx E dp E     
     

  

The power received by the atomic dipole  

abs

dW dp
P E p E

dt dt
    

    
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1.2 
0.75pt 

Total work can be obtained by integration 
0 0 2
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E E

W dp E dE E E p E       
      

 

Potential energy of the dipole is 

0 0

1

2
dipU W p E   


 

If the sign of Udip is incorrect or the factor 1/2 is missing, students get 0pt. 
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2.1 
1.0pt The time average of any time dependent function is denoted by    

2 /
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 f t f t dt
 
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     2
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cos .
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dipU r E r   
 

                                                                                 (1) 
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I r
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c

  


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
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         (2) 

If student gets directly to eq. (2) – full mark (1.0pt) 
If the answer is still correct but expressed in any quantity other than those requested – 0.5 pt. 
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3.1 
1.0pt 

The power absorbed by the oscillator from the driving field (and re-emitted as dipole 

radiation) is given by 

 
 

 2
0

sin .

2
absP r pE E r

  
  
 

  

 
 

 
0

sin .
absP r I r

c

   


 

 
                                                                        (3) 

The corresponding scattering rate is  
 

 
0

sin
.abs

sc

P
r I r

c

  

 
   
 

 
           (4) 
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4.1 
2.0pt 

In one dimensional Lorentz’s model, we replace    , ,E r t E x t
 

. One can find the solution 

of the form  0 cos x x t   thus from the equation of motion, 

     

2
0 0

2 2
0 0 0 0

cos /

cos sin cos /

e

e

x x x eE t m

x t x t eE t m





  
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    2 2 2 2
0 0 0

0

cos sin cos sin cos sin

cos / e

x t t

eE t m

            



           

 
 

Comparing coefficients before cos t  and sin t  on both sides, one has 

 

 
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e
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 
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




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   
                                                                                                                        (4)   
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
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(5) 

0 0cos( ) cos( )p ex ex t E t                                                                                  (6)

 
 

 

2

22 2 2 2
0e

e

m 

 
   

 

 

                   (7) 

Note: students can obtain   via any of sin, cos, tan functions: full mark (0.25 pt) 
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5.1 
1.0pt 

The power radiated due to the damping force, thus 
2 2

3
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6.1 
0.5pt 

Substituting 
2 3 2

06 /
e

e c
m     the on-resonance damping rate  

0

2

0 / .      
 

Using Eq. (1), (4), (5) and (6) one has 
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7.1 
0.5pt 

From (1), (5) and (6) one has  
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7.2 
1.0pt 

Trap depth when 4 ,P mW  laser wavelength 985 , nm  and 0 6 .D m  For sodium 

0 589 nm . 

One has: 0

0

2 2
; 

c c 
 

 
; 

And 
2 2 2

7 10
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s
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
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0depth BU f k T              (factors f = 3/2, 1/2,1 are all accepted)
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8.1 
0.5pt Using linear expansion, we have 0

2
0

4 Bk fT

mD
    

and 0
2

2 B
z

R

k fT

mz
   
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9.1 

0.5pt Mean potential enery 2 2
0 0

1
( ) .

2
zU z const m z    

To estimate the particle momentum, we assume 0~ , ~ .p p z z    

The uncertainty principle is written now 
0

.


p
z

 

Kinetic energy 
2 2

2
0

.
2 2

p
K

m mz
 


 

Total energy of the particle 
2

2 2
0 2

0

1

2 2
zE m z const

mz
   


 

Minimal energy corresponds to the energy balance 
2

2 2
0 2

0

1

2 2
zm z
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 


 0 .

z

z
m

 



 

If the student followed a correct analysis any obtained correct answer upto some 
multiplication factor: full mark  
If the student obtained correct answer using dimensional analysis: only 0.1 pt is granted 
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9.2 
0.25pt Insert the expression of the cloud size 0

z

z
m





to the energy expression 

2
2 2

min 0 2
0

1

2 2
zE m z const

mz
   


 one obtains min .zE const    

If the student obtained the  answer z
minE

2





  by using n z

1
E n

2


 
  

 
  :  full mark 
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9.3 From the uncertainty principle, the particle velocity therefore is estimated to be 0.25 
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0.25pt 

0

.z
z z zmv m v

z m


    


  

Alternative estimation is constructed from kinetic energy: 21 1

2 2
z

z z zmv K v
m


    


  

 
10.1 
0.5pt For the three dimendional trap, one has: 0 .





z

z
m

 

Similarly for ,x y  coordinates 0 0 



x y

m 

 and thus 2 2
0 0 0

2
.  




x y

m 

  

The condensate aspect ratio: 0

0

.
2




z

z 


 

Student may use either 0 0,x y  or 0  in estimating the radial size of the cloud. Correct 

answers upto multiplication factor: full mark 
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10.2 
0.5pt 

z
zv

m





, 

x yv v
m

 


, 2 2
2

~ ,x yv v v
m





  


  

2
~ .

z z

v

v

 


 

Student may use either ,x yv v  or v  in estimating expansion velocity in the radial direction. 

Correct answers upto some multiplication factor: full mark 
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10.3 
0.5pt 

After the time ,t  the sizes of the condensate cloud are:
 

0  L z zz z v t v t  0  L v t v t   . 

The cloud aspect ratio after the time ,t  ~ 1.
2

L z z

L

z v

v 





  

Correct final answers upto some multiplication factor: full mark 

0. 
25 
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10.4 
0.5pt 

Due to isotropic nature of thermal cloud, described by the Maxwell distribution: 

,

, ,

,

1.T

T z T

T z

v
v v

v


  

 
one can easily find , 0T L z zz z v t v t   , , 0T L v t v t     .

 
After a very long time, the aspect ratio of the thermal cloud therefore: 

, ,: ~ 1T L T Lz  

Note: students use different velocities (arithmetrical, rms, projection….etc.) to 
estimate the expansion of the cloud, as long as they give the correct ratio : ~ 1,L Tz  full 

mark of this sub question is granted. In this question, the correct multiplication factor is 
requested. For incorrect multiplication factor: zero mark 
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Theory Q2 
Space elevator (8 points) 

Solution and Marking Scheme 
 
1 Cylindrical Space Elevator with Uniform Cross Section 
1.1 
0.5pt 

Consider a small element of the cylinder of thickness dr  at position ,r  there are 

four forces acting on that element: gravitational  W r


, centrifugal  CF r


, cable 

tension  DF T r
 

 at position r , tension  UF T r dr 
 

 at position r dr . 

Positive direction is chosen from the Earth center outward. The net force must be 
zero, therefore: 

   

   

0

. . 0

C

C

W F T r dr T r

W F A r dr A r 

     

      
, 

Hence 

 
  2

2

2 3

1

G

GM Adr
Ad Adr r

r

d r
GM

dr r R


  




 

 
   

 
 

Note that, the tensions at the ends of the 
cylinder are zero. Integrating the above 
equation from R to RG, one obtains the stress 
at RG 

 
2

3

1 3

2 2
G

G G

R
R GM

R R R
 

 
   

 
 , 

Similarly, integrating from RG to H (the distance from the Earth center to the 
upper end of the cylinder), one obtains the same stress at RG 

 
2

3

1 3

2 2
G

G G

H
R GM

H R R
 

 
   

 
 

Equating the two above expressions, one arrives to the equation: 
2 2 32 0gR H R H R   ,  

from where H is determined: 
3

51 8 1 1.51 10 km.
2

GRR
H

R

        
   

 

The height of the cylinder 
3

51 8 3 1.45 10 km.
2

GRR
L H R

R

          
   

 

Note: Students can just equalize the net gravitational force and the net centrifugal 
force acting on the cylinder to obtain H correctly: full mark. 
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1.2 
0.5pt 

The maximal stress is determined from the requirement  
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2 3

1
0

G

d r
GM

dr r R



 

   
 

 

which yields Gr R  

0.25 
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1.3 
0.5pt 

Maximal stress is expressed by 

 
2

3

1 3

2 2
G

G G

R
R GM

R R R
 

 
   

 
                                                                      (1) 

 
2 4

3

3

2 2
G

G G

R R
R g R

R R
 

 
   

 
                                                                           (2)

 
Numerical calculation with 37900 /kg m   one obtains the ratio: 

  383 
76

5 5.0
.5

.0
G GPa

GPa

R

GA


 ,  

This ratio is much larger than 1, therefore steel is not suitable to build this kind of 
elevator. 
If eq. (2) is not obtained and other correct equation like eq. (1) is derived - 0.1pt 
from full mark (get only 0.15pt for maximal stress).  
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2 Carbon Nanotubes 
2.1 
0.25pt 

Expand exponential function in series, and limit to the lowest power of ,x  one 

has 
2

0 2

4x
V V 1

a

 
   

 
 and gets 

0P V   and  

0
2

4V
Q .

a
  
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2.2 
0.25pt 

0
2

8VdV
F x

dx a
      

then 10

2

8V
k 313Nm .

a
   

0.1 
 
 
0.15 

2.3 
0.5pt 

Young’s modulus of the carbon nanotube. Denote d  the diameter of the carbon 
nanotube, one has 27 / .d b   

0
1 2

32Vstress F / A kx / A ka
E

strain x / a x / a A a d



 
      

1  342 GPaE NE   
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2.4 
0.5pt 

2 0
0 max max

21 1

2 2

V
V kx x a

k
   

 
0.071nm   

0.25 
 
0.25 

2.5 
0.5pt Tensile strength of the carbon nanotube, max

0 / 2 171GPa.
x

E E
a

     
0.5 
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2.6 
0.5pt Volume 

2 3

4 2

d a
  contains 18 carbon 

atoms, therefore the density of the 
carbon nanotube,

2

3
32 27 12 10

= 1440 k m

2

g

4

/
3

A

d
N

a






 

  
 . 

 
 

 
 
 

0.25 
 
 
 
 
 
0.25 

 
3 Tapered Space Elevator with Uniform Stress 

3.1 
0.5pt 

The solution to this section is analogous to 
that given in the previous section, however, 
now one has to take into account the fact that 
the stress   is constant, but the cross section 
area A varies along the tower.  

 
  2

2

2

2 3

1

G

GM Adr
dA Adr r

r

dA gR r
dr

A r R


  





 

 
   

 
 

where 2/g GM R  is gravitational 

acceleration at the Earth surface. By 
integration one can obtain the tower cross 
section as: 

 
2 2 2

3 3

1 1 ( )
exp

2 2
S

G G

gR R R h
A h A

R R R h R





  
     

  
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3.2 
0.5pt 

Using the condition A(H)=A(R)=AS one arrives to the equation 
2 2 32 0GR H R H R   , which allows to determine 

3

1 8 1 151000km.
2

GRR
H

R

       
   
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3.3 
0.5pt The ratio 

3

exp[ { 3 2}] 1.623
2

G

S C G G

A R R R

A L R R

   
      

   
 where CL

g




  

0.5 

3.4 
1.0pt 

Net force exerted on the counterweight must be zero 

 
   2

2
.C

G C C G C

G C

GMm
A R h m R h

R h
    


, replacing  GA R h  from the 

equation for cross section area, one can determine the counterweight mass. 
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 

 

333 32

3

32

3

22
exp

2

1

G G CG
S C

C G G C

C

G C G

G G C

R R hR RR
A L

L R R R h
m

R R h R

R R h


   
  

    
   
  

   

. 
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4 Applications 

4.1 
0.5pt 

An object can leave the Earth if its energy at the distance r  satisfies 
2( )

0
2

  
m r GMm

E
r


 from which  

1
2 32 /Cr GM  53200km   

In order to launch an object, the upper end of the tower must locate above the 
distance rC. 
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4.2 
1.0pt 

We denote the Earth orbital velocity as ,Ev  the spacecraft velocity when it’s 

released from the tower top as 1 0v h . The spacecraft can reach the furthest 

distance from the Sun if 1


v  is parallel to .


Ev  The spacecaft velocity relative to the 

Sun is 1Ev v . The Earth orbital radius RE also is the smallest distance from the 

sun (if one neglects the tower length compared to the radius of the Earth’s orbit). 
r2 is the apogee distance of the spacecraft from the Sun, v2 is its velocity at apogee. 
Angular momentum and energy convervation laws read 

 

 

1 2 2

2 2
1 2

2

1 1

2 2

E E

S S
E

E

m v v R mv r

GM m GM m
m v v mv

R r

 

   
 

Here the energy term 
0

GMm

h
  due the earth’s gravity is neglected. Eliminating v2 

one has  

   
2 22 2

0 2 2 0

2
2 0S

E S E E

E

GM
v h r GM r v h R

R
 

 
      

 
  

from which 
 

 

2 2
0

2 2

02

E E

Max

S E E

v h R
r r

GM v h R






 

 
.  

Numerical calculation gives r2=5.3AU, that covers Jupiter’s orbit. 
Similarly, for the spacecraft to approach as close as possible to the Sun, the 

released velocity 1


v  must be antiparallel to .


Ev  The spacecaft velocity relative to 

the Sun is 1Ev v , r2 is the perigee distance of the spacecraft from the Sun, v2 is its 

velocity at perigee.  
The previous angular momentum and energy convervation laws still hold, 

 1 2 2E Em v v R mv r    
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0.1 
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0.1 
 
 
 
 
 
 
0.1 
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 
2 2

1 2

2

1 1

2 2
S S

E

E

GM m GM m
m v v mv

R r
     

Here the energy term 
0

GMm

h
  due the earth’s gravity is neglected. Eliminating v2 

one has  

   
2 22 2

0 2 2 0

2
2 0S

E S E E

E

GM
v h r GM r v h R

R
 

 
      

 
  

from which 
 

 

2 2
0

min 2 2

02

E E

S E E

v h R
r r

GM v h R






 

 
.  

Numerical calculation gives min 0.43AU,r   meaning the Mercury’s orbit is within 

our reach. 

0.1 
 
 
 
 
 
0.1 
 
 
0.1 
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Theory Q3 

Thermoelectric effects and theirapplication in 
thermoelectric generator and refrigerator(10 points) 

Solution and Marking scheme 

 

A. Heat transfer and thermoelectric generator 

A1. Heat transfer in a homogeneous conducting bar 

A1.1 
0.75 pt 

Consider heat transfer in the segment dx  of the bar in the steady state. Equation for 

the balance of the energy exchange through the cross-sectional area is written as  

       2
2

2
.

dT x dT x dx dT x d T xdx
kS I kS kS kS dx

dx S dx dx dx



        

Hence  

 2 2

2

d T x I
kS

dx S


                    (A1) 

Integration of (A1) gives  

  2

12

dT x I
x C

dx kS


   ,                          (A2) 

 
2

2
1 22

.
2

I
T x x C x C

kS


                       (A3) 

Constants 1 2,  C C  are derived from the boundary conditions 

1 2 10x T T C T     ,                 (A4) 

22 1
2 1 2

1
.

2

T T L
x L T T C I

L S k


                                               (A5) 

Equation for the temperature distribution in the bar is 

 
2 2

21 2
1 2 2

.
2 2

T TLI I
T x T x x

kS L kS

  
    

 
                                                                (A6) 

 
 
 
 
 
 

0.25 
 
 
 
 
 
 
 
 
 

0.25 
 
 
 
 

0.25 

 

A1.2 
1.0 pt 

Using (A2) –(A5) we obtain the equation for the heat current at x  

 
 

 
2

1 2 ,
2

dT x kS I L
q x kS T T x

dx L S

  
      

 
                                  (A7)  

at 0,x   and x L  

     
2 2

1 2 1 20 ,
2 2

kS LI RI
q x T T K T T

L S


                                  (A8) 

     
2 2

1 2 1 2 .
2 2

kS LI RI
q x L T T K T T

L S


                    (A9) 

Here ,
kS

K
L

  .
L

R
S


  
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A2. Relation between Peltier and Seebeck Coefficients 

Thermocouple consists of two subsystems: a) the conducting electron gas that performs an ideal 

themodynamic cycle; b) Nuclei and bounded electrons of the bar crystal that oscillate around 
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equillibrium positions at finite temperature and participate in heat conduction process. If the 

resistance of the thermocouple is neglected, these two subsystems may be considered as 

noninteracting, the electron gas exchanges heat only with the heat source at T1 and the heat sink at 

T2 , performing the ideal Carnot cycle.  

A2.1 
0.25 pt 

Electron gas receives heat from heat source due to the Peltier effect  

1 1q I                                 (A10) 

0.25 

A2.2. 

0.25 pt 

The heat amount transferred to the heat sink due to the Peltier effect  

2 2q I          (A11) 

0.25 

A2.3. 

0.5 pt 

Power delivered by the electron gas due to the Seebeck emf is 

 1 2P I T T I            (A12) 

0.5 

A2.4 
0.5 pt 

The efficiency of the ideal Carnot cycle applied to the thermocouple can be 

written as  

1

P

q
  , 1 2

1

T T

T



 .                                                                                       (A13) 

Thus 

 1 21 2

1 1

T TT T

T






                                                                                         (A14) 

Comparing these equations, one has 1 1T  .  

This is the Peltier coefficient at the first junction contacting with the heat source. 

Generally, one has .T   
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A3. Thermoelectric generator 

A.3.1. 
0.5 pt 

Power received by the thermocouple from the heat source (see also (A8)) is 

  2
1 1 2 1

1
.

2
q K T T T I I R                                                                         (A15) 

Here is the Seebeck coefficient of the thermocouple and 

A A B B
A B

k S k S
K K K

L L
    ,            (A16) 

A B
A B

A B

L L
R R R

S S

 
    ,                            (A17) 

are its thermal conductance and internal resistance. 

The heat sink receives a power (see also (A9)) 

  2
2 1 2 2

1
.

2
q K T T T I I R                           (A.18) 

 
 

0.25 
 
 
 
 
 
 
 
 
 

0.25 

A3.2. 
0.75 pt 

The efficiency of the thermoelectric generator is 

   

2

2
1 21 1 2 1 1
2

.
/ 2 1

2

L LP I R m

K T Tq K T T T I I R T

I R IR


 

  
  

 

                      (A19)                      

Here we use LR mR . The electrical current in the circuit is 
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   
 

1 2 1 2 .
1L

T T T T
I

R R m R

  
 

 
      (A20) 

Substituting (A20) into (A19) we obtain the expession for the efficiency 

 
 

 

1 2

2

1 2
12

.
1

1
2

m T T

KR m T T
T m








 
  

               (A21) 

0.25 
 
 
 
 

0.25 

A3.3. 

0.25 

Replacing the figure of merit 
2

Z
KR


                (A22) 

and 1 2

1

c

T T

T



  the efficiency of the ideal Carnot cycle in (A21), one has 

 
 

2

1

.
1 1

1
2

c

c

m

m
m

ZT

 






  

                          (A23) 

From (A23) one sees that  larger Z leads to the larger efficiency of the 

corresponding thermoelectric generator. The condition 1 1ZT   can be used for 

material application in thermoelectric generators. 

 
 
 
 
 
 
 

0.25 

 

A4. The maximum efficiency 

A4.1 
0.25 pt 

When LR R  or m=1, the power consumed on the load is maximum. The 

efficiency in that case is 

1 1

1 2

.
34

2

P

T T

T T

Z





 

  

                                                                       (A24) 

 
 
 

0.25 

A4.2.  

0.75 pt 

Equation (A23) may be rewritten as 

   2
1 1 1/ 2

m

a m b m
 

   
,                            (A25) 

where 
 1 2

1
a

Z T T



 , 1

1 2

T
b

T T



.                                              

Equation 0
d

dm


  has the solution 

2 1
1

2

b
M

a


   or  

 1 21 .
2

T T
M Z


                              (A26) 

 
0.25 

 
 
 
 
 

0.25 
 
 

0.25 

A4.3. 

0.25 pt 

Using (A25), (A26) we obtain the maximum efficiency of the thermoelectric 

generator 

 1 2
max

1 2

1

1MT T

T T
M

T





 

 
 

    (A27) 

(Correct expression containing either ,M  Z  or both is also accepted) 

0.25 
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A5. The maximum figure of merit 

A5.1 
0.5 

According to (A22) Z takes the maximum value mZ Z  when KR y  is 

smallest. Denoting   ,A B
A A B B

A B

k S k S y
S S

  
   

 
 A

B

S
x

S
   

one has the equation   A
A B Bk x k y

x




 
   

 
.  

It is easily to show the function y has the minimum at x=xm, where  

A B
m

B A

k
x

k




   or  

1/2

A A B

B B A

S k

S k





 
  
 

.
               (A28)

  

 
 
 
 
 

0.25 
 
 
 

0.25 
 

A5.2 

0.25 pt
 If the ratio of cross-sectional areas satisfies (A28) then 

   
21/2 1/2

m A A B By k k   
 

 and the maximum figure of merit of the 

thermocouple is 

   

2

21/2 1/2
m

A A B B

Z
k k



 

 
 

.
                                                (A.29)
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A6. The optimal efficiency 

A6.1. 
0.5 pt 

The thermocouple with two bars made from material A and B has the following 

the figure of merit 

   

22
3 1

21/2 1/2
3.15 10 K

4
m

A A
A A B B

Z
kk k



 

    
 
 

.                         (A.30)   

The optimal efficiency of the thermocouple AB when T1= 423K, T2 = 303K has 

the following value 

1 2

1 1 2
3

120
5.84%

3 1 3 423 303
44

3.2 10 22

opt

m

T T

T T
Z







  

  




.            (A.31) 

The corresponding ideal Carnot efficiency for that case is 

1 2

1

120
28.4%

423
C

T T

T



                                                                      (A32) 

/ 0.21opt C   . 

 
 

0.15 
 
 
 
 
 

0.25 
 
 
 
 
 

0.1 

A6.2 
0.25 pt 

The maximum efficiency of the thermoelectric generator designed from AB 

materials is 

        
 1 2 31 1 3.2 10 363 1.46

2
m

T T
M Z 
        

 

. 

                                     ( A.33) 

0.25 

 

 
max

2

1

1
6.0%C

M

T
M

T

 


 
 

 
 
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B. Thermoelectric refrigerator 

B1. The cooling power and the maximum temperature difference 

B1.1 
0.25pt 

For cooling purpose we choose the current direction so that heat is absorbed at 

upper junction (temperature T1) due to Peltier effect and transferred to the A & B 

bars. Using (A.9) one gets cooling power taken out from heat source at T1  

 
2

1 1 2
2

C

RI
q T I K T T                     (B.1) 

where ,K R  are thermal conductance and internal resistance of thermocouple. 

0.25 

B1.2. 
0.5 

Condition for the maximum cooling power CMq  is founded from 0Cdq

dI
 , one 

has  
 

         1 ,q

T
I

R


                                          (B2)

 

  
2

1
2 1 .

2
CM

T
q K T T

R


  

.
                           (B3) 

The maximum temperature depression is derived from the condition 0CMq  , 

which gives 
2 2 2

1min 1min
max 2 1min .

2 2

T ZT
T T T

KR


                                                        (B4) 

Here 
2

Z
KR


  is the figure of merit of the thermocouple.  

 
0.25 
 
 
 
 
 
 
 
 
 
 
0.25 
 

 

B2. The working current 

B2.1 
0.25pt 

Thermocouple AB with  3 13.15 10 KmZ     is used for a refrigerator. The 

lowest cooling temperature  T1min is found from the same equation (B4)  

2
1min 1min 2

2 2
0

m m

T T T
Z Z

  
 

 1min 2

1
1 2 1m

m

T Z T
Z

   .                                                                           (B5) 

Putting 2 300KT   and  3 13.15 10 KmZ    in (B.5) we obtain  

2
1min 2.22 10 K.T                                                          (B.6) 

 
 
 
 
 
 

0.1 
 
 

0.15 

B2.2. 
0.5 

Putting the value of the internal resistance 32
4.0 10A B B

A B B

L L L
R

S S S

          

in (B2), one gets the working current 
4

1min
W 3

4.2 10 221.5
A 23.3A

4 10

T
I

R

 



 
  


                 (B7) 
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B3. The coefficient of performance 

B3.1 
0.5pt 

According to the energy conservation law, the power supplied by the electrical 

source P equals to the Joule heat plus Peltier’s heat taken away in thermocouple 

per unit of time:   
2

2 1( )P T T I RI    .                             (B.8) 

The equation for Coefficient of Performance (COP) is 

                   
 

2

1 2 1

2
2 1

2
( )

C

RI
T I K T T

q

P T T I RI






  
 

 
                                                         (B9) 

 
 
 

0.25 
 
 
 

0.25 

B3.2. 
0.25 

Electrical current I   corresponds to the maximum of the COP is found from the 

equation 0
d

dI


 . (B9) may be rewritten in convenience form 

   
 

1 2 2 1

2 1

21

2 2 ( )

T T I K T T

T T RI I






  
  

 
 .                                   (B10) 

The equation 0
d

dI


  leads to 

      
22

1 2 2 1 2 14 2 0R T T I K T T RI K T T        , 

 
 

22 12
2 1

2
0

M M

K T T I K
I T T

T RT


    ,  

  
                      (B.11) 

with  
 2 1T .

2
M

T T
  

                                                                                    
(B.12) 

Solution of (B.11) is  

   2 1 1 T 1M

M

K T T
I Z

T
 


   .                                                  (B.13) 

(Taking into account that
2

Z
KR


 , (B.13) can be written in other form  

 

 
2 1

1 T 1M

T T
I

R Z


 


 
)                            (B.14) 
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B3.3. 
0.25 

Substituting (B.14) into (B.9) one has 

   
 

1 2 1

max

2 1

1 /
.

1 1

M

M

T ZT T T

T T ZT


   
    

                        (B.15) 
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