Theory Q1 Optical trap of neutral atoms (12 points), Solution and Marking Scheme

1.1 0.75pt	At the instance when the separation between charge centers is \vec{x} , the external field \vec{E} exerts on them opposite forces $\vec{F} = \pm e\vec{E}$.	0.15
	After a time interval dt , the separation is changed to $\vec{x} + d\vec{x}$, work done by the external field	
	on the charges is thus $dW = \vec{F}d\vec{x} = \vec{F} = ed\vec{x} \cdot \vec{E} = d\vec{p} \cdot \vec{E}$	0.3
	The power received by the atomic dipole	
	$P_{abs} = rac{dW}{dt} = rac{dar{p}}{dt} \cdot ec{E} = \dot{ec{p}} \cdot ec{E}$	0.3
1.2	Total work can be obtained by integration	0.5
0.75pt	$W = \int_0^{\vec{E}_0} d\vec{p} \cdot \vec{E} = \int_0^{\vec{E}_0} \alpha d\vec{E} \cdot \vec{E} = \frac{1}{2} \alpha \vec{E}_0^2 = \frac{1}{2} \vec{p}_0 \vec{E}_0$	
	Potential energy of the dipole is	
	$U_{_{dip}}=-W=-rac{1}{2}ec{p}_{_{0}}ec{E}_{_{0}}$	0.25
	If the sign of U_{din} is incorrect or the factor 1/2 is missing, students get 0pt.	

2.1 1.0pt	The time average of any time dependent function is denoted by $\langle f(t) \rangle = \frac{\omega}{2\pi} \int_{0}^{2\pi/\omega} f(t) dt$	
	$U_{dip}\left(\vec{r}\right) = -\frac{1}{4}\alpha(\omega)\cos\varphi E_0^2\left(\vec{r}\right) \tag{1}$	0.5
	$U_{dip}\left(\vec{r}\right) = -\frac{\alpha\left(\omega\right)\cos\varphi.I\left(\vec{r}\right)}{2\varepsilon_{0}c} $ (2)	0.5
	If student gets directly to eq. $(2) - full mark (1.0pt)$	
	If student gets directly to eq. (2) – full mark (1.0pt) If the answer is still correct but expressed in any quantity other than those requested -0.5 pt.	

4.1	In one dimensional Lorentz's model, we replace $\vec{E}(\vec{r},t) \rightarrow E(x,t)$. One can find the solution	
2.0pt	of the form $x = x_0 \cos(\omega t + \varphi)$ thus from the equation of motion,	
	$\ddot{x} + \gamma_{\omega}\dot{x} + \omega_0^2 x = -eE_0 \cos \omega t / m_e$	
	$=>x_0\left(\omega_0^2-\omega^2\right)\cos\left(\omega t+\varphi\right)-x_0\omega\gamma_{\omega}\sin\left(\omega t+\varphi\right)=-eE_0\cos\omega t/m_e$	0.25

$$x_{0} \left\{ \begin{bmatrix} (\omega_{0}^{2} - \omega^{2}) \cos \varphi - \omega \gamma_{\omega} \sin \varphi \end{bmatrix} \cos \omega t - \begin{bmatrix} (\omega_{0}^{2} - \omega^{2}) \sin \varphi + \omega \gamma_{\omega} \cos \varphi \end{bmatrix} \sin \omega t \right\} = \\ = -eE_{0} \cos \omega t / m_{e} \\ \text{Comparing coefficients before } \cos \omega t \text{ and } \sin \omega t \text{ on both sides, one has} \\ (\omega_{0}^{2} - \omega^{2}) \cos \varphi - \omega \gamma_{\omega} \sin \varphi = -\frac{eE_{0}}{m_{e}x_{0}} \\ (\omega_{0}^{2} - \omega^{2}) \sin \varphi + \omega \gamma_{\omega} \cos \varphi = 0 \\ x_{0} = \frac{eE_{0} / m_{e}}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + \gamma_{\omega}^{2}\omega^{2}}} \\ \sin \varphi = \frac{\omega \gamma_{\omega}}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + \gamma_{\omega}^{2}\omega^{2}}} \\ \cos \varphi = -\frac{(\omega_{0}^{2} - \omega^{2})}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + \gamma_{\omega}^{2}\omega^{2}}} \\ p = -ex = -ex_{0} \cos(\omega t + \varphi) = \alpha E_{0} \cos(\omega t + \varphi) \\ \alpha(\omega) = -\frac{e^{2}}{m_{e}\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + \gamma_{\omega}^{2}\omega^{2}}} \\ \text{Note: students can obtain } \varphi \text{ via any of sin, cos, tan functions: full mark (0.25 pt)} \\ \end{bmatrix}$$

r			-
	5.1	The power radiated due to the damping force, thus	
	1.0pt	$-m_e \gamma_\omega v.v = -\frac{1}{6\pi\varepsilon_0} \frac{e^2 a^2}{c^3}$	0.25
		$\Rightarrow -m_e \gamma_{\omega} (\omega r)^2 = -\frac{1}{6\pi\varepsilon_0} \frac{e^2 (\omega^2 r)^2}{c^3},$	0.25
		$\gamma_{\omega} = \frac{1}{6\pi\varepsilon_0} \frac{e^2 \omega^2}{m_e c^3} . \tag{8}$	0.5

$$\begin{array}{|c|c|c|c|c|c|} \hline \mathbf{6.1} & \text{Substituting } e^2 / m_e = 6\pi\varepsilon_0 c^3 \gamma_\omega / \omega^2 \text{ the on-resonance damping rate } \gamma \equiv \gamma_{\omega_0} = \left(\omega_0 / \omega\right)^2 \gamma_\omega. \\ & \text{Using Eq. (1), (4), (5) and (6) one has} \\ & \frac{U_{dip}(\vec{r})}{\hbar\Gamma_{sc}(\vec{r})} = \frac{-\frac{1}{2\varepsilon_0 c} \alpha(\omega) \cos \varphi}{-\hbar \frac{\alpha(\omega) \sin \varphi}{\hbar\varepsilon_0 c}} = \frac{1}{2} \frac{1}{\tan \varphi} = -\frac{1}{2} \frac{\omega_0^2 - \omega^2}{\left(\omega^3 / \omega_0^2\right) \gamma}, \\ \hline \mathbf{0.5} \end{array}$$

7.1 From (1), (5) and (6) one has **0.5pt**

$$\begin{aligned} U_{depth} = |U_0| = \left| \frac{\alpha(\omega)\cos(\varphi)I(0,0)}{2\varepsilon_0 c} \right| = \left| \frac{\alpha(\omega)\cos(\varphi)}{2\varepsilon_0 c} \frac{2P}{\pi D_0^2} \right| = \left| 6c^2 \frac{(\omega_0^2 - \omega^2)\gamma/\omega_0^2}{\left[(\omega_0^2 - \omega^2)^2 + \gamma^2 \frac{\omega^6}{\omega_0^4} \right] D_0^2} \right| & \textbf{0.5} \\ \hline \mathbf{7.2} \\ \mathbf{1.0pt} \\ \mathbf{1.0pt} \\ \lambda_0 = 589nm. \\ \text{One has: } \omega = \frac{2\pi c}{\lambda}; \omega_0 = \frac{2\pi c}{\lambda_0}; \\ \text{And } \gamma = \frac{1}{6\pi \varepsilon_0} \frac{e^2 \omega_0^2}{m_e c^3} = \frac{2\pi e^2}{3\varepsilon_0 m_e c \lambda_0^2} = 6.4 \times 10^7 s^{-1} \\ U_{depth} = f k_B T_0 \qquad (factors f = 3/2, 1/2, 1 are all accepted) \\ \Rightarrow f.T_0 = 4.13 \mu K \end{aligned}$$

8.1 0.5pt	Using linear expansion, we have $\Omega_{\rho} = \sqrt{\frac{4k_B f T_0}{mD_0^2}}$	0.25
	and $\Omega_z = \sqrt{\frac{2k_B f T_0}{m z_R^2}}$	0.25

9.1	1	
0.5pt	Mean potential enery $U(z_0) = const + \frac{1}{2}m\Omega_z^2 z_0^2$.	
	To estimate the particle momentum, we assume $p \sim \Delta p, \Delta z \sim z_0$.	0.2
	The uncertainty principle is written now $p \sim \frac{\hbar}{z_0}$.	0.1
	Kinetic energy $K = \frac{p^2}{2m} = \frac{\hbar^2}{2mz_0^2}$.	
	Total energy of the particle $E = \frac{1}{2}m\Omega_z^2 z_0^2 + \frac{\hbar^2}{2mz_0^2} + const$	0.1
	Minimal energy corresponds to the energy balance $\frac{1}{2}m\Omega_z^2 z_0^2 = \frac{\hbar^2}{2mz_0^2} \Rightarrow z_0 = \sqrt{\frac{\hbar}{m\Omega_z}}$.	0.1
	If the student followed a correct analysis any obtained correct answer upto some multiplication factor: full mark If the student obtained correct answer using dimensional analysis: only 0.1 pt is granted	
9.2 0.25pt	Insert the expression of the cloud size $z_0 = \sqrt{\frac{\hbar}{m\Omega_z}}$ to the energy expression	
	$E_{\min} = \frac{1}{2}m\Omega_z^2 z_0^2 + \frac{\hbar^2}{2mz_0^2} + const \text{ one obtains } E_{\min} = \hbar\Omega_z + const.$	0.25
	If the student obtained the answer $E_{min} = \frac{\hbar \Omega_z}{2}$ by using $E_n = \hbar \Omega_z \left(n + \frac{1}{2} \right)$: full mark	
9.3	From the uncertainty principle, the particle velocity therefore is estimated to be	0.25

0.25pt

$$mv_z = \frac{\hbar}{z_0} = \sqrt{m\hbar\Omega_z} \Longrightarrow v_z = \sqrt{\frac{\hbar\Omega_z}{m}}$$

Alternative estimation is constructed from kinetic energy: $\frac{1}{2}mv_z^2 = K = \frac{1}{2}\hbar\Omega_z \Rightarrow v_z = \sqrt{\frac{\hbar\Omega_z}{m}}$

0.5pt For the three dimendional trap, one has: $z_0 = \sqrt{m\Omega_z}$. Similarly for x, y coordinates $x_0 = y_0 = \sqrt{\frac{\hbar}{m\Omega_\rho}}$ and thus $\rho_0 = \sqrt{x_0^2 + y_0^2} = \sqrt{\frac{2\hbar}{m\Omega_\rho}}$. The condensate aspect ratio: $\frac{z_0}{\rho_0} = \sqrt{\frac{\Omega_\rho}{2\Omega_z}}$. Student may use either x_0, y_0 or ρ_0 in estimating the radial size of the cloud. Correct answers upto multiplication factor: full mark	0.2 0.1 0.25
Similarly for x, y coordinates $x_0 = y_0 = \sqrt{\frac{\hbar}{m\Omega_{\rho}}}$ and thus $\rho_0 = \sqrt{x_0^2 + y_0^2} = \sqrt{\frac{2\hbar}{m\Omega_{\rho}}}$. The condensate aspect ratio: $\frac{z_0}{\rho_0} = \sqrt{\frac{\Omega_{\rho}}{2\Omega_z}}$. Student may use either x_0, y_0 or ρ_0 in estimating the radial size of the cloud. Correct answers upto multiplication factor: full mark	0.2 0.1 0.25
The condensate aspect ratio: $\frac{z_0}{\rho_0} = \sqrt{\frac{\Omega_{\rho}}{2\Omega_z}}$. Student may use either x_0, y_0 or ρ_0 in estimating the radial size of the cloud. Correct answers upto multiplication factor: full mark	0.1
Student may use either x_0, y_0 or ρ_0 in estimating the radial size of the cloud. Correct answers upto multiplication factor: full mark	0.25
10.2	0.25
	0.25
$v_z = \sqrt{\frac{\hbar\Omega_z}{m}},$	0.25
$v_x = v_y = \sqrt{\frac{\hbar\Omega_{ ho}}{m}}, \Rightarrow v_{ ho} = \sqrt{v_x^2 + v_y^2} \sim \sqrt{\frac{2\hbar\Omega_{ ho}}{m}},$	
$\frac{v_{\rho}}{v_z} \sim \sqrt{\frac{2\Omega_{\rho}}{\Omega_z}}.$	0.25
Student may use either v_{μ} , v_{μ} or v_{μ} in estimating expansion velocity in the radial direction.	
Correct answers upto some multiplication factor: full mark	
10.3 After the time <i>t</i> , the sizes of the condensate cloud are:	0.
0.5pt $z_L = z_0 + v_z t \approx v_z t \qquad \rho_L = \rho_0 + v_\rho t \approx v_\rho t .$	25
The cloud aspect ratio after the time t, $\frac{z_L}{\rho_L} \approx \frac{v_z}{v_\rho} \sim \sqrt{\frac{\Omega_z}{2\Omega_\rho}} \ll 1.$	0.25
Correct final answers upto some multiplication factor: full mark	
10.4 Due to isotropic nature of thermal cloud, described by the Maxwell distribution:	
$v_{T,z} = v_{T,\rho} \Longrightarrow \frac{v_{T,\rho}}{v_{T,z}} \approx 1.$	0.2
one can easily find $z_{T,L} = z_0 + v_z t \approx v_z t$, $\rho_{T,L} = \rho_0 + v_\rho t \approx v_\rho t$.	0.2
After a very long time, the aspect ratio of the thermal cloud therefore:	
$\rho_{T,L}$: $z_{T,L} \sim 1$	0.1
Note: students use different velocities (arithmetrical, rms, projectionetc.) to	
estimate the expansion of the cloud, as long as they give the correct ratio $\rho_L : z_T \sim 1$, full	
mark of this sub question is granted. In this question, the correct multiplication factor is requested. For incorrect multiplication factor: zero mark	

Theory Q2 Space elevator (8 points) Solution and Marking Scheme

1 Cylindrical Space Elevator with Uniform Cross Section

1.1	Consider a small element of the cylinder of thickness dr at position r , there are	
0.5pt	four forces acting on that element: gravitational $\vec{W}(r)$, centrifugal $\vec{F}_{C}(r)$, cable	
	tension $\vec{F}_D = \vec{T}(r)$ at position r , tension $\vec{F}_U = \vec{T}(r+dr)$ at position $r+dr$.	
	Positive direction is chosen from the Earth center outward. The net force must be	
	Zero, therefore: $W = E = T(-1) = T(-1) = 0$	
	$-W + F_C + I(r + dr) - I(r) = 0$	0.1
	$\Leftrightarrow -W + F_C + A.\sigma(r + dr) - A.\sigma(r) = 0$	
	Hence	
	$Ad\sigma = \frac{GM(Adr\rho)}{r^2} - (Adr\rho)\omega^2 r$ Geostationary height	
	$\Rightarrow \frac{d\sigma}{dr} = GM\rho \left(\frac{1}{r^2} - \frac{r}{R_G^3}\right)$ Elevator cable	0.1
	Note that, the tensions at the ends of the cylinder are zero. Integrating the above equation from R to R_{G} one obtains the stress	
	at R_G Earth	
	$\sigma(R_G) = GM\rho \left[\frac{1}{R} - \frac{3}{2R_G} + \frac{R^2}{2R_G^3} \right], \qquad (a)$	0.1
	Similarly, integrating from R_G to H (the distance from the Earth center to the upper end of the cylinder), one obtains the same stress at R_G	0.1
	$\sigma(R_G) = GM\rho \left[\frac{1}{H} - \frac{3}{2R_G} + \frac{H^2}{2R_G^3} \right]$	0.1
	Equating the two above expressions, one arrives to the equation:	
	$RH^2 + R^2H - 2R_g^3 = 0,$	
	from where <i>H</i> is determined: $H = \frac{R}{2} \left[\sqrt{1 + 8 \left(\frac{R_G}{R}\right)^3} - 1 \right] = 1.51 \times 10^5 \text{ km.}$	
	The height of the cylinder $L = H - R = \frac{R}{2} \left[\sqrt{1 + 8 \left(\frac{R_G}{R}\right)^3} - 3 \right] = 1.45 \times 10^5 \text{ km}.$	0.1
	Note: Students can just equalize the net gravitational force and the net centrifugal	
12	Jorce acting on the cylinaer to obtain fi correctly: Juli mark.	
0.5nt		

$$\frac{d\sigma}{dr} = GM\rho\left(\frac{1}{r^2} - \frac{r}{R_G^3}\right) = 0$$
which yields $r = R_G$
0.25
1.3
Maximal stress is expressed by
 $\sigma(R_G) = GM\rho\left[\frac{1}{R} - \frac{3}{2R_G} + \frac{R^2}{2R_G^3}\right]$
(1)
 $\sigma(R_G) = \rho g\left[R - \frac{3R^2}{2R_G} + \frac{R^4}{2R_G^3}\right]$
(2)
Numerical calculation with $\rho = 7900kg / m^3$ one obtains the ratio:
 $\frac{\sigma(R_G)}{5.0GA} = \frac{383}{5.0} \frac{GPa}{5.0} = 76.5$,
This ratio is much larger than 1, therefore steel is not suitable to build this kind of elevator.
If eq. (2) is not obtained and other correct equation like eq. (1) is derived - 0.1pt from full mark (get only 0.15pt for maximal stress).

2 Carbon Nanotubes

2.1	Expand exponential function in series, and limit to the lowest power of x , one	
0.25pt	has $V = V_0 \left(-l + \frac{4x^2}{a^2} \right)$ and gets $P = -V_0$ and	0.1
	$Q = \frac{4V_0}{a^2}.$	0.15
2.2 0.25pt	$F = -\frac{dV}{dx} = -\frac{8V_0}{a^2}x$	0.1
	then $k = \frac{8V_0}{a^2} = 313 Nm^{-1}$.	0.15
2.3	Young's modulus of the carbon nanotube. Denote d the diameter of the carbon	
0.5pt	nanotube, one has $d = 27b / \pi$.	
	$E_{I} = \frac{stress \ \sigma}{strain \ \varepsilon} = \frac{F \ / \ A}{x \ / \ a} = \frac{kx \ / \ A}{x \ / \ a} = \frac{ka}{A} = \frac{32V_{0}}{a\pi d^{2}}$	0.25
	$E = NE_1 = 342 \mathrm{GPa}$	0.25

2.4 0.5pt	$V_0 = \frac{1}{2}kx_{\max}^2 \Longrightarrow x_{\max} = \sqrt{\frac{2V_0}{k}} = \frac{1}{2}a$ $= 0.071\mathrm{nm}$	0.25 0.25
2.5 0.5pt	Tensile strength of the carbon nanotube, $\sigma_0 = E \frac{x_{\text{max}}}{a} = E/2 = 171 \text{GPa}.$	0.5

2.6
0.5pt Volume
$$\frac{\pi d^2}{4} \times \frac{3a}{2}$$
 contains 18 carbon
atoms, therefore the density of the
carbon nanotube,
 $\rho = \frac{2 \times 27 \times 12 \times 10^{-3}}{N_A \times \frac{\pi d^2}{4} \times \frac{3a}{2}} = 1440 \text{ kg/m}^3$.
0.25
0.25

3 Tapered Space Elevator with Uniform Stress

3.1
0.5pt The solution to this section is analogous to that given in the previous section, however, now one has to take into account the fact that the stress
$$\sigma$$
 is constant, but the cross section area A varies along the tower.
 $\sigma dA = \frac{GM(Adr \rho)}{r^2} - (Adr \rho) \omega^2 r$
 $\Rightarrow \frac{dA}{A} = \frac{\rho g R^2}{\sigma} \left(\frac{1}{r^2} - \frac{r}{R_G^3} \right) dr$
where $g = GM/R^2$ is gravitational acceleration at the Earth surface. By (a) (b) integration one can obtain the tower cross section as:
 $A(h) = A_s \exp\left[\frac{\rho g R^2}{\sigma} \left(\frac{1}{R} + \frac{R^2}{2R_G^3} - \frac{1}{R+h} - \frac{(R+h)^2}{2R_G^3} \right) \right]$
0.25
3.2 Using the condition $A(H)=A(R)=A_S$ one arrives to the equation **0.25**
 $H = \frac{R}{2} \left[\sqrt{1+8\left(\frac{R_G}{R}\right)^3} - 1 \right] = 151000 \, \text{km}.$
0.25
3.3 O.5pt The ratio $\frac{A_G}{A_S} = \exp\left[\frac{R}{2L_C} \left\{ \left(\frac{R}{R_G}\right)^3 - 3\left(\frac{R}{R_G}\right) + 2\right\} \right] = 1.623 \text{ where } L_C = \frac{\sigma}{\rho g}$
0.5
3.4 I.0pt $\frac{GMm_C}{[R_G+h_C]^2} + A(R_G+h_C) \cdot \sigma = m_C \omega^2 [R_G+h_C], \text{ replacing } A(R_G+h) \text{ from the equation for cross section area, one can determine the counterweight mass.}$

$$m_{C} = \frac{\rho A_{S} L_{C} \exp\left[\frac{R^{2}}{2L_{C} R_{G}^{3}} \left(\frac{2R_{G}^{3} + R^{3}}{R} - \frac{2R_{G}^{3} + \left(R_{G} + h_{C}\right)^{3}}{R_{G} + h_{C}}\right)\right]}{\frac{R^{2} \left(R_{G} + h_{C}\right)}{R_{G}^{3}} \left[1 - \left(\frac{R_{G}}{R_{G} + h_{C}}\right)^{3}\right]}.$$

$$0.50$$

4 Applications

4.1	An object can leave the Earth if its energy at the distance r satisfies	
0.5pt	$E = \frac{m(\omega r)^2}{2} - \frac{GMm}{r} \ge 0 \text{ from which } r_C = \left(2GM / \omega^2\right)^{\frac{1}{3}} = 53200 km$	0.25
	In order to launch an object, the upper end of the tower must locate above the distance $r_{\rm C}$.	0.25

4.2
1.0pt
We denote the Earth orbital velocity as
$$v_E$$
, the spacecraft velocity when it's
released from the tower top as $v_1 = \omega h_0$. The spacecraft can reach the furthest
distance from the Sun if \bar{v}_1 is parallel to \bar{v}_E . The spacecraft velocity relative to the
Sun is $v_E + v_1$. The Earth orbital radius R_E also is the smallest distance from the
sun (if one neglects the tower length compared to the radius of the Earth's orbit).
 r_2 is the apogee distance of the spacecraft from the Sun, v_2 is its velocity at apogee.
Angular momentum and energy convervation laws read
 $m(v_E + v_1)R_E = mv_2r_2$
 $\frac{1}{2}m(v_E + v_1)^2 - \frac{GM_Sm}{R_E} = \frac{1}{2}mv_2^2 - \frac{GM_Sm}{r_2}$
Here the energy term $-\frac{GMm}{h_0}$ due the earth's gravity is neglected. Eliminating v_2
one has
 $\left[\left(v_E + \omega h_0 \right)^2 - \frac{2GM_S}{R_E} \right] r_2^2 + 2GM_S r_2 - (v_E + \omega h_0)^2 R_E^2 = 0$
from which $r_{Max} = r_2 = \frac{\left(v_E + \omega h_0 \right)^2 R_E^2}{2GM_S - \left(v_E + \omega h_0 \right)^2 R_E}$.
Numerical calculation gives $r_2=5.3$ AU, that covers Jupiter's orbit.
Similarly, for the spacecraft to approach as close as possible to the Sun, the
released velocity \vec{v}_1 must be antiparallel to \vec{v}_E . The spacecraft prometies to
the Sun is $v_E - v_1$, r_2 is the perigee distance of the spacecraft from the Sun, v_2 is its
velocity at perigee.
The previous angular momentum and energy convervation laws still hold,
 $m(v_E - v_1)R_E = mv_2r_2$

$$\frac{1}{2}m(v_E - v_1)^2 - \frac{GM_Sm}{R_E} = \frac{1}{2}mv_2^2 - \frac{GM_Sm}{r_2}$$
Here the energy term $-\frac{GMm}{h_0}$ due the earth's gravity is neglected. Eliminating v₂
one has
 $\left[\left(v_E - \omega h_0\right)^2 - \frac{2GM_S}{R_E}\right]r_2^2 + 2GM_Sr_2 - \left(v_E - \omega h_0\right)^2 R_E^2 = 0$
(0.1
from which $r_{\min} = r_2 = \frac{\left(v_E - \omega h_0\right)^2 R_E^2}{2GM_S - \left(v_E - \omega h_0\right)^2 R_E}$.
Numerical calculation gives $r_{\min} = 0.43$ AU, meaning the Mercury's orbit is within our reach.

References

- [1] Artsutanov, Y. Kosmos na elektrovoze. *Komsomolskaya Pravda* July 31 (1960); contents described in Lvov *Science* **158**, 946–947 (1967).
- [2] Pearson, J. The Orbital Tower: a Spacecraft Launcher Using the Earth's Rotational Energy. *Acta Astronautica* **2**, 785 (1975)
- [3] Aravind, P. K. The physics of the space elevator. *American Journal of Physics* **75**, 125 (2007).
- [4] Bochníček, Z. A Carbon Nanotube Cable for a Space Elevator. *The Physics Teacher* 51, 462 (2013).

Theory Q3

Thermoelectric effects and theirapplication in thermoelectric generator and refrigerator(10 points) Solution and Marking scheme

A. Heat transfer and thermoelectric generator A1. Heat transfer in a homogeneous conducting bar

A1.1	Consider heat transfer in the segment dx of the bar in the steady state. Equation for	
0.75 pt	the balance of the energy exchange through the cross-sectional area is written as	
	$-kS\frac{dT(x)}{dx} + \rho\frac{dx}{S}I^{2} = -kS\frac{dT(x+dx)}{dx} = -kS\frac{dT(x)}{dx} - kS\frac{d^{2}T(x)}{dx^{2}}.dx$	
	Hence	
	$-kS\frac{d^2T(x)}{dx^2} = \frac{\rho I^2}{S} $ (A1)	0.25
	Integration of (A1) gives	
	$\frac{dT(x)}{dx} = -\frac{\rho I^2}{kS^2}x + C_1, \qquad (A2)$	
	$T(x) = -\frac{\rho I^2}{2kS^2}x^2 + C_1 x + C_2. $ (A3)	
	Constants C_1 , C_2 are derived from the boundary conditions	
	$x = 0 \Longrightarrow T = T_1 \Longrightarrow C_2 = T_1, \tag{A4}$	0.25
	$x = L \Longrightarrow T = T_2 \Longrightarrow C_1 = \frac{T_2 - T_1}{L} + \frac{1}{2} \frac{\rho L}{S^2 k} I^2. $ (A5)	
	Equation for the temperature distribution in the bar is	
	$T(x) = T_1 + \left(\frac{\rho L I^2}{2kS^2} - \frac{T_1 - T_2}{L}\right) x - \frac{\rho I^2}{2kS^2} x^2.$ (A6)	0.25

A1.2	Using (A2) – (A5) we obtain the equation for the heat current at x	
1.0 pt	$q(x) = -kS \frac{dT(x)}{dx} = \frac{kS}{L} (T_1 - T_2) + \frac{\rho I^2}{S} (x - \frac{L}{2}), $ (A7)	0.5
	at $x = 0$, and $x = L$	
	$q(x=0) = \frac{kS}{L}(T_1 - T_2) - \frac{\rho LI^2}{2S} = K(T_1 - T_2) - \frac{RI^2}{2},$ (A8)	0.25
	$q(x=L) = \frac{kS}{L}(T_1 - T_2) + \frac{\rho LI^2}{2S} = K(T_1 - T_2) + \frac{RI^2}{2}.$ (A9)	0.25
	Here $K = \frac{kS}{L}$, $R = \frac{\rho L}{S}$.	

A2. Relation between Peltier and Seebeck Coefficients

Thermocouple consists of two subsystems: a) the conducting electron gas that performs an ideal themodynamic cycle; b) Nuclei and bounded electrons of the bar crystal that oscillate around

equillibrium positions at finite temperature and participate in heat conduction process. If the resistance of the thermocouple is neglected, these two subsystems may be considered as noninteracting, the electron gas exchanges heat only with the heat source at T_1 and the heat sink at T_2 , performing the ideal Carnot cycle.

A2.1	Electron gas receives heat from heat source due to the Peltier effect	0.25
0.25 pt	$q_1 = \pi_1 I \tag{A10}$	
A2.2.	The heat amount transferred to the heat sink due to the Peltier effect	0.25
0.25 pt	$q_2 = \pi_2 I \tag{A11}$	
A2.3.	Power delivered by the electron gas due to the Seebeck emf is	0.5
0.5 pt	$P = \varepsilon I = \alpha \left(T_1 - T_2 \right) I \tag{A12}$	
A2.4	The efficiency of the ideal Carnot cycle applied to the thermocouple can be	
0.5 pt	written as	
	$\eta = \frac{P}{q_1}, \eta = \frac{T_1 - T_2}{T_1}.$ (A13)	0.25
	Thus	
	$\frac{T_1 - T_2}{T_1} = \frac{\alpha \left(T_1 - T_2\right)}{\pi_1} $ (A14)	0.35
	Comparing these equations, one has $\pi_1 = \alpha T_1$.	0.25
	This is the Peltier coefficient at the first junction contacting with the heat source.	
	Generally, one has $\pi = \alpha T$.	

A3. Thermoelectric generator

A.3.1.	Power received by the thermocouple from the heat source (see also (A8)) is	
0.5 pt	$q_1 = K(T_1 - T_2) + \alpha T_1 I - \frac{1}{2} I^2 R.$ (A15)	0.25
	Here α is the Seebeck coefficient of the thermocouple and	
	$K = K_A + K_B = \frac{k_A S_A}{L} + \frac{k_B S_B}{L}, \tag{A16}$	
	$R = R_A + R_B = \frac{\rho_A L}{S_A} + \frac{\rho_B L}{S_B},\tag{A17}$	
	are its thermal conductance and internal resistance.	
	The heat sink receives a power (see also (A9))	
	$q_2 = K(T_1 - T_2) + \alpha T_2 I + \frac{1}{2} I^2 R. $ (A.18)	0.25
A3.2.	The efficiency of the thermoelectric generator is	
0.75 pt	$\eta = \frac{P_L}{q_1} = \frac{I^2 R_L}{K(T_1 - T_2) + \alpha T_1 I - I^2 R / 2} = \frac{m}{\frac{K(T_1 - T_2)}{I^2 R} + \frac{\alpha T_1}{IR} - \frac{1}{2}}.$ (A19)	0.25
	Here we use $R_L = mR$. The electrical current in the circuit is	

$$I = \frac{\alpha (T_1 - T_2)}{R_L + R} = \frac{\alpha (T_1 - T_2)}{(1 + m)R}.$$
(A20)
Substituting (A20) into (A19) we obtain the expession for the efficiency

$$\eta = \frac{m(T_1 - T_2)}{\frac{KR(1 + m)^2}{\alpha^2} + T_1(1 + m) - \frac{T_1 - T_2}{2}}.$$
(A21)
0.25
A3.3. Replacing the figure of merit

$$Z = \frac{\alpha^2}{KR}$$
(A22)
and $\eta_c = \frac{T_1 - T_2}{T_1}$ the efficiency of the ideal Carnot cycle in (A21), one has

$$\eta = \eta_c \frac{m}{\frac{(1 + m)^2}{ZT_1} + (1 + m) - \frac{1}{2}\eta_c}.$$
(A23)
From (A23) one sees that larger Z leads to the larger efficiency of the corresponding thermoelectric generators.
(A20)
0.25

A4. The maximum efficiency

A4.1	When $R_L = R$ or $m=1$, the power consumed on the load is maximum. The	
0.25 pt	efficiency in that case is	
	$\eta_{P} = \frac{T_{1} - T_{1}}{\left[\frac{4}{Z} + \frac{3T_{1} + T_{2}}{2}\right]}.$ (A24)	0.25
A4.2.	Equation (A23) may be rewritten as	
0.75 pt	$\eta = \frac{m}{a(1+m)^2 + b(1+m) - 1/2},$ (A25)	0.25
	where $a = \frac{1}{Z(T_1 - T_2)}$, $b = \frac{T_1}{T_1 - T_2}$.	
	Equation $\frac{d\eta}{dm} = 0$ has the solution $M = \sqrt{1 + \frac{2b-1}{2a}}$ or	0.25
	$M = \sqrt{1 + Z \frac{(T_1 + T_2)}{2}}.$ (A26)	0.25
A4.3.	Using (A25), (A26) we obtain the maximum efficiency of the thermoelectric	
0.25 pt	generator	
	$\eta_{\max} = \frac{T_1 - T_2}{T_1} \frac{(M - 1)}{\left(M + \frac{T_2}{T_1}\right)} $ (A27)	
	(Correct expression containing either M , Z or both is also accepted)	

A5. The maximum figure of merit

A5.1	According to (A22) Z takes the maximum value $Z = Z_m$ when $KR = y$ is		
0.5	smallest. Denoting $(k_A S_A + k_B S_B) \left(\frac{\rho_A}{S_A} + \frac{\rho_B}{S_B}\right) = y, \ x = \frac{S_A}{S_B}$		
	one has the equation $(k_A x + k_B) \left(\frac{\rho_A}{x} + \rho_B \right) = y$.	0.25	
	It is easily to show the function <i>y</i> has the minimum at $x=x_m$, where		
	$x_{m} = \sqrt{\frac{\rho_{A}k_{B}}{\rho_{B}k_{A}}} \text{or} \frac{S_{A}}{S_{B}} = \left(\frac{\rho_{A}k_{B}}{\rho_{B}k_{A}}\right)^{1/2}.$ (A28)	0.25	
A5.2	If the ratio of cross-sectional areas satisfies (A28) then		
0.25 pt	$y_m = \left[\left(\rho_A k_A \right)^{1/2} + \left(\rho_B k_B \right)^{1/2} \right]^2$ and the maximum figure of merit of the	0.25	
	thermocouple is		
	$Z_{m} = \frac{\alpha^{2}}{\left[\left(\rho_{A}k_{A}\right)^{1/2} + \left(\rho_{B}k_{B}\right)^{1/2}\right]^{2}}.$ (A.29)		

A6. The optimal efficiency

A6.1.	The thermocouple with two bars made from material A and B has the following	
0.5 pt	the figure of merit	
	$Z_{m} = \frac{\alpha^{2}}{\left[\left(\rho_{A}k_{A}\right)^{1/2} + \left(\rho_{B}k_{B}\right)^{1/2}\right]^{2}} = \frac{\alpha^{2}}{4\rho_{A}k_{A}} = 3.15 \times 10^{-3} \mathrm{K}^{-1}.$ (A.30)	0.15
	The optimal efficiency of the thermocouple AB when T_1 = 423K, T_2 = 303K has	
	the following value	
	$\eta_{opt} = \frac{T_1 - T_2}{4Z_m^{-1} + \frac{3T_1 + T_2}{2}} = \frac{120}{4\frac{1}{3.2 \times 10^{-3}} + \frac{3 \times 423 + 303}{2}} = 5.84\%. $ (A.31)	0.25
	The corresponding ideal Carnot efficiency for that case is	
	$\eta_C = \frac{T_1 - T_2}{T_1} = \frac{120}{423} = 28.4\% \tag{A32}$	
	$\eta_{opt} / \eta_C = 0.21.$	0.1
A6.2	The maximum efficiency of the thermoelectric generator designed from AB	0.25
0.25 pt	materials is	
	$M = \sqrt{1 + Z_m \frac{(T_1 + T_2)}{2}} = \sqrt{1 + 3.2 \times 10^{-3} \times 363} = 1.46$	
	$\eta_{\max} = \eta_C \frac{(M-1)}{\left(M + \frac{T_2}{T_1}\right)} = 6.0\% $ (A.33)	

B. Thermoelectric refrigerator

B1. The cooling power and the maximum temperature difference

B1.1	For cooling purpose we choose the current direction so that heat is absorbed at	0.25	
0.25pt	upper junction (temperature T_l) due to Peltier effect and transferred to the A & B		
	bars. Using (A.9) one gets cooling power taken out from heat source at T_1		
	$q_{C} = \alpha T_{1}I + K(T_{1} - T_{2}) - \frac{RI^{2}}{2} $ (B.1)		
	where K, R are thermal conductance and internal resistance of thermocouple.		
B1.2. 0.5	Condition for the maximum cooling power q_{CM} is founded from $\frac{dq_C}{dI} = 0$, one		
	has		
	$I_q = \frac{\alpha T_1}{R},\tag{B2}$		
	$q_{CM} = \frac{\alpha^2 T_1}{2R} - K \left(T_2 - T_1 \right). $ (B3)		
	The maximum temperature depression is derived from the condition $q_{CM} = 0$,		
	which gives		
	$\Delta T_{\max} = T_2 - T_{1\min} = \frac{\alpha^2 T_{1\min}^2}{2KR} = \frac{ZT_{1\min}^2}{2}.$ (B4)	0.25	
	Here $Z = \frac{\alpha^2}{KR}$ is the figure of merit of the thermocouple.		

B2. The working current

B2.1	Thermocouple AB with $Z_m = 3.15 \times 10^{-3} \text{ K}^{-1}$ is used for a refrigerator. The		
0.25pt	lowest cooling temperature T_{1min} is found from the same equation (B4)		
	$0 = T_{1\min}^2 + \frac{2}{Z_m} T_{1\min} - \frac{2}{Z_m} T_2$		
	$T_{1\min} = \frac{1}{Z_m} \left(\sqrt{1 + 2Z_m T_2} - 1 \right). $ (B5)	0.1	
	Putting $T_2 = 300$ K and $Z_m = 3.15 \times 10^{-3}$ K ⁻¹ in (B.5) we obtain		
	$T_{1\min} = 2.22 \times 10^2 \mathrm{K}.$ (B.6)	0.15	
B2.2. 0.5	Putting the value of the internal resistance $R = \frac{\rho_A L}{S_A} + \frac{\rho_B L}{S_B} = \frac{2\rho_B L}{S_B} = 4.0 \times 10^{-3} \Omega$	0.25	
	in (B2), one gets the working current		
	$I_{\rm W} = \frac{\alpha T_{\rm 1min}}{R} = \frac{4.2 \times 10^{-4} \times 221.5}{4 \times 10^{-3}} \mathrm{A} = 23.3 \mathrm{A} \tag{B7}$	0.25	

B3. The coefficient of performance

B3.1	According to the energy conservation law, the power supplied by the electrical		
0.5pt	source <i>P</i> equals to the Joule heat plus Peltier's heat taken away in thermocouple		
	per unit of time:		0.35
	$P = \alpha (T_2 - T_1)I + RI^2$	(B.8)	0.25
	The equation for Coefficient of Performance (COP) is		
	$\beta = \frac{q_C}{P} = \frac{\alpha T_1 I - K(T_2 - T_1) - \frac{RI^2}{2}}{\alpha (T_2 - T_1)I + RI^2}$	(B9)	0.25
B3.2.	Electrical current I_{β} corresponds to the maximum of the COP is found	from the	
0.25	equation $\frac{d\beta}{dI} = 0$. (B9) may be rewritten in convenience form		
	$\beta = -\frac{1}{2} + \frac{\alpha (T_1 + T_2)I - 2K(T_2 - T_1)}{2[\alpha (T_2 - T_1) + RI]I} .$	(B10)	
	The equation $\frac{d\beta}{dI} = 0$ leads to		
	$-\alpha R(T_{1}+T_{2})I^{2}+4K(T_{2}-T_{1})RI+2K\alpha (T_{2}-T_{1})^{2}=0,$		
	$I^{2} - \frac{2K(T_{2} - T_{1})I}{\alpha T_{M}} - \frac{K}{RT_{M}}(T_{2} - T_{1})^{2} = 0,$	(B.11)	
	with $T_M = \frac{(T_2 + T_1)}{2}$.	(B.12)	
	Solution of (B.11) is		
	$I_{\beta} = \frac{K(T_2 - T_1)}{\alpha T_M} \left\{ \sqrt{1 + Z T_M} + 1 \right\}.$	(B.13)	0.25
	(Taking into account that $Z = \frac{\alpha^2}{KR}$, (B.13) can be written in other form		
	$I_{\beta} = \frac{\alpha \left(T_2 - T_1\right)}{R\left\{\sqrt{1 + Z T_M} - 1\right\}})$	(B.14)	
B3.3.	Substituting (B.14) into (B.9) one has		0.25
0.25	$\beta_{\max} = \frac{T_1 \left[\sqrt{1 + ZT_M} - T_2 / T_1 \right]}{(T_2 - T_1) \left[\sqrt{1 + ZT_M} + 1 \right]}.$	(B.15)	