Vortices in Superfluid
MODD-Problems

May 5, 2017

A. Steady filament (0.75)

Consider a cylindrical beaker (radius R > a) of superfluid helium and a straight
vertical vortex filament in its center Fig. 2.

A1 (0.25)

Plot the streamlines. Find out the velocity v at a point 7.

The streamlines are circular. From the circulation identity (1) it is ob-
vious that v = k/r.

e Streamlines are plotted correctly (one at least) ............... 0.1
e U= 0.15
A2 (0.5)

Work out the free surface shape (height as a function of coordinate z(7)) around
the vortex. Free fall acceleration is g. Surface tension can be neglected.



Consider a thin circular layer of the radius r. Equilibrium condition for
its surface is given by the requirement

dz v? K
O e (1)

This equation is satisfied by the surface profile

K

= - — 2

(1) = Lol = 5 2)

e tana = ;TZ or equivalent ........ ... ... it 0.25
o 2z = [z)] 2_’;% .............................................. 0.25

B. Vortex motion (1.4)
B1 (0.25)

Consider two identical straight vortices initially placed at distance ry from each
other as shown in Fig. 4. Find initial velocities of the vortices and draw their
trajectories.

7

Being advected by each other’s flow field, filaments will rotate around a
point halfway between them. The velocity is given by vy = x/7¢.

e Trajectories are plotted correctly ........... ... ... ... ... 0.15
e Correct expression for velocity ............ ... 0.1
B2 (0.15)

Draw the trajectories of vortices A, B, and C (located in the center).



e Trajectories are plotted correctly ............................ 0.15

B3 (0.4)

Find velocity v(7) of a vortex positioned at 7.

Consider a circular path of radius r > w around the beaker center. The
circulation along this path is given by the number of vortices within it

(vortex density per unit area is (u?v/3/2)71):
2
r
K——. 3
u2v/3/2 ®)

2mrv = 27

The velocity field

2kr
v = . 4
W (4)
e Expression for vortex density ........... ..., 0.2
o Correct expression for v(r) ............ il 0.2

B4 (0.35)

Find the distance AB(t) between the vortices A and B at time ¢. Treat AB(0)

as given.



This velocity pattern corresponds to the rotation of the lattice as a whole
around the beaker center with angular velocity

2TK

u2v/3

w =

AB(t) = AB(0)

® COITECE ANSWET ..ottt ettt et e et 0.35

B5 (0.25)

Work out the “smoothed out” (omitting the lattice structure) free helium surface
shape z(7).

7

The surface shape is

C. Momentum and Energy (1.75)

C1 (0.3)

Consider a nearly rectangular vortex loop b X d, b < d, Fig. 7. Indicate the
direction of its momentum P. Find out the momentum magnitude.

N\

d

1
: )
¢ [ ¢
©OP
Momentum of a flat loop (see Introduction) is perpendicular to its plane
and proportional to its area. For a rectangular loop the magnitude is
P = 27wk pbd.

e Correct direction of momentum ..............c.c.uuuueeeno... 0.15

e Correct expression for momentum magnitude ............... 0.15




C2 (0.7)
Calculate its energy U.

To produce equal magnetic and kinetic energy densities B?/(2ug) =
pv?/2, the magnetic field has to be B = v\/figp = k+/fiop/r. This
field is generated by a current I = 2wk+/p/po. Energy of the wire loop
can be found from the inductance U = LI?/2. Inductance of a nearly
rectangular wire loop:
@ "mol  pod, b
L=—=2I" [ ——dr="1log—. 7
1 o 27T " T 8y @
This gives for the energy
% b
U = 2nk“pdlog — (8)
a
e Integration limits are ~aand b ........ ... ... . ... ... L. 0.2
e Analogy with a magnitude field is used (U = LTIZ, L=2or
energy is calculated as W = [ Fdr, where F =22 .. . 0.2
e Correct expression for energy ............ ..., 0.3

C3 (0.75)

Suppose we shift a long straight vortex filament by a distance b in « direction, see
Fig. 8. How much does the fluid momentum change? Indicate the momentum
change direction. The filament length (constrained by the vessel walls) is d.

Y b
—

o

TAﬁ
X

The momentum change is equal to the momentum of a long rectangular
loop P = 2wk pbd.

e Theresult of Cl used ........ ..o, 0.3
e Momentum change is parallel to Y axis ...................... 0.1
e Correct direction of momentum change ..................... 0.15
e Correct expression for momentum change magnitude ......... 0.2




Interestingly, this provides an alternative approach to find the energy
of such a loop. Namely, if we slowly move one straight vortex in the
velocity field of another, then we apply a force

2rK%pd
F = 2rkpdv = 27mpclE =2 (9)
T T
The work . )
2 d b
W= / T P2 gr = 21r2pdlog - (10)
a T a

has to be performed to move it from distance a to b.

D. Trapped charges (2.85)
D1 (0.5)

Consider a straight vortex charged with uniform linear density A < 0 in a
uniform electric field E. Draw the vortex trajectory. Find its velocity as a
function of time.

\
X

E
—>

Electric force F' = EXd moves the vortex with velocity

v 27Tipd - Zf:p (11)
perpendicular to E.
e Trajectory is straight line parallel to Y axis .................. 0.1
e Correct direction of velocity ...........ccoiiiiiiiiiiiinn. 0.2
e Correct expression for velocity magnitude .................... 0.2




D234

A circular vortex loop of radius Ry initially charged with uniform linear density
A < 0 is placed in a uniform electric field E perpendicular to its plane, opposite
to its momentum F.

D2 (0.6)

Draw the trajectory of the loop center C. Find the radius of the loop as a
function of time.

Az

Electric force upon the loop F = —2wERg|\| is constant and fluid mo-
mentum linearly depends on time

P = Py + 2rERo| A\t = 2n%pR%k. (12)

The loop is growing and its radius is increasing with time ¢

/ ERg|AJt
R= R§+WZL|. (13)

e Trajectory is straight line along y ............ ... ... ... 0.1
e Correct velocity direction .......... ... ... ... 0.15
0 PlL) oo 0.15
0 22 PR2K o 0.15
o Correct expression for R() ..........cooiiiiiiiiiiii. 0.05




D3 (1.5)

Find its velocity v(t) as a function of time.

The loop velocity v can be easily found from a relationship between the
energy change rate and the momentum change rate

du dP
= =—Fuv=—u. 14
at T dt (14)
This gives for the velocity
dU & ] R wlog (\/R(Q) + ERO\)\|t/(7rpfi)/a)
V= — =~ —log— = ~
dP 2R % 2\/R2 + ERo| Nt/ (mpr)

2\/R% + ER|\[t/(mpr)

This means that the vortex is moving in the direction of the force but
its velocity is decreasing.

e Expression for v o< 510g(R) ... 1.0
e Correct expression for v(t) .........oooiiiiiiiiiiiiiii., 0.5
D4 (0.25)

The field is switched off at a time t* when the velocity reaches the value v*
v(t*). Find the loop velocity v(t) at a later time ¢ > t*.

When E =0 = P = const = R = const = v = const = v(t) = v*.

e Correct expression for v(¢) ..., 0.25




E. Influence of the boundaries (3.25)

Draw the trajectory of a straight vortex, initially placed at a distance hg from
a flat wall. Find its velocity as a function of time.

E1 (0.5)

Well known technique of image charges (currents) in electrostatics (mag-
netostatics) can be directly used to solve this problem. Namely, the wall
can be “substituted” with a reflected fictitious vortex on the other side of
the wall. The velocity distribution of two vortices together in the upper
semi-space is identical to the one produce by a single vortex above the
wall. Indeed, the symmetry of the problem ensures that there is no flow
through the plane of symmetry. Thus, a straight vortex line situated a
distance hy above a flat wall with its image behave as a pair of vortices
of opposite circulation a distance 2hy apart. This means that the vortex
moves along the wall with velocity

K

U:%.

(16)

Ilustration of the image method for the straight vortex filament near a
flat wall

e Trajectory is plotted correctly ............. ... ..., 0.15
e Correct direction of velocity ............ccoiiiiiii ., 0.1
e Correct expression for velocity magnitude ................... 0.25




E234

Consider a straight vortex placed in a corner at a distance hg from both walls.

E2 (0.75)

What is the initial velocity vy of the vortex?

The velocity of the filament is given by superposition of the velocities
U1, U2 and ¥ induced by the image vortices 1, 2 and 3, respectively (see
Fig. in E3 solution). One readily obtains

K K

K
V=), Up=—r—), V3= —.
! 2hg 2 2\/§h0 3 2hg

The modulus of the filament velocity at the initial moment is

— . — K
U0=|01+U2—|—’L)3|=\/§Ul—’l}2= m

e Ideas of using superposition principal and technique of image

Charges ..o 0.25
e Correct expression for initial velocity magnitude ............. 0.5
E3 (0.5)
Draw the trajectory of the vortex.
ho ho
Y -
h() hO
h(] hO
' -
92 hy | by 3

Image vortices in the corner.
e The trajectory has correct form ................ ... ... ... ... 0.3

e Correct direction of initial velocity ........................... 0.2

10




E4 (1.5)

What is the velocity of the vortex v, after very long time?

Energy for the system of vortices is proportional to

2

2
Utos o log L log — — log v (17)
a
The energy conservation implies that
z2 49?2
C=———7=— 18

is constant along the trajectory. After very long time y — ho/+v/2 and
the vortex velocity is

- (19)

Vo = .

7 hov2
® [0 = CONSE ..ottt 0.5
e Correct expression for velocity after very long time ........... 1.5

11



Marker Theo ry 1 Student
TOTAL
Subques Statement Point Marker Consensus
tion S Statement | Subquestion | statement | Subquestion
Al | a Correct streamlines (at least one) 0.1
v=K/r 0.15 (0.25)
2
A2 | a tan a = K—3or equivalent 0.25
ar
% k%
b K2 0.25
zZ = zy—
0 2gr2
(if at Alb v~% PEP applied) (0.5)
Bl | a Correct trajectories 0.15
b Vg = K/1y 0.1 (0.25)
B2 | a All trajectories correct 0.15
B3 | a Expression for vortex density 0.2
(w?V3/2)™
%k %k %
b 2mKr 0.2
v =
uzv3
(if B3ais incorrect PEP applied) (0.4)
B4 | a AB(t) = AB(0) 0.35
B5 | a - N 2m2Kc?r? 0.25
z(r)=zy+ ———5
0 3gu*
(if at B3b v~r PEP applied)
Cl | a Correct direction of momentum ® 0.15
P = 2mkpbd 0.15 (0.3)
C2 | a | Integration limits are fa and b where § = | 0.2
1
k k%
b | Case 1: Analogy with a magnitude field is 0.2
2
used (U = %and L= ?)
Case 2: Energy is calculated as
dap
W = [Fdr and F = —
%k %k %k
b 0.3
¢ U = 2nk?pd loga
b
(log (ﬁ—a) — correct) (0.7)
C3 | a The result of C1 used 0.3
K %k 3k
b Momentum change is parallel to Y axis 0.1
o Correct direction of momentum change 11} 0.15
d AP = 2mkpbd 0.2
(correct if similar to Cl1b) (0.75)
D1 | a | Trajectory is straight line parallel to Y axis 0.1 (0.5)




b Correct direction of velocity (upwards) 0.2
c E[A| 0.2
v =
21K
(if at C3d AP~ b PEP applied)
D2 | a | Trajectory is straight line parallel to Z axis 0.1
b Correct direction of velocity (upwards) 0.15
%k k%
d P = 2m?pR%*k 0.15
%k k%
e _ 5 . ERglAlt 0.05
R = JRo+ = (0.6)
D3 | a 1+logR/a( logR/a) 1
v~ ~
R R
b . g R+ Ei(;)lzlt 0.5
2 /Rg+ Ei‘;)',’c\'t
k ( Ro
—_ 1 +log—)
ERg|At a
b - 2 /Rg+—nf;k
K 1 RG+ E}:zﬂ:lt
0g
2 [RZ+ Ei‘;':'t a
Kk joghe
O
(if at D2e R = +va + bt PEP applied) (1.5)
D4 | a v(t) = v* 0.25
El | a Trajectory is plotted correctly 0.15
b Correct direction of velocity (<) 0.1
C v = Kk/2h, 0.25 (0.5)
E2 | a | ldeas of using superposition principle and | 0.25
technique of image charges
%k 3k %k
b Yo = K 0.5
2v/2h, (0.75)
E3 | a The trajectory has correct curvature 0.3
b N . AN 0.2
Correct direction of initial velocity ( 1) (0.5)
E4 | a Using of energy conservation law (or 0.5
equivalent)
b =L 1.0
Ve ™G
(0.5 points — arithmetical error) (1.5)
Total

PEP (Propagation Error Principle): incorrect answers with right dimension obtained from earlier wrong
results are to be accepted in case of right course of solution. That principle applied only in indicated
cases.

Trajectory with the wrong direction indicated is considered as incorrect.



Evolution of Supermassive Black Holes Binary
Solution

A. DYNAMICAL FRICTION

A1. The deflection angle is defined from: tana ~ a = Z—z, assuming that o < 1. One can find
py = [ F, dt, and according to Newton’s gravity law

GMm
F,= 2 cos® ¢
The geometry: x = btan ¢, so we change the variable dt = 4 = Scoifp and we have
GMm [™? d 2GMm
= cos = :
py b'U _ﬂ-/z SO SO b'U

Here we assume that the body moves along the stright line, due to a < 1, see Fig 1. So o = ;y
and

2GM 2b,
bv? b |
VA
\%
- ..\_> e AT
m \\ I
\\\ I
\\%0-\ i b
N \
M? x

A2. During the transit of a massive body, star’s energy remains constant: p2 + pZ = const.
Hence

(p+ Ap.)* +p; = .

2
We know that p, < p, so the SBH momentum change along the x-axis Ap, = —p—; = —%2]), SO
2G2 M?
Apy= -
b2v3

A3. To calculate net force we might integrate over stars with different impact parameters. The
number of stars’ transits during the time At equals AN = 2xwbvn db At, so force, decelerating
the object along the x-axis,

1 nm  [Omas db
(1) Fpr =5 [ ApedN = —4xG* M= / —47TG2M2U—/)2 log A

1



The above formulas are true only for b > by, so the lower integration limit is b,,;, = by, and the
upper limit is determined by the galaxy size b,,,, = R. So we have

2) EW:—M@M%;%A
where A = R/b,.

A4. We calculate: b; = Gv—éw = 10.7 pc, log A = 7.5.

B. GRAVITATIONAL SLINGSHOT

B1. From the second Newton’s law

Mv?  GM?
a  4a®’
. ) GM .
and we have for the orbital velocity | vy, = . The system energy is
a
Mu? M?
Bz By +U =2 Mo GM
2 2a
The answer is
GM?>
3 E=—
(3) 1a
B2. From angular momentum conservation law
bo = r,,vo,

express vg. Write down the energy conservation law
o wg  GM,

2 2 Tm




and derive
2G My

b=rp\/1+—F—.
0T

B3. To estimate the time between collisions let us use an analogy with the gas. As known
from the molecular kinetic theory, given that molecules have radii r, thermal velocities v, and
the molecular concentration n, the time At between collisions of one molecule with the others
can be estimated from the relation 7r?vnAt = 1. In our problem b,,,, stands in place of the
molecule radius, therefore for estimation it can be written

(At)™! = 7ob? 0

mazx’ "

Estimate the maximal impact parameter b,,,,, corresponding to the star collision with the
binary system. The star should reach the distance of a to the binary system to collide. The
star at large distances from the SBH binary interacts with it as with a point object of mass
4GM

o2a *

My = 2M. From the results of B.2, assuming r,, = a, we obtain b, = a4/1 + Taking

into account that o2 < %, simplify:

2
bma:c - GMCL,
so we have
mo
At = —————
ArGM pa

B4. During the one act of gravitational slingshot, star energy increases at average by

2 2
mui- mo
AFEgq = bin
! 2 2
So the binary energy decreases by the same magnitude AFEy;,, = —AF.,,. Taking into account
that 0 < vy, we derive
m GmM
AEy, = ——v2, = ——.
’ 2 bR

Average binary system energy loss rate equals

(1) dE _AE _ aG*M?p
dt — At 20
Taking the time derivative of (3), we have
5) dE _d ( GM*\ GM? da
dt — dt da ) 4a? dt’

From (4) and (5) the orbit radius variation rate can be estimated as

da 271G pa?
©) do_ 20l

g




4

B5. Equation (6) can be easily integrated
da  27Gp

7 — = dt.
(7) = =
To reduce the radius twice it takes time
o
Tsg = =73x107'G
58 2rGpay 8 Y

C. EMISSION OF GRAVITATIONAL WAVES

C1. Using that w = Din_ s and formulas from the problem text one can obtain:
a a
s) dE 1024 x 4 GM*, 64 G*M°
_— = — X = — s —
dt 5 ca? 5  Pad

Combining (5) and (8) we get the desirable result:

da 256 G3M3
dt 5 a3

(9)

C2. Integrating the equation (9) one can obtain:

(10) 3 g, 256 G3M3 " . ay—r, 256 GPM?® '
And taking into account ay > r, we derive the final result for Ty
5  aic®

11 Ty — —— « — 2

(1) W 1024 GRMP

C3. From the previous equation and Ty = ty:

1024 G3M3t
(12) ap = \/ = = 0.008 pc

D. FuLL EVOLUTION

D1. The galaxy is spherically symmetric, so mass enclosed within a sphere of radius r equals

0'27"

(13) m(r) = /0?“ dra?p(z) do = el

Thus the free fall acceleration of the body equals in the gravitational field of stars is

Gm(r) o?

(14 o) =250 =T
Therefore the body velocity is determined by relation
v? o?
. =g= PR

which means

(15) V=0



So the velocity is constant.

D2. The energy of SBH in this gravitational field is

So the kinetic energy is constant and
db dU  dUda
dt  dt  dadt
From the definition of potential energy we have

dU Mo?
—_— M pr—
o g(a) -
Using the result of A3 we have
dE M?clog A
— = —Fpsv = —47TG2M2—p(a) log A = _GMolog A :
dt o a?

Combining this equations we get the answer

da  GMlogA

dt ~ ao

D3. To estimate one can assume that SBHs form a binary when the mass of stars inside the
sphere of radius a equals to M:

(16)

SO

Alternative variant: the force from another SBH is equal to force from all stars:

Gm(a) GM
a2 4a2
so the answer is
GM
a; = 107 = 2.7pc

D4. Integrating the equation (16) we have
at — a? _ GMlogAT
2 o !

and using that a; < ay we have

_ ato
2G'M log A

D5. Total energy losses are caused by gravitational slingshot and gravitational waves emission,

so combining equations (4) and (8):

dE  nG*M?p, 64 G'MP

dt 20 5 Bad

T, = 0.121 Gy.

(17)




6

where

p1 = plar) = p(10.8pc) = 6.3 x 10°M, /pc?, alternative: p; = p(2.7pc) = 1.0 x 10°M,/pc?

TG2M>p1 64G4 M5
20 5¢5ab

128 G2M3s 512 G*M3a?
57 dpr B do

Energy losses due to GW dominates when i.e. a < ay where

5 _
a/2_

Numerical answer is |as = 0.018 pc‘ (alternative: ay = 0.010 pc).

D6. For rough approximation it can be considered that at the slingshot stage (a > as) energy

losses are caused only by slingshot, so 75 is calculated analogiously to B5: Z—g = —%ﬂdt and
o
Ty~ — =0.063G T, ~ 0.0068 G
2o Gpras y (15 y)

And at the GW emission stage (a < ay) energy losses are caused only by GW emission, so T}
is calculated directly from C2:

5 asc® 1 o

i — = = — =0.016 G T5 ~ 0.0017G
571024 G3M3 T 8¢ Gpras Y (T )
D7. Total time of SBH binary evolution from the moment of galaxies merging to SBH merging
equals

Tey =T+ 15 +Tew = 0.12 + 0.06 + 0.02 Gy = 0.20 Gy (T., = 0.13Gy)




Theory, Task Q2

Marker Student,
TOTAL
N Statement Points Marker Consensus
Idea that a.=p, / p, 0.1
p, =] Fdt 0.1
GMm 3
F,= 2 cos” @ 0.2
Al
d bd GM
dt =% or ar =—(f ,or p, =—mﬂ/52cos(pd(p , Or
v vcos”™ @ by 0.1
alternative correct equation
2GM  2b
Answer O = = =L ork=2 0.25
bv b (0.75)
Api
Ap, = p(l—cos) or Ap, = 12— 0.1
A2 2142 2 .
2G°M 2b
Answer Ap. =$Tm=—21p 0.15
b*v b (0.25)
AN =27mbAbvn At , up to factor 10 0.2
A3
Answer [, = FATG*M*? %logA , up to factor 10 0.2
1 0.4)
logA=74...7.6
A4 0.2
0.2)
A 1.6
GM
Vbin = Al "5 0.1
4a
B1 2
Answer £ =— , with correct sign
P g 0.15
*Incorrect numerical factor doesn’t influence following scores. (0.25)
bo=r,v, 0.1
2 2
c GM
S Y 2% 0.1
B2 22 T,
2GM
Answer b=r, [1+— 2 0.3
G (0.5)
(A =7 or’n 0.2
r=>b,.. 0.3
B3 A4GM 2
b =a /1+ -— =—~GMa 0.3
o a o
mo . . .
Answer Af = ———— , up to numeric coefficient 0.2
4nGM pa 1.0
dE  ©G*M’*
“@a__up , up to numeric coefficient 0.15
dt 26
. da  2nGpa’®
T
da _ _=mopa , up to numeric coefficient 0.1
dt (0.25)
o
T, =——  , up to numeric coefficient 0.7
Bs | O 21Gpa,
Ty = 7.3x107* Gy , up to factor 10 0.3 (1.0)
B 3.0




da__256 G'M’

C1 -—5——» with correct sign 0.2
dt 5 ca 0.2)
4 4 3.3
a, —r, 256 G'M
Integral is calculated ———%- = ———Tow 0.3
5 c
2 45
Answer T, =i~% , up to factor 10 0.4
1024 G°M-
0.7 0.7)
c3 | W= 0.098pc , up to factor 10 041
0.1)
C 1.0
2
c'r
=" 0.1
p1 | ™) G
V=0 0.15 (0.25)
dE dU alt. solution: using angular
E = E momentum equation 0.3
U mva = Fa
d_ = g(a)M 0.2
D2 d;:l
E =—I'ppV 0.15
da  GMlogA 01
dt ac ' (0.75)
m(a)=M 0.1
D3 | g =—A24 , up to factor 10 0.1
(¢
a, =1...100pc 0.1 0.3)
2 2
Gy =Gy _ GMlogAT1 0.4
2 9]
D4 ; O
1 =a0— , up to factor 10 0.25
2GM log A
T, =0.121Gy , up to factor 10 0.1 (0.75)
ESS = EGW 0.1
12 GM’a}
D5 | q =5—~5—al , up to factor 10 0.1
5 c’C
a, =0.001...0.1pc 0.1 0.3)
Idea of neglecting EGW in slingshot stage and neglecting E gs in 0.25
gravitational waves stage
(&)
I ~———— 0.2
D6 21Gp,a,
T,=107..10"' Gy 0.65
T, =107...10"' Gy 0.65 (1.75)
T,=T+T,+ Ty, 0.1
D7 | Scored if D6 score >0
T,, =0.02...2.00Gy 0.2 03)
D 4.4

TOTAL
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Space Debris
APhO 2017

Introduction

In more than half a century of space operations quite a large number of man-made objects have
been amassed near Earth. The objects that do not serve any particular purpose are called space
debris. The most attention is usually paid to the larger debris objects, i.e. defunct satellites
and spent rocket upper stages, which stay in orbit after delivering their payload. Collisions
of such objects with each other may result in thousands of fragments endangering all current
space missions.

There is a well-known hypothetical scenario, according to which certain collisions may cause a
cascade where each subsequent collision generates more space debris that increase the likelihood
of new collisions. Such a chain reaction, resulting in the loss of all near-Earth satellites and
making impossible further space programs, is called the Kessler syndrome.

To prevent such undesirable outcome special missions are planned to remove large debris ob-
ject from their present orbits either by tugging them to the Earth’s atmosphere or to graveyard
orbits. To this end a specially designed spacecraft — a space tug — must capture a debris object.
However, before capturing an uncontrolled object it is important to understand its rotational
dynamics.

We suggest you to take part in planning of such a mission and find out how the rotational
dynamics of a debris object changes in time under the influence of different factors.

Rocket Stage Schematic

The debris object to be considered is a “Kerbodyne 42" rocket upper stage, whose schematic
is shown in Fig. 1. The circle line in Fig. 1 marks the outline of a spherical fuel tank.

y

A

\/ /f\\/ i )

A 4

Figure 1: “Kerbodyne 42” upper stage

We introduce a body-fixed reference frame C'xy with the origin in the center of mass C', x
being the symmetry axis of the stage, and y perpendicular to x. The inertia moments with
respect to x and y axes are J, and J, (J, < Jy).

A. Rotation

Consider an arbitrary initial rotation of the stage with angular momentum L (Fig. 2), where
0 is the angle between the symmetry axis and the direction of angular momentum. Fuel tank



at this point is assumed to be empty. No forces or torques act upon the stage.

L

\-

Figure 2: Rocket stage rotation

1.(0.2 pts) Find the projections w, and w, of angular velocity & on z and y, given that
L = Jyw,ez + Jyw,é, for material symmetry axes  and y with unit vectors €, and €,. Provide
the answer in terms of L = |L|, angle 6, and inertia moments J,, .J,,.

L cosé
Iy = , Al
= =2 (A1)
0.1 point
Lsin@
= . A2
wy Jy ( )
0.1 point

2.(0.4 pts) Find the rotational energy E, associated with rotation w, and E, associated
with rotation w,. Find total rotational kinetic energy £ = E, + E, of the stage as a function
of the angular momentum L and cos 6.

Jpw?
B, ==, (A3)
0.1 points
J 2
B, =22, (A4)
0.1 points




Jw?: Jw? L2 22 1271 1
E(f)=E,+E,="=+2Y= x+—y:—+—<———>60829- (A5)
v % 2 20, 20, 2J, 2 \J. J,

0.2 points

In the following questions of Section A consider the stage’s free rotation with the initial
angular momentum L and 6(0) = 6.

3. (1.2 pts) Let us denote by zy the initial orientation of the stage’s symmetry axis Cx
with respect to the inertial reference frame. Using conservation laws find the maximum angle
¥, which the stages symmetry axis C'x makes with xg during the stage’s free rotation.

Note: Since there are no external torques acting upon the stage, the angular momentum
vector remains constant.

Both kinetic energy and angular momentum are conserved, and cos?# can be obtained
from equation Ab5.

Consequently, the set of values that 6 can take is discrete (one value in each quadrant for
every value of cos®#), and in the process of continuous motion # cannot change its initial
value. Therefore the stage’s axis of symmetry moves around L making a conic surface
with aperture 26,. Consequently

W = 26,. (A6)

1.2 points for the correct answer for 1.

If the correct answer is not provided 1.0 point is given for the proof that 6(t) = 6, and
does not change in time.

If this is not done:

e (.2 points for the formula expressing the angular momentum conservation,
e (.2 points for the formula expressing the energy conservation,

e (.2 points for the formula expressing ¢ through any given constant parameters of
the problem




Figure 3:

Let us now introduce the reference frame Czyy,2; with y; along the constant angular mo-
mentum vector L (Fig. 3). This reference frame rotates about y; in such a way, that the stage’s
symmetry axis always belongs to the C'z1y; plane.

4. (2.0 pts) Given L, 6(0) = 6, and inertia moments J,, J,, find the angular velocity €(t)
of the reference frame Czyy; about y; and direction (i.e. angle ~,(t) that &s(t) makes with
the symmetry axis Cz) and absolute value of angular velocity of the stage dy(t) relative to the
reference frame C'rqy; as functions of time.

Note: angular velocity vectors are additive & = &, + &, = Q-+ &

The symmetry axis is at rest with respect to the rotating reference frame, because 0(t) =
0y and the symmetry axis always belongs to the C'z1y; plane. Hence, s must be collinear
to the symmetry axis at all times. Thus

7s(t) = 0.

0.5 points

Projecting the sum O + @, onto Cz and Cy yields for any t:

Lcos6
ws—i-Qcosﬁzwz:%, (AT)
I
Qsinf = w, = 81n9‘ (A8)
Jy

0.25 points for each of the equations A7 and A8




Whence

L
Q=—. A9
- (A9
Thus €2 does not depend on time.
1.0 points
Taking into account that 0(t) = 6o:
1 1
Ws = (J_x — Ty) L cos 6y. (A10)

And wy also does not depend on time.

0.5 points

NB:

1.0 points is given for the correct answer for €.

For w, 0.5 points is given for the direction of Wi (along Cz)
0.5 points is given for A10

Alternatively:
0.25 points is given for any of the A7, A8 equations

B. Transient Process

Most of the propellant is used during the ascent, however, after the payload has been separated
from the stage, there still remains some fuel in its tank. Mass m of residual fuel is negligible in
comparison to the stage’s mass M. Sloshing of the liquid fuel and viscous friction forces in the
fuel tank result in energy losses, and after a transient process of irregular dynamics the energy
reaches its minimum.

1.(0.6 pts) Find the value 6, of angle # after the transient process, for arbitrary initial values
of L and #(0) =0, € (0,7/2) .

Interaction of the residual fuel with the fuel tank walls can be considered an internal
force. Hence, as before, no external forces or torques act upon the system, and the
angular momentum is conserved.
For the given initial value of # and knowing that J, < J,, it is easily shown from A5 that
E(cos 0) reaches its minimum for 6 = /2.
Thus .

0y = o (B1)

0.6 points




2.(0.6 pts) Calculate the value wy of angular velocity w after the transient process, given
that initial angular velocity w(0) = wy = 1 rad/s makes an angle of v(0) = 7, = 30° with the
stage’s symmetry axis. The moments of inertia are J, = 4200 kg - m? and J, = 15 000 kg - m?.

B1 implies that after the transient process the stage rotates about the axis perpendicular
to its symmetry axis.

0.2 points

Final angular velocity value ws can be obtained from the angular momentum conservation
law:

I \/Jg cos? v, + J7 sin? 7y -
Wy = Ty = Jy Wi ( )

0.2 points

wo &2 0.56 rad/s. (B3)

0.2 points

C. Magnetic Field

Another important factor in rotational dynamics of a debris rocket stage, which is orbiting
the Earth, is its interaction with the Earth’s magnetic field. Let us first consider an auxiliary
problem.

Torque due to Eddy Currents

Let us place a thin-walled nonmagnetic spherical shell with wall thickness D and radius R in

a uniform magnetic field E, which slowly changes so that its derivative B is a constant vector
making angle a with the direction of B (Fig. 4). Electrical resistivity of the shell’s material is

p.



B
%
y

Figure 4: Spherical shell in magnetic field

1. (1.0 pts) Find the induced magnetic moment i of the shell, neglecting its self-inductance.
Provide the answer for ji in the form of projections on xyz (see Fig. 4).

Let us cut the sphere into ring slices so that B is perpendicular to their planes and
introduce angle ¢ as shown in Fig. 5.

-
X&

Figure 5:

According to Faraday’s law the absolute value of eddy current EMF, induced in such a
slice by the varying magnetic field is

£ = =SB =nR?sin’pB (C1)

0.2 points




The ring slice resistance is

2mpR sin ¢
dr = ————— 2
"~ " DRy (€2)
0.2 points
Current in the ring slice
1 .
dl =&/dr = Q—DRZB sin pdp (C3)
p
0.1 points
And, finally, magnetic moment:
. 1 .
dy = SdI = = DR*Bsin® pdp = — Bd.J, (C4)
2p 4p

where d.J is the moment of inertia for a slice ring of unit density with respect to the
central axis, which is parallel to y.

0.2 points

Thus | ;
. v .
= _—_JB=="DR'B C5

where J is the moment of inertia of the sphere with respect to the axis, passing through
its center. Taking into account the direction:

pz = 0, (C6)
21 .
= —__DR'B
=20 (C8)

0.1 points for each ji component

2. (0.3 pts) Find the torque M acting on the spherical shell. Provide the answer for M in
the form of projections on zyz (see Fig. 4).



The torque is given by M = [, ﬁ] It is directed along the z axis and equals

2 .
M, = pBsina = 3—7TDR4BB sin a. (C9)
p

0.1 points for each M component

NB: Alternatively, if the task of the previous assignment (find ) is not completed, but
the answer for M is, nevertheless, provided, the points for intermediate steps from the
previous assignment (except 0.3 points for /i components) are redistributed for the actions

to find M.

Attitude Motion Evolution in the Earth’s Magnetic Field

Let us find out how the rotation changes for a rocket stage, which moves in a circular polar
orbit with orbital period T" = 100 min (Fig. 6). It transpires that the characteristic times of
dynamics due to interaction with the geomagnetic field are much greater than the duration of
the transient process. We will now study what happens to the rocket stage after the transient
process has completed. To start our analysis consider the stage rotating with angular velocity
wy about the axis perpendicular to the orbital plane.

Figure 6: The orbit

1.(0.4 pts) The Earth’s magnetic field Bp can be modeled as the magnetic field of a point
dipole in the Earth’s center. Its dipole moment jig is directed opposite to Y axis. The absolute
value of the Earth’s magnetic field B at the point where the orbit crosses the equatorial plane



X7 is By = 20 uT. Find EE(U) at a current position of the stage in the orbit defined by
the angle u as shown in Fig. 6. The positive direction of u is along with the orbital motion.
Provide the answer in the form of the projections of Bg(u) on XY Z axes.

Note: Magnetic field of a dipole at point 7 is given by

Gt (3@ )T [
4 rd r3 )

Note: Tt may facilitate subsequent calculations if projections of B £(u) are given as functions
of 2u instead of wu.

Let Ro be the orbit radius. The dipole field formula at point 7= (Ro cosu, Ro sinu, 0)
and i = (0, —fig, 0) yield

3 [olE .
BX = —im S1n 2U, (C].O)
: HolLE
By = (1 — 3sin’u ) (C11)
( ) 4T RY)
B; =0. (C12)

0.05 for each B component, if no final answer (see below) is obtained.

At point, where the orbit passes through the equatorial plane (u = 0) the magnetic field
is

Bx =0, (C13)
HolE
By = Cl4
Y 4T RS’ (C14)
Bz =0. (C15)
Thus BO = %.
0.1 points for By
Finally, the Earth’s magnetic field is:
3. .
Bx(u) = —§B0 sin 2u, (C16)
1
By (u) = 5 (3cos(2u) — 1) By, (C17)
Bz(u) = 0. (C18)

0.1 points for each component of B

The “Kerbodyne 42” rocket upper stage is mostly made of wood, and the only conductive

10



material is used for its cryogenic fuel tank. We, therefore, consider the stage’s interaction with
the geomagnetic field as that of the spherical shell with wall thickness D = 2 mm, radius
R = 4 m and resistivity p = 2.7-107% Q- m.

2.(1.3 pts) Find the torque M (u) acting on the stage, as it rotates with angular velocity w
collinear to Z. Provide the answer for M (u) in the form of projections on XY Z.

7~

Using C9 requires us to find the magnetic field derivative in the body frame.
Consider a body frame xyz, whose axis z is collinear to Z and plane xy is rotated by
angle B with respect to XY. Magnetic field in this reference frame is

B, = Bx cos 8 + By sin 3, (C19)
B, = —Bxsin 8 + By cos 3, (C20)
B, =B, =0. (C21)

0.1 point for any idea that provides understanding that there are two processes in
which B changes with respect to body-frames — orbital motion and rotational dynamics.
The same 0.1 point is given for any approach overcoming this issue.

The derivative of magnetic field is therefore

B, =Bx cos 8+ By sin 8 + (—Bxsin 8 + By COSB)B =

= (B’ (u) cos B + Bi(u)sin 8) @ + (—Bhx sin 8 + By cos 8) 3,
B’y :—BXSinﬁ—FByCOSﬁ—l—(—BxCOSB—BySiHﬁ)B:

— (=B (u) sin B 4 B} (u) cos 8) i + (—Bx cos f — By sin ) j,
B, =0.

0.1 points for each component of E related to the orbital motion
0.1 points for each component of B related to the rotational dynamics

Full points are also given if B is found in the vector form

Substituting @ = 27 /7T and A = w and using the expressions C9, C16, and C17, we obtain
that the torque is directed along z and equals
2

M, = —DB}R'
3p " <

3

T (3 — cos2u) — g (5 — 3 cos QU)) = M. (C22)

0.1 points for M, and M,,
0.5 points for M, (for complicated calculations)

J

3. (1.0)Find the absolute value of angular velocity w(t) as a function of time, given that the
change in the stage’s angular velocity over one orbital period is negligibly small.

11



We will average My over u and use the obtained expression instead of M. This helps
getting rid of the members, containing cos 2u:

2T 97  bdw
M;)=—DB’R* = — = . 2
iz) = o5 (- 5) (23

0.25 points for the explicit idea to average My over u
0.25 for the correct expression for (M)

As the torque is directed along with the rotation axis, it does not change the axis’ direc-
tion, which means that the obtained formula always holds for the rocket stage rotational
dynamics. As we consider the transient process to have completed. It follows from Bl
that the rocket stage rotates about the axis, which is perpendicular to its symmetry axis.
Thus the angular momentum of the stage is

LZ = Jyw. <024)

0.25 for the correct equation with the correct inertia moment

As Ly = My is the governing equation for the angular velocity:

2T Or bw
D= DBZR | — — — . C25
N 3Jyp ’ ( T 2 > (C25)
Its solution is: 8 18
78 78
W(t) = 5_T + (Wg - 5—T> 6_&, <C26)

where § = %DB%R‘*.

0.25 points for the correct solution of the differential equation for w
Alternatively 0.15 for the exponential dependence of w from t.

4. (1.0) Find the ratio of the orbital period T" and the rocket stage’s rotation period T} in
the steady-state regime, which sets in after a long time.

From C26 it follows that the angular velocity asymptotically tends to 187 /27. Thus the
ratio of the two periods
T  Tw(oo)
T,(0) 2w

=9/5=18. (C27)

1.0 for the correct result.
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Theory Marking Sheet Q3: Space Debris

APhO 2017, Yakutsk, Russia

Marker Student
TOTAL
Mark C
Subq. Ne Statement Pts. arker onsensus
Stat. Subqg. | Stat. Subq.
1 | we= LC]"SB 0.1
Al (0.2) =
) 0. = Lsin @ 01
y Iy
]xwzzc
3 |E,= . 0.1
4 Ey = ]_y;‘)y 0.1
A2 (0.4)
2 2f1 1 2
5 |E(@®)=—+—=(———])cos*H 0.2
2]y 2 \Ux Iy
6 if no (5) 0.1*
Correct energy not in terms of L, /, cos 8 ’
3 ifno (7) 1.0%
6 = const
A3(12) | o |¥Fno(78) 0.2*
L = const
10 |Fno(78) 0.2*
E = const
ifno (7,8)
11 . . 0.2*
Correct formula for 8 in terms of given parameters
L
12 [ Q) =— 1.0
Ty
13 |y, () =0 0.5
14 w(t)-(i—i>Lcost9 0.5
A4 (2.0) S VAR 0 '
ifno (12,14)
%
15 wg + 0cosf = Lcos@ 0.25
ifno (12,14)
: *
16 Qsing = Lsin@ 0.25
Jy
17 | 6, = g 0.6
B1(0.6) o (17)
if no
1 3%
8 cosf, = 0 0.3




Mark C
Subq. Ne Statement Pts. arker Onsensus
Stat. Subg. | Stat. Subg.
19 |wy, = grad/s ~ 0.556rad/s 0.6
if no (19)
B2 (0.6 20 0.4*
06) w5 =%\/]§ cos?y; +J5 sin? y,
Yy
if no (19,20) N
21 rotation at t = oo about y axis 0.2
22 | u, =0 0.1
_ 2" pap
23 | uy = 3 DR*B 0.8
24 |p,=0 0.1
if no (23) .
2> | qu= %DR‘*B sin g dg o
if no (23,25)
26 | Expression for elementary Ampere’s torque which 0.7*
explicitly corresponds to (34)
C1(1.0) if no (23,25,26)
27 | Expression for elementary Ampere’s force which 0.6*
explicitly corresponds to (34)
if no (23,25-27)
. *
28 | a1 = --DR?E sin ¢ dop S
if no (23,25-28)
29 __ 2mpRsing 0.2*
r(de) == rae
30 if no (23:25—28) . 0.2
Faraday's law (€ = —®)
31 | if no(22-30) and 34 is correct 0.7*
32 | M,=0 0.1
C2(03) | 33 [M, =0 0.1
_ 27 4 c .
34 | M, = ;DR BB sina 0.1




Marker Consensus
Subg. Ne Statement Pts. Stat. Subq, Stat. Suba,
35 | Bgx(w) = —2Bysin2u 0.15
36 | Bgy(uw) = %(3 cos2u — 1)B, 0.15
C3(0.4) if no (35) or (36)
38 B. — HoME 1 0.1*
0™ 47 RS
0
if no (35, 38)
= _ _Bkots 1 0.05*
Bepy(u) = ar @3S 2u
if no (36, 38)
*
8T R}
41 MX =0 0.1
42 |My=0 0.1
M, = 2—ﬂDBgR4 (3—n (3 —cos2u) —
43 30 ! " 1.1
By (5—3cos Zu))
if no (43
44 fno (43) 2 0.6*
vector form for B explicitly equivalent to (45-47)
if no (43,44)
45 . 0.2*
B, = (48) + (51)
if no (43,44) .
1, = 49) + (52) 0.2
47 lfno (43,44) 0.2*
B,=0
if no (43,44,45)
48 . . 5 7 . 2m 0.1*
C4(1.3) orbital part of B,: (Bx(u) cos 8 + By (u) sin ) -
if no (43,44,46)
49 . . 0 . ' 2 | 0.1*
orbital part of B,: (—Bx(u) sin § + By (u) cos ) -
if no (43,44,47)
. 0.1*
>0 orbital part of B, = 0
if no (43,44,45)
51 | rotational part of B,: (—By(u) sin 8 + 0.1*
By (1) cos Bw
if no (43,44,46)
52 | rotational part of By: (—Bx(u) cos  — 0.1*
By () sin B)w
53 if no (43,44,47) . 0.1%
rotational part of B, = 0
if no (43
54 { (_, ) X 0.1*
B = Borpital + Brotationai
55




_ lsm _ 187 -6t 5 _ ST ppapa
56 | w(t) = o (w2 o ) e °t 6= 3yp DB§R 1.0
if no (56)
57 _ 2T phopa (9T 5w 0.5*
<MZ>_3pDBOR (T 2)
if no (56, 57)
58 0.25*
(M;) ~(A—Bw),A+0,B>0
if no (56-58) *
¢ (1.0) >3 explicit attempt to average Mj is present 0.15
6o | Fro(56) 0.25*
LZ =_]y(l)
if no (56)
*
61 w(t) = w,e %, § = 5—ﬂDBgR4 0.15
3Jyp
if no (56,61) "
62 w() = wye ™, k>0 0.1
c6(1.0) | 63 | 1.8 1.0

Notes:
* mark the lines that are applied only if the points for the answer sheet questions are not given
Error propagation rules:

Rule 1. Errors are traced back to the origin and are penalized only in those statements, where they occur
Rule 2. Rule 1 does not apply whenever there is a clear physical explanation, why the obtained erroneous
results cannot be true (e.g., angular velocity tends to infinity in C5, or u~p in C1)

Rule 3. If rule 1 does not apply, all points are halved for the statements influenced by the error and following
the question, where the physical explanation can be observed.

Special rule for C6. Points are given only for the exact result (no remorse).



