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Marking Scheme – T1 

(Full Mark = 20) 

Part Model Answer Marks 

A1 

∆𝑦 = 𝑦A(0,1) − 𝑦A(0,0) 

The potential energy for N = 2 is: 

𝐸p(𝛼) = 𝑀𝑔 ∙ 𝑦c∙m.(0,0) × 4 + 𝑀𝑔 ∙ ∆𝑦 × 2  (0.5 points)         - Eq. (1)   

where 

𝑦c∙m.(0,0) = −
√3𝑙

3
sin (

𝜋

6
+ 𝛼)  (0.5 points)              - Eq. (2)   

is the y coordinate of center of mass of triangle (0,0), and 

= −𝑙 [sin (
𝜋

3
+ 𝛼) + sin (

𝜋

3
− 𝛼)]   

= −√3𝑙 cos 𝛼  (0.5 points)                                          - Eq. (3)   

is the translational difference of two neighbouring triangles in y-direction. Solving Eqs. 

(1), (2) and (3), we obtain 

𝐸p(𝛼) = −
2

3
𝑀𝑔𝑙(4√3 cos 𝛼 + 3 sin 𝛼)  (0.5 points)            - Eq. (4)   

2 

A2 

 

At equilibrium, the potential energy reaches a minimum, which gives: 

𝑑𝐸p(𝛼)

𝑑𝛼
|

𝛼=𝛼E

= 0  (0.5 points)                           - Eq. (5)   

√3 sin 𝛼E + 3 cos 𝛼E = 0                                               - Eq. (6) 

1 
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or 

𝛼E = tan−1 √3

4
   (0.5 point)                                   - Eq. (7)   

A3 

𝑥c.m.(𝑚,𝑛) = 𝑚(2𝑙 cos 𝛼) + 𝑛(2𝑙 cos 𝛼) cos
𝜋

3
+

𝑙

√3
cos (𝛼 +

𝜋

6
), 

If the total energy of the oscillation has the following form 

 

𝐸(∆𝛼, ∆𝛼̇) = 𝐸p + 𝐸k =
1

2
𝐾(∆𝛼)2 +

1

2
𝐼(∆𝛼̇)2 , (0.5 points)           - Eq. (8)   

where Ep and Ek are the potential and kinetic energies of the system respectively, then the 

motion is a simple harmonic oscillation with angular frequency 𝜔 = √𝐾/𝐼. Here  =

 − 𝛼E. Under a small perturbation, the potential energy change is: 

∆𝐸p ≈
1

2

𝑑2𝐸p

d𝛼2
|

𝛼=𝛼E

(∆𝛼)2 

= (
1

2
) (

2

3
𝑀𝑔𝑙) (4√3 cos 𝛼E + 3 sin 𝛼E)(∆𝛼)2 

=
√57

3
𝑀𝑔𝑙(∆𝛼)2 (1 point)                                                - Eq. (9) 

 

The total kinetic energy of the system includes the translational kinetic energy of every 

plate and the rotational kinetic energy of every plate relative to its center of mass 

 

𝐸k = ∑ 𝐸k
trans + ∑ 𝐸k

rot                                                      - Eq. (10) 

The rotational kinetic energy is 

∑ 𝐸k
rot = 4 ×

1

2

𝑀𝑙2

12
(∆𝛼̇)2 =

1

6
𝑀𝑙2(∆𝛼̇)2 (0.5 points)             - Eq. (11)   

𝐸k
transcan be obtained by considering the motion of the center of mass of each triangle and 

setting N = 2.  

𝑦c.m.(𝑚,𝑛) = −𝑛(2𝑙 cos 𝛼) sin
𝜋

3
−

𝑙

√3
sin (𝛼 +

𝜋

6
).        (0.5 point) 

Differentiating and substituting 

                  sin 𝛼 =
√3

√19
, cos 𝛼 =

4

√19
, sin (𝛼 +

𝜋

6
) =

7

2√19
, cos (𝛼 +

𝜋

6
) =

3√3

2√19
, 

5 
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𝑥̇c.m.(𝑚,𝑛) = − (2𝑚 + 𝑛 +
7

6
)

3

√57
𝑙∆𝛼̇, 𝑦̇c.m.(𝑚,𝑛) =

3(2𝑛 − 1)

2√19
𝑙∆𝛼̇. 

𝐸c.m.,k
trans =

𝑀

2
[𝑣c.m.(0,0)

2 + 𝑣c.m.(0,1)
2 + 𝑣c.m.(1,0)

2 + 𝑣c.m.(1,1)
2 ] =

164

57
𝑀𝑙2(∆𝛼̇)2. 

𝑣r.c.(0,0) = 𝑣r.c.(1,1) =
𝑑(√3𝑙 cos 𝛼)

𝑑𝛼
|

𝛼=𝛼E

∆𝛼̇ 

𝑣c.m.(𝑚,𝑛)
2 = 𝑥̇c.m.(𝑚,𝑛)

2 + 𝑦̇c.m.(𝑚,𝑛)
2 =

(12𝑚+6𝑛+7)2+27

228
𝑙2(∆𝛼̇)2,        (1 point) 

 

𝐸k
trans = 𝐸c.m.,k

trans + 𝐸k
rot =

347

114
𝑀𝑙2(∆𝛼̇)2.      (1 point) 

 

Alternatively, another way to get 𝐸𝑘
trans is based on the center of mass of the whole system: 

𝐸k = ∑ 𝐸c.m.,k
trans + ∑ 𝐸r.c.,k

rot   (0.5 points)                            - Eq. (12)    

where 

𝐸r.c.,k
trans =

𝑀

2
[𝑣r.c.(0,0)

2 + 𝑣r.c.(1,0)
2 + 𝑣r.c.(0,1)

2 + 𝑣r.c.(1,1)
2 ]           - Eq. (13) 

is the translational kinetic energy relative to the center of mass of the system and 

𝐸c.m.,k
trans =

4𝑀

2
𝑣c.m.

2                                                                     - Eq. (14) 

is the translational kinetic energy of the center of mass of the system.  

The center of mass of each of the 2×2 = 4 triangles always form diamond shape with 

lateral length 2l cos α. The center of mass of the whole system is at the center of the 

diamond shape. Hence  

𝑣r.c.(1,0) = 𝑣r.c.(0,1) =
𝑑(𝑙 cos 𝛼)

𝑑𝛼
|

𝛼=𝛼E

∆𝛼̇                                   - Eq. (15) 

Substituting Eqs. (14) and (15) into Eq. (13), we obtain 

 

𝐸r.c.,k
trans = 4 sin 𝛼E

2 𝑀𝑙2(∆𝛼)̇2                                         - Eq. (16) 

For 𝐸c.m.,k
trans , 
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𝑥c.m. = 𝑥c.m.(0,0) +
1

2
(𝑥B(0,0) + 𝑥A(1,0)) 

𝑦c.m. = 𝑦c.m.(0,0) +
1

2
∆𝑦 

𝐸k = 𝐸k
rot + 𝐸r.c.,k

trans + 𝐸c.m.,k
trans  

= (
5

6
+ 14 sin2 𝛼𝐸) 𝑀𝑙2(∆𝛼)̇2 

𝑣c.m. = √(
d𝑥c.m.

d𝛼
)

2

+ (
d𝑦c.m.

d𝛼
)

2

|
𝛼=𝛼E

∆𝛼̇                                     - Eq. (17) 

is the velocity of the center-of-mass of the four triangular plates, with 

=
√3𝑙

3
cos (

𝜋

6
+ 𝛼) +

3

2
𝑙 cos 𝛼                                            - Eq. (18) 

= −
√3𝑙

3
sin (

𝜋

6
+ 𝛼) −

√3

2
𝑙 cos 𝛼                                        - Eq. (19) 

 

Substituting Eqs. (17), (18) and (19) and into Eq. (14), we obtain 

𝐸c.m.,k
trans = (

2

3
+ 10 sin2 𝛼𝐸) 𝑀𝑙2(∆𝛼)̇2 (0.5 points)                    - Eq. (20)   

 

Combining Eqs. (12), (16) and (20), we obtain 

 

=
347

114
𝑀𝑙2(∆𝛼)̇2     (1.5 points)                            - Eq. (21)    

 

According to Eqs. (8), (9) and (21), 

 

𝑓 =
1

2𝜋
√

√57

3
𝑀𝑔𝑙

347

114
𝑀𝑙2

=
1

2𝜋
√38√57

347

𝑔

𝑙
  (0.5 points)               - Eq. (22)    

[Note 1: 0.5 point should be deducted if there are numerical mistakes, but all steps are 

correct. 

Note 2: A rough estimate of   𝑓~√
𝑔

𝑙
 can get 0.5 points out of 5 points.] 



  

Page 5 of 15 

Marking Scheme – T1 

B1 

𝑦A(𝑚,𝑛) = −𝑛𝑙 sin (
𝜋

3
− 𝛼) − 𝑛𝑙 sin (

𝜋

3
+ 𝛼) = −√3𝑛𝑙 cos 𝛼 

𝑦B(𝑚,𝑛) = 𝑦A(𝑚,𝑛) − 𝑙 sin 𝛼 = −√3𝑛𝑙 cos 𝛼 − 𝑙 sin 𝛼 

𝐸p = ∑ 𝐸p(𝑚, 𝑛)
𝑁−1

𝑚,𝑛=0
 

∑ 1
𝑁−1

𝑚=0
= ∑ 1

𝑁−1

𝑛=0
= 𝑁 

For arbitrary N, the total potential energy 

𝐸p = ∑ 𝐸p(𝑚, 𝑛)𝑁−1
𝑚,𝑛=0                                                - Eq. (23)  

where 

𝐸p(𝑚, 𝑛) =
1

3
𝑀𝑔[𝑦A(𝑚,𝑛) + 𝑦B(𝑚,𝑛) + 𝑦C(𝑚,𝑛)]                     - Eq. (24)  

(0.5 points for Eqs. (23) and (24)) 

and 

𝑦C(𝑚,𝑛) = 𝑦A(𝑚,𝑛) − 𝑙 sin (
𝜋

3
+ 𝛼) = −√3𝑛𝑙 cos 𝛼 − 𝑙 sin (

𝜋

3
+ 𝛼)                  - Eq. (25)  

(0.5 points for all three correct coordinates) 

Thus, 

𝐸p(𝑚, 𝑛) = −
1

3
𝑀𝑔𝑙 [3√3𝑛 cos 𝛼 + sin 𝛼 + sin (

𝜋

3
+ 𝛼)]                          - Eq. (26)  

and 

= −
1

3
𝑀𝑔𝑙 ∑ [3√3𝑛 cos 𝛼 + sin 𝛼 + sin (

𝜋

3
+ 𝛼)]𝑁−1

𝑚,𝑛=0   (0.5 points)   - Eq. (27)  

 

Using the mathematical relations 

and 

∑ 𝑚𝑁−1
𝑚=0 = ∑ 𝑛𝑁−1

𝑛=0 =
𝑁(𝑁−1)

2
                               - Eq. (28), 

Eq. (27) becomes 

3 
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𝐸p = −
1

3
𝑁2𝑀𝑔𝑙 [

3√3(𝑁 − 1) cos 𝛼

2
+ sin 𝛼 + sin (

𝜋

3
+ 𝛼)] 

or       = −
1

3
𝑁2𝑀𝑔𝑙 [

√3(3𝑁−2) cos 𝛼

2
+

3

2
sin 𝛼]  (1 points)                     - Eq. (29) 

  

At equilibrium, 
d𝐸p

d𝛼
= 0, therefore 

−
3√3(𝑁−1) sin 𝛼E

′

2
+ cos 𝛼E

′ + cos (
𝜋

3
+ 𝛼E

′ ) = 0                    - Eq. (30) 

𝛼E
′ = tan−1 (

√3

3𝑁−2
)  (0.5 points)                           - Eq. (31) 

 

[Remark: Increasing α lowers each triangle relative to its vertex A, but globally raises the 

system, i.e. the bottom tube is raised higher. When 𝑵 → ∞ , the global displacement 

dominates, consequently 𝜶 → 𝟎.] 

B2 

𝐸c.m.(𝑚,𝑛) =
𝑀

2
𝑣c.m.(𝑚,𝑛)

2  

Under a small perturbation, the potential energy change, according to Eq. (29) is 

∆𝐸p ≈
1

2

𝑑2𝐸p

d𝛼2 |
𝛼=𝛼E

′
(∆𝛼)2~𝑁3  or  𝛾1 = 3  (0.5 points)           - Eq. (32)   

[Remark: There are N
2

 triangles and the y coordinate of the total center of mass is 

proportional to N, hence 𝑬𝐩~𝑵𝟑  and 𝜸𝟏 = 𝟑 . Using this argument to derive the 

correct 𝜸𝟏 can also get 0.5 points.] 

The kinetic energy of a triangle includes the translational energy of its center of mass and 

the rotational energy about its center of mass. Hence the total kinetic energy of the N
2
 

triangles is 

𝐸k = ∑ 𝐸c.m.(𝑚,𝑛) + ∑ 𝐸r.c.(𝑚,𝑛)𝑚,𝑛𝑚,𝑛                               - Eq. (33) 

where 

𝐸r.c.(𝑚,𝑛) =
1

2

𝑀𝑙2

12
(∆𝛼̇)2 =

1

24
𝑀𝑙2(∆𝛼̇)2~1                               - Eq. (34) 

and 

=
𝑀(∆𝛼̇)2

2
[(

d𝑥c.m.(𝑚,𝑛)

d𝛼
)

2

+ (
d𝑦c.m.(𝑚,𝑛)

d𝛼
)

2

]
𝛼=𝛼E

′
   (0.5 points)                 - Eq. (35) 

3 
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𝑥c.m.(𝑚,𝑛) = 𝑥A(𝑚,𝑛) +
√3𝑙

3
cos (

𝜋

6
+ 𝛼) 

= (2𝑚 + 𝑛)𝑙 cos 𝛼 +
𝑙

2
cos 𝛼 −

√3𝑙

6
sin 𝛼 

𝑦c.m.(𝑚,𝑛) = 𝑦A(𝑚,𝑛) +
√3𝑙

3
sin (

𝜋

6
+ 𝛼) 

d𝑥c.m.(𝑚,𝑛)

d𝛼
= [−(2𝑚 + 𝑛) sin 𝛼 −

1

2
sin 𝛼 −

√3

6
cos 𝛼] 𝑙 

d𝑦c.m.(𝑚,𝑛)

d𝛼
= [−√3𝑛 sin 𝛼 −

√3

6
sin 𝛼 +

1

2
cos 𝛼] 𝑙 

𝐸k = ∑ 𝐸c.m.(𝑚,𝑛) + ∑ 𝐸r.c.(𝑚,𝑛)
𝑚,𝑛𝑚,𝑛

~𝑁 × 𝑁 × 1~𝑁2 

 

Since 

and 

= √3𝑛𝑙 cos 𝛼 +
√3𝑙

6
cos 𝛼 +

𝑙

2
sin 𝛼                                         - Eq. (36)   

(0.5 points for correct x and y) 

 

 

we have 

𝐸c.m.(𝑚,𝑛) =
1

2
𝑀𝑙2(∆𝛼̇)2 [

(4𝑚2 + 4𝑛2 + 4𝑚𝑛 + 2𝑚 + 2𝑛) sin2 𝛼E
′

+
2√3

3
(𝑚 − 𝑛) sin 𝛼E

′ cos 𝛼𝐸
′ +

1

3

]       - Eq. (37)  

 

Since 𝛼E
′ ~

1

𝑁
 in Eq. (31), we have 

𝐸c.m.(𝑚,𝑛) = 𝐴 ∙ 𝑁2 ∙
1

𝑁2 + 𝐵 ∙ 𝑁 ∙
1

𝑁
+ 𝐶~1  (0.5 points)               - Eq. (38)  

According to Eqs. (33), (34) and (38), we have 

or 𝛾2 = 2 (0.5 points)                                    - Eq. (39)  
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[Remarks: 𝑬𝐤~𝑵𝟐  because there are N
2

 triangles, each contribute 𝑬r.c.(𝒎, 𝒏)~𝟏  

(relative-to-center-of-mass kinetic energy) and  𝑬c.m.(𝒎, 𝒏)~𝟏  (center-of-mass kinetic 

energy).] 

Note that 𝐸r.c.(𝑚, 𝑛)~1  is true for arbitrary α while 𝐸c.m.(𝑚, 𝑛)~1  is only true for the 

special case of 𝛼E
′ → 0 or 𝑁 → ∞.  

 

Therefore 

𝑓E
′~√

𝐸p

𝐸k
~√𝑁   

or  𝛾3 = 0.5  (0.5 points)                                - Eq. (40)    

C1 The minimum force should act on the farthest triangle (N − 1, N − 1), whose motion can be 

decomposed into the motion of the center of mass and the rotation around the center of 

mass: 𝑣⃗ = 𝑣⃗c.m. + 𝑣⃗rot. As shown in the figure, 𝑣⃗rot of vertex C makes the smallest angle 

relative to the direction of 𝑣⃗c.m. near 𝛼m ≡ 𝜋/3. Hence its displacement is the largest and 

its corresponding force is minimum, i.e. the minimum force should act on vertex C(N − 1, 

N − 1). (1 point) 

 

[Remarks: A rigorous calculation is given in Appendix 3.] 

1 
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C2 

∆𝐸p(𝛼m) =
𝑑𝐸p

𝑑𝛼
|

𝛼=𝛼m

∆𝛼 

=
1

3
𝑁2𝑀𝑔𝑙 [(

3√3𝑁

2
− √3) sin 𝛼m −

3

2
cos 𝛼m] ∆𝛼 

∆𝑥C(𝑚,𝑛) = − [(2𝑚 + 𝑛) sin 𝛼m − sin (
𝜋

3
+ 𝛼m)] 𝑙∆𝛼 

∆𝑦C(𝑚,𝑛) = − [√3𝑛 sin 𝛼m − cos (
𝜋

3
+ 𝛼m)] 𝑙∆𝛼 

𝜃𝐹min
= tan−1 [

∆𝑦C(𝑁−1,𝑁−1)

∆𝑥C(𝑁−1,𝑁−1)
] + 𝜋 

 At  𝛼 = 𝛼m ≡ 𝜋/3, a small change in α will change the potential energy by: 

=
3

4
(𝑁 − 1)𝑁2𝑀𝑔𝑙∆𝛼  (1 point)                                             - Eq. (41) 

  

The displacement of C(m,n) point is 

=
(2𝑚+𝑛+1)√3

2
𝑙∆𝛼  (0.5 points) 

=
(3𝑛+1)

2
𝑙∆𝛼  (0.5 points) 

 

For C(N-1,N-1), ∆𝑟 = √(∆𝑥)2 + (∆𝑦)2 = (3𝑁 − 2)(𝑙∆𝛼) .  (1 point) 

Hence 

𝐹min =
∆𝐸p(𝛼m)

∆𝑟max
=

3(𝑁−1)𝑁2

4(3𝑁−2)
𝑀𝑔 (1 point)                           - Eq. (42) 

   

and 

= − tan−1 √3

3
+ 𝜋 =

5𝜋

6
   (1 point)                     - Eq. (43)

  

[Remarks: This 𝜽𝑭min
 is not perpendicular to the  C(N-1,N-1)–A(0,0) direction because 

of the constraints of the tunes, e.g.  A(1,0), A(2,0), A(3,0), ⋯ , are also the holding 

points.] 

5 
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∆𝐸p ≈
1

2

𝑑2𝐸p

𝑑𝛼2
|

𝛼=𝛼𝐸
′

(∆𝛼)2 

=
1

3
𝑁2𝑀𝑔𝑙 (

3√3𝑁 − 2√3

2
cos 𝛼E

′ +
3

2
sin 𝛼E

′ )
(∆𝛼)2

2
 

𝐸c.m.(𝑚,𝑛) =
𝑀

2
𝑣c.m.(𝑚,𝑛)

2  

= (2𝑚 + 𝑛)𝑙 cos 𝛼 +
𝑙

2
cos 𝛼 −

√3𝑙

6
sin 𝛼 

𝑦c.m.(𝑚,𝑛) = 𝑦A(𝑚,𝑛) −
√3𝑙

3
sin (

𝜋

6
+ 𝛼) 

Appendix 1:  

(a) Calculation of the exact 𝐸p, 𝐸k and 𝑓E
′  in Parts (C), (D) and € for arbitrary  N 

Under a small perturbation, the potential energy change is 

 

=
√3(3𝑁−2)2+9

12
𝑁2𝑀𝑔𝑙(∆𝛼)2                                                 - Eq. (44) 

 

The kinetic energy of a triangle includes the translational energy of its center of mass and 

the rotational energy around its center of mass. Hence the total kinetic energy of the N
2
 

triangles is 

𝐸k = ∑ 𝐸c.m.(𝑚,𝑛) + ∑ 𝐸r.c.(𝑚,𝑛)𝑚,𝑛𝑚,𝑛                                        - Eq. (45) 

where 

𝐸r.c.(𝑚,𝑛) =
1

2

𝑀𝑙2

12
(∆𝛼̇)2 =

1

24
𝑀𝑙2(∆𝛼̇)2                                     - Eq. (46) 

and 

=
𝑀(∆𝛼)̇ 2

2
[(

d𝑥c.m.(𝑚,𝑛)

d𝛼
)

2

+ (
d𝑦c.m.(𝑚,𝑛)

d𝛼
)

2

]
𝛼=𝛼E

′
                     - Eq. (47) 

Since 

𝑥c.m.(𝑚,𝑛) = 𝑥A(𝑚,𝑛) +
√3𝑙

3
cos (

𝜋

6
+ 𝛼)  

and 

N/A 
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d𝑥c.m.(𝑚,𝑛)

d𝛼
= [−(2𝑚 + 𝑛) sin 𝛼 −

1

2
sin 𝛼 −

√3

6
cos 𝛼] 𝑙 

d𝑦c.m.(𝑚,𝑛)

d𝛼
= [−√3𝑛 sin 𝛼 +

√3

6
sin 𝛼 −

1

2
cos 𝛼] 𝑙 

𝐸𝑘 = ∑ 𝐸c.m.(𝑚,𝑛)
𝑚,𝑛

+ ∑ 𝐸r.c.(𝑚,𝑛)
𝑚,𝑛

 

= [
1

6
(11𝑁 − 1)(𝑁 − 1) sin2 𝛼E

′ +
5

24
] 𝑁2𝑀𝑙2(∆𝛼̇)2 

𝑓E
′ =

1

2𝜋
√

√3(3𝑁 − 2)2 + 9
12 𝑁2𝑀𝑔𝑙

[
(11𝑁 − 1)(𝑁 − 1)

2(3𝑁 − 2)2 + 6
+

5
24] 𝑁2𝑀𝑙2

 

𝑥c.m.(sys.)(𝛼) =
∑ 𝑥c.m.(𝑚,𝑛)𝑚,𝑛

𝑁2
 

= −√3𝑛𝑙 cos 𝛼 −
√3𝑙

6
cos 𝛼 −

𝑙

2
sin 𝛼                              - Eq. (48) 

Hence, 

 We have 

𝐸c.m.(𝑚,𝑛) =
1

2
𝑀𝑙2(∆𝛼̇)2 [

(4𝑚2 + 4𝑛2 + 4𝑚𝑛 + 2𝑚 + 2𝑛) sin2 𝛼E
′

+
2√3

3
(𝑚 − 𝑛) sin 𝛼E

′ cos 𝛼E
′ +

1

3

]          - Eq. (49) 

and 

= [
(11𝑁−1)(𝑁−1)

2(3𝑁−2)2+6
+

5

24
] 𝑁2𝑀𝑙2(∆𝛼̇)2                                          - Eq. (50)  

 

With Eqs. (44) and (50), we have 

=
1

2𝜋 √
2√3(3𝑁−2)2+9

[
12(11𝑁−1)(𝑁−1)

(3𝑁−2)2+3
+5]

𝑔

𝑙
                                                  - Eq. (51) 

(b) Center of mass movement of the whole system 

According to Eq. (48), we have 
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=

∑ [(2𝑚 + 𝑛)𝑙 cos 𝛼 +
𝑙
2 cos 𝛼 −

√3𝑙
6 sin 𝛼]𝑚,𝑛

𝑁2
 

= (
3𝑁 − 2

2
) 𝑙 cos 𝛼 −

√3𝑙

6
sin 𝛼 

𝑦c.m.(𝑚,𝑛)(𝛼) =
∑ 𝑦c.m.(𝑚,𝑛)𝑚,𝑛

𝑁2
 

= −

∑ [√3𝑛𝑙 cos 𝛼 +
√3𝑙

6 cos 𝛼 +
𝑙
2 sin 𝛼]𝑚,𝑛

𝑁2
 

and  

= − (
3𝑁−2

6
) √3𝑙 cos 𝛼 −

𝑙 sin 𝛼

2
                                          - Eq. (52) 

Eq. (52) is the trajectory of the center of mass for the whole system, which is not a straight 

line. 

 Appendix 2: Calculation of the moment of inertia of a triangular plate 

 

An equilateral triangle with lateral length l can be divided into four small equilateral 

triangles with lateral length l/2. For the central small triangle centered at c1, its moment of 

inertia is 

𝐼1 = 𝛽
𝑀

4
(

𝑙

2
)

2

                                                        - Eq. (53) 

For the non-central small triangle centered at𝑐2, 𝑐2
′ and 𝑐2

′′
 , 

𝐼2 = 𝐼1 +
𝑀

4
𝑑2                                                       - Eq. (54) 

where 𝑑 = √3𝑙/6 is the distance between the centers of triangles 1 and 2. The second term 

is from the parallel-axis theorem. The moment of inertia of the whole triangle is the sum of 

the moment of inertia of the four sub-triangles: 

N/A 
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𝛽𝑀𝑙2 = 4 × 𝛽
𝑀

4
(

𝑙

2
)

2

+ 3 ×
𝑀

4
𝑑2                          - Eq.(55) 

Thus 

𝛽 =
1

12
                                                             - Eq. (56) 
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𝑥A(𝑚,𝑛) = (2𝑚 + 𝑛) cos 𝛼m 𝑙 

𝑦A(𝑚,𝑛) = −√3𝑛 cos 𝛼m 𝑙 

𝑥B(𝑚,𝑛) = (2𝑚 + 𝑛 + 1) cos 𝛼m 𝑙 

𝑦B(𝑚,𝑛) = −(√3𝑛 cos 𝛼m + sin 𝛼m)𝑙 

𝑥C(𝑚,𝑛) = [(2𝑚 + 𝑛) cos 𝛼m + cos (
𝜋

3
+ 𝛼m)] 𝑙 

∆𝑥A(𝑚,𝑛) = −(2𝑚 + 𝑛) sin 𝛼m 𝑙∆𝛼 = −
(2𝑚 + 𝑛)√3

2
𝑙∆𝛼 

∆𝑦A(𝑚,𝑛) = √3𝑛 sin 𝛼m (𝑙∆𝛼) =
3𝑛

2
𝑙∆𝛼 

∆𝑥B(𝑚,𝑛) = −(2𝑚 + 𝑛 + 1) sin 𝛼m 𝑙∆𝛼 = −
(2𝑚 + 𝑛 + 1)√3

2
𝑙∆𝛼 

∆𝑦B(𝑚,𝑛) = −(−√3𝑛 sin 𝛼m + cos 𝛼m)𝑙∆𝛼 =
3𝑛 − 1

2
𝑙∆𝛼 

∆𝑥C(𝑚,𝑛) = [−(2𝑚 + 𝑛) sin 𝛼m − sin (
𝜋

3
+ 𝛼m)] 𝑙∆= −

(2𝑚 + 𝑛 + 1)√3

2
𝑙∆𝛼 

∆𝑟A(𝑚,𝑛) = √3𝑚2 + 3𝑛2 + 3𝑚𝑛(𝑙∆𝛼) 

∆𝑟B(𝑚,𝑛) = √3𝑚2 + 3𝑛2 + 3𝑚𝑛 + 3𝑚 + 1(𝑙∆𝛼) 

Appendix 3:  The minimum force corresponds to the maximum displacement of the 

exerting point of this force. 

Consider the position of vertices A, B, C of a triangle (m,n) : 

𝑦C(𝑚,𝑛) = − [√3𝑛 cos 𝛼m + sin (
𝜋

3
+ 𝛼m)] 𝑙                     - Eq. (57) 

Taking derivatives on α on the above coordinates we get 

∆𝑦C(𝑚,𝑛) = − [−√3𝑛 sin 𝛼m + cos (
𝜋

3
+ 𝛼m)] 𝑙∆𝛼 =

(3𝑛+1)

2
𝑙∆𝛼           - Eq. (58) 

 

For  ∆𝑟 = √(∆𝑥)2 + (∆𝑦)2, we have 

∆𝑟C(𝑚,𝑛) = √3𝑚2 + 3𝑛2 + 3𝑚𝑛 + 3𝑚 + 3𝑛 + 1(𝑙∆𝛼)                            - Eq. (59) 

 

N/A 
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Thus we find 

∆𝑟C(𝑚,𝑛) > ∆𝑟B(𝑚,𝑛) > ∆𝑟A(𝑚,𝑛)                                  - Eq. (60) 

Therefore, we should choose point C of the triangle (N − 1, N − 1) to obtain 

∆𝑟max = (3𝑁 − 2)𝑙∆𝛼                                           - Eq. (61) 

so that the force is minimal. 
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(Full Marks: 20) 

Part Model Answer Marks 

A The physical volume is  

𝑉p = 𝑎3(𝑡)𝑉.  (0.5 points). 

The comoving number density is a constant, thus the physical number density is  

𝑛(𝑡)

𝑛(𝑡0)
= (

𝑎(𝑡0)

𝑎(𝑡)
)

3

.  (0.5 points) 

The kinetic energy for non-relativistic particles are negligible, thus the energy density is  

𝜌m(𝑡) = 𝑚 𝑛(𝑡),  (0.5 points) 

where 𝑚 is the mass of a particle.  

Thus 

𝜌m(𝑡) =  𝜌m(𝑡0) (
𝑎(𝑡0)

𝑎(𝑡)
)

3

  (0.5 points) 

[Remarks: It is acceptable if the student just writes 𝝆𝐦 ∝ 𝟏/𝒂𝟑 and full points will be given.] 

2 

B The Einstein’s energy relation for a massless particle is  

𝐸 = 𝑝𝑐.  (0.5 points) 

From de Brogile’s relation:  

𝑝 ∝ 1/𝜆P ∝1/a(t).  (0.5 points) 

[Remarks: No point if only 𝝀𝐩 ∝ a(t) is written because already given.] 

Thus  

𝐸 ∝1/a(t).  (0.5 points) 

Physical number density is 𝑛 ∝ 1/𝑎3. 

Energy density is 𝑛 𝐸. 

Thus 

𝜌r(𝑡) =  𝜌r(𝑡0) (
𝑎(𝑡0)

𝑎(𝑡)
)

4

  (0.5 points) 

[Remarks: It is acceptable if the student just write 𝝆𝐫 ∝ 𝟏/𝒂𝟒.] 

2 
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C The photons in thermal equilibrium satisfy Boltzmann distribution  

𝑛(𝐸(𝑎)) ∝ 𝑒
−

𝐸(𝑎)

𝑘B 𝑇(𝑎),  (1 point) 

where 𝐸 ∝1/a(t).  

Condition of being non-interacting implies that there is no energy transfer. Thus the energy 

distribution must be stable. 

To be explicit, for two different comoving wavelengths, 

𝑛(𝐸1(𝑎))

𝑛(𝐸2(𝑎))
=  𝑒[𝐸2(𝑎)−𝐸1(𝑎)]/[𝑘B 𝑇(𝑎)] = const. 

[Remarks: All the above steps can be replaced by the intuition of 𝑬 ∝ 𝑻, if the students 

realize it, the above 1 point can be given.] 

Thus 

𝑇(𝑎) ∝ 1/𝑎, i.e. 𝛾 = −1.  (1 point) 

2 

D The 1st law of thermodynamics is  

d𝐸X = −𝑝Xd𝑉p.  (1 point) 

Here no entropy term appears, because 𝑆 =const. No chemical potential appears, because 

of particle number conservation. 

Here 𝑉p = 𝑎3𝑉. 

d𝑉p = 3𝑎2𝑉d𝑎.  (1 point) 

𝐸X =  𝜌X𝑉p.  (0.5 points) 

d𝐸X =  d(𝜌X𝑉p) = 𝑎3𝑉d𝜌X + 3𝜌X𝑎2𝑉d𝑎.  (0.5 points) 

Thus  

d𝜌X + 3 (
d𝑎

𝑎
)(𝜌X + 𝑝X) = 0. (0.5 points) 

𝜌̇X + 3 (
𝑎̇

𝑎
)(𝜌X + 𝑝X) = 0. (0.5 points) 

[Remarks: 0.5 point for relating variation and time derivative no matter in which step it is 

being used.] 

4 
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E With lens area 𝐴, we only receive part of the starlight. The area ratio is  

𝐴/(4𝜋𝑎2(𝑡0)𝑟2).  (1 point) 

The wavelength of each photon emitted from the star gets stretched. Thus energy per 

photon is lowered, contributing a ratio  

𝑎(𝑡e)/𝑎(𝑡0).  (1 point) 

The separation among the photons also increases due to cosmic expansion, contributing a 

ratio  

𝑎(𝑡e)/𝑎(𝑡0). (1 point) 

As a result, the power that the telescope receives is  

𝑃r =
𝐴 𝑎2(𝑡e)

4𝜋𝑎4(𝑡0)𝑟2 × 𝑃e.  (1 point) 

4 

F The kinetic energy and gravitational energy of the shell adds up to a constant: 

𝐸 =  
1

2
 𝑚 (𝑟̇p)2 −

𝐺𝑀𝑚

𝑟p
, (2 points) 

where  

𝑀 =
4𝜋

3
𝑟p

3 𝜌

𝑐2, (1 point) 

(Note: energy conservation without evolving pressure requires the assumption of non-

relativistic matter.) 

𝑟p = 𝑎(𝑡)𝑟, (1 point) 

[Remarks: The point is given because the student understand that the shell is not pulled 

gravitationally from the outside, because the force due to the mass outside cancels.] 

Thus 

2𝐸

𝑚𝑟2
= 𝑎̇2 −

8𝜋𝐺

3𝑐2
𝜌𝑎2. (1 point) 

Alternative Solution:  

For the gravitational force due to the mass inside:  

𝑚 𝑟̈p =  −
𝐺 𝑀 𝑚

𝑟p
2 =  −

4𝜋

3𝑐2
𝐺𝑚𝜌𝑟p, (2 points) 

where 𝑚 is mass of shell.  

5 
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𝑟p = 𝑎(𝑡)𝑟, (1 point) 

[Remarks: The point is given because the student understand that the shell is not pulled 

gravitationally from the outside, because the force due to the mass outside cancels.] 

and 𝜌 = 𝜌(𝑡0)𝑎3(𝑡0)/𝑎3(𝑡).  

Thus  

𝑎̈ = −
4𝜋

3𝑐2 𝐺𝜌(𝑡0)𝑎3(𝑡0)𝑎−2. (1 point) 

Integrate the above equation. One gets 

𝑐 =
1

2
𝑎̇2 −

4𝜋𝐺

3𝑐2 𝜌(𝑡0)𝑎−1 =
1

2
𝑎̇2 −

4𝜋𝐺

3𝑐2 𝜌𝑎2 , (1 point) 

where 𝑐 is an integration constant. 

G 
(b) decelerating. This is because gravity is attractive for the matter that we are considering 

here. As a result,  d𝑎(𝑡)/d𝑡 is a decreasing function of 𝑡. 1 

 Appendix: Notes about the physics behind this set of problems: 

To reduce students’ reading load, we have not mentioned in the problems, that those 

problems set up the framework of researches in modern cosmology: 

A theory of gravity (especially Einstein’s general relativity) contains two aspects: Gravity 

tells matter how to move (kinematics of matter motion in a gravitational field); and matter 

determines the gravitational field (dynamics of the gravitational field). Parts (A)-(E) are 

about kinematics and part (F) is about dynamics in this sense. The two key equations in 

cosmology are derived in part (D) (this is known as the continuity equation, containing 

parts (A) and (B) as special cases) and (F), upon which the whole theory of modern 

cosmology is built.  

The equation derived in part (F) is known as the Friedmann equation, which is 

conventionally written as (
𝑎̇

𝑎
)

2

−
𝑘

𝑎2 =
8𝜋𝐺

3
 𝜌 . This equation governs the dynamics of 

cosmic expansion and actually not only applies for non-relativistic matter but also for 

general matter components (which needs general relativity to derive). The constant 𝑘 is 

related to the curvature of 3-dimensional space, which is observed to be vanishingly small. 

Part (C) indicates that the universe was hotter at earlier ages. The hot universe in local 

thermal equilibrium determines the whole thermal history of our universe, which answers 

questions such as where the light elements come from, and when the universe becomes 

transparent for light. Part (E) defines the luminosity distance, which relates the telescope 

observations to the cosmic reality. 

N/A 
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Part Model Answer                              (Full mark = 20) Marks 

A1 
The angular momentum should be 

  (1 point for the definition of angular momentum) 

Here  is the unit vector pointing from the center of the ring to the mass point on the ring 

and  is the unit vector parallel to the direction of the linear velocity at the mass point. 

We know that  v =wr , so finally we can get 

, with .     (1 point for the correct answer: 0.5 points for the 

magnitude and 0.5 points for the direction) 

 

2 

A2 
For a current loop, the magnetic moment is defined as 

 

The current can be expressed as 

  
I = -ef = -e

w

2p
  (1 point for the current expression) 

Finally 

 (1 point for the answer) 

2 

A3 For a current loop, under a uniform magnetic field the total torque should be 

    (0.5 point for the torque definition) 

The work done by the magnetic field on the torque should be 

2

2

2

d

d

sin d

W

M B

M B













 

 

 

 

 

 

 







      (1.5 points for the work on the torque) 

2 
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     (0.5 point for the answer) 

A4 We assume that the magnetic field is along z direction such that , then in general 

 

The magnetic torque of an electron should be 

e2
z z

e
M S

m


       (0.5 points for the electron torque) 

Thus 

e

B

B

2

1

2

z

z

U M B

e
S B

m

S B

B





  


 





  (0.5 points for the answer) 

Here 
B

e2

e

m
   is the Bohr magneton. 

5 1

B 5.788 10 eV T      

1 

A5 Thus for spin parallel state , we have 

 

𝑈 = 5.788 × 10−5eV  (0.5 points) 

 

For spin anti-parallel state , we have 

𝑈 = −5.788 × 10−5eV  (0.5 points) 

 

1  
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B1 In the superconductivity state, electrons forming a Cooper pair have opposite spins, thus 

the external magnetic field cannot have any effect on the cooper pair. Thus the energy of 

the Cooper pair does not change.   

E
S

=
p

1

2

2m
+

p
2

2

2m
- 2D   ( 1 point for the answer) 

1  

B2 
In the normal state, the two electrons will align their magnetic moments parallel to the 

external magnetic field. Therefore we have 

2 2

B 1 B 21 2
N

2 2

2 2

x x x xS B S Bp p
E

m m

 
     

Here the potential energy of electrons should be twice as the classical estimation 

according to quantum mechanics. Because  can make the magnetic 

moment aligned along x direction, eventually we have 

2 2

1 2
B

2 2

1 2

e

2
2 2

2 2

N x

x

p p
E B

m m

p p e
B

m m m

  

  

   (1 point) 

1 

B3 

  

E
N

< E
S
Þ 2B

x
m

B
> 2DÞ B

x
>

D

m
B

   

Thus e
P

B

2m
B

e


    (1 points) 

Note: The above simple consideration for the upper critical field BP over estimates its 

value. The strict derivation considering the Pauli magnetization and superconductivity 

condensation energy will give e
P

B

2
2

m
B

e


  . 

1 

C1 Method 1: 3 
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Substituting  
2

1

42
e xx 




 
  
 

into the 
 
F y( ) , we have 

   
2 2 2 2 2

2 2

2 2 2
2 2

e e

2 22 2 2
2 2 2

e

2 22 2 2

e e e

2 22

e e

2
e e 2 4 e e d

4

2
e e d

2

1

2 4

4 4

x x x x xz

x xz

e e

z

z

e B x
F e x x

m m

e B
x x

m m m

e B

m m m

e B

m m

    

 


   



  




 











    





 



 
      

 

    
        

    

 
      

 

   




 

(1.5 points for the correct expression of 
 
F y( )as a function of l ) 

We can treat 
 
F y( )  as a function of l . Thus we have 

  
2 22

e e4 4

ze B
F

m m


 


    , and 

2 22

2

e e

d

d 4 4

ze BF

m m 
  . 

 
F y( )  takes the minimum value when 

d
0

d

F


  and 

2

2

d
0

d

F


 , thus 

2 22

2

e e

0
4 4

ze B

m m 
    ( 0.5 point for the way to minimize 

 
F y( ) ) 

Finally, we can get 

   (1 point for the correct answer) 

We can check that 
  

d 2F

dl 2
> 0  when , which guarantees that

 
F y( )  takes the 

minimum value when . 

Method 2: 
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 
2 2 22 2

2

e e

2 2 22 2

2

e e

d
d

4 d

d
d

4 d

d

z

z

e B x
F x

m x m

e B x
x

m x m

H x


   

  

 













 
    

 

 
    

 









   (1 point) 

In this way, for normalized wave function   the  F   is simply the energy expectation 

 , the eigenvalue of the Hamiltonian 

2 22 2
2

2

e e

d

4 d

ze B
H x

m x m
     

The first two terms correspond to the quantum simple harmonic oscillator Hamiltonian. 

Thus the ground state energy should be  

  

Here 
e

zeB

m
   and ground state wave function becomes 

2e

2

1

4
e

1

4

2

2 z

m
x

eB
x

z

m
e

eB
e













 
  
 

 
  
 

(1 point) 

Therefore, we have 

  .  (1 point) 

C2 

From Part (C1) we know  min

e2

zeB
F

m
   . At the critical value for 

 
B

z
, it makes the 

energy difference zero. It means that the critical value 
 
B

z
 satisfies 

e

0
2

zeB

m
  . (1 point for this equation) 

Consequently, 

2 
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 .  (1 point for the correct answer) 

D1 2 2

1 2 B 1 B 2
I

2 2
2

2 2

z z z zp p S B S B
E

m m

 
      

Here ,  

2 2

1 2 B 1 B 2
I

2 2

1 2 B B

2 2

1 2
B

2 2

1 2

e

2 2
2

2 2

2 2
2

2 2 2 2

2 2
2 2

2
2 2

z z z z

z z

z

z

p p S B S B
E

m m

p p B B

m m

p p
B

m m

p p e
B

m m m

 

 



     

     

    

    

(1 point) 

1 

D2 
In the normal state, the electrons will align the magnetic moment parallel to the total 

magnetic field, thus 

𝐸|| =
𝑝1

2

2𝑚
+

𝑝2
2

2𝑚
+

2𝜇B𝑆1∙𝐵⃗⃗1

ℏ
+

2𝜇B𝑆2∙𝐵⃗⃗2

ℏ
 

For electron 1,  

For electron 2,  

Therefore,  and  

can make the their magnetic moments parallel to the total magnetic field respectively. 

(1 point for the correct expression of spins: 0.5 points for each respectively) 

Finally 

𝐸|| =
𝑝1

2

2𝑚
+

𝑝2
2

2𝑚
− 2𝜇B√𝐵𝑥

2 + 𝐵𝑧
2 = 

𝑝1
2

2𝑚
+

𝑝2
2

2𝑚
−

𝑒ℏ

𝑚𝑒
√𝐵𝑥

2 + 𝐵𝑧
2  (1 point for the answer) 

2 

D3 𝐸|| < 𝐸Ising ⇒ 2𝜇B√𝐵𝑥
2 + 𝐵𝑧

2 > 2Δ + 2𝜇B𝐵𝑧 ⇒ 𝐵𝑥 >
√Δ2 + 2Δ𝜇B𝐵𝑧

𝜇B
  (1 points) 1 
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Another correct expression is:   . 


