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Question 1 

 

The schematic below shows the Hadley circulation in the Earth’s tropical atmosphere around 

the spring equinox. Air rises from the equator and moves poleward in both hemispheres 

before descending in the subtropics at latitudes ±φd (where positive and negative latitudes 

refer to the northern and southern hemisphere respectively). The angular momentum about 

the Earth’s spin axis is conserved for the upper branches of the circulation (enclosed by the 

dashed oval). Note that the schematic is not drawn to scale. 
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(a) (2 points) Assume that there is no wind velocity in the east-west direction around 

the point X. What is the expression for the east-west wind velocity uY at the 

points Y? Convention: positive velocities point from west to east. 

(The angular velocity of the Earth about its spin axis is Ω, the radius of the Earth 

is a, and the thickness of the atmosphere is much smaller than a.) 

 

Solution: 

 

As the problem is symmetric about the equator, we need only consider the 

northern hemisphere as shown below. 

 

 
Conservation of angular momentum about the Earth's spin axis implies that: 

Ω𝑎2 = (Ω𝑎cos 𝜑𝑑 + 𝑢𝑌)𝑎 cos 𝜑𝑑  (1.5 point) 

𝑢𝑌 = Ω𝑎(
1

cos 𝜑𝑑
− cos 𝜑𝑑)   (0.5 point) 
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(b) (1 point) Which of the following explains ultimately why angular momentum is 

not conserved along the lower branches of the Hadley circulation? 

Tick the correct answer(s). There can be more than one correct answer. 

(I) There is friction from the Earth's surface. 

(II) There is turbulence in the lower atmosphere, where different layers of air 

are mixed 

(III) The air is denser lower down and so inertia slows down the motion 

around the spin axis of the Earth. 

(IV) The air is moist at the lower levels causing retardation to the wind 

velocity. 

 

Solution: (I) & (II)  (0.5 point each) 

To discourage guessing, minus 0.5 point for each wrong answer. 

The minimum points to be awarded in this part is 0. 
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Around the northern winter solstice, the rising branch of the Hadley circulation is 

located at the latitude φr and the descending branches are located at φn and φs as shown 

in the schematic below. Refer to this diagram for parts (c), (d) and (e). 
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(c) (2 points) Assume that there is no east-west wind velocity around the point Z. 

Given that φr = −8°, φn = 28° and φs = −20°, what are the east-west wind 

velocities uP, uQ and uR respectively at the points P, Q and R? 

(The radius of the Earth is a = 6370 km.) 

Hence, which hemisphere below has a stronger atmospheric jet stream? 

(I) Winter Hemisphere 

(II) Summer Hemisphere 

(III) Both hemispheres have equally strong jet streams. 

 

Solution: 

 

The angular velocity of the Earth about its spin axis is: 

 

Ω =
2𝜋

24 × 60 × 60𝑠
= 7.27 × 10−5 𝑠−1 

 

so we have: 

 

Ωa = (7.27 × 10−5𝑠−1)(6.37 × 106𝑚) = 463 𝑚𝑠−1 

 

Conservation of angular momentum about the Earth's spin axis implies that the 

wind velocity u at latitude φ is: 

 

          Ω𝑎2 cos2 𝜑𝑟 = (Ω𝑎 cos 𝜑 + 𝑢)𝑎 cos 𝜑   

𝑢 = Ω𝑎 (
cos2 𝜑𝑟

cos 𝜑
− cos 𝜑)   (0.5 point) 

 

The required east-west wind velocities are: 

(0.5 point for each correct answer, but capped at 1 point maximum) 

 

𝑢𝑝 = Ω𝑎 (
cos2 𝜑𝑟

cos 𝜑𝑛
− cos 𝜑𝑛) = 463𝑚𝑠−1 × (

cos2 8°

cos 28°
− cos 28°) = 105 𝑚𝑠−1 

𝑢𝑄 = Ω𝑎 (
cos2 𝜑𝑟

cos 0°
− cos 0°) = 463𝑚𝑠−1 × (

cos2 8°

1
− 1) = −8.97 𝑚𝑠−1 

𝑢𝑅 = Ω𝑎 (
cos2 𝜑𝑟

cos 𝜑𝑠
− cos 𝜑𝑠) = 463𝑚𝑠−1 × (

cos2 8°

cos 20°
− cos 20°) = 48.1 𝑚𝑠−1 

 

Thus, the winter hemisphere (I) has a stronger atmospheric jet stream. (0.5 point) 
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(d) (1 point) The near-surface branch of the Hadley circulation blows southward 

across the equator. Mark by arrows on the figure below the direction of the east-

west component of the Coriolis force acting on the tropical air mass 

(A) north of the equator; 

(B) south of the equator 

 
 

Solution: (0.5 point for each correct arrow) 
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(e) (1 point) From your answer to part (d) and the fact that surface friction nearly 

balances the Coriolis forces in the east-west direction, sketch the near-surface 

wind pattern in the tropics near the equator during northern winter solstice. 

 

Solution:  

As surface friction nearly balances the Coriolis forces in the east-west direction, 

the east-west component of surface friction must act eastward and westward 

north and south of the equator respectively. Since friction always opposes 

motion, the east-west wind velocity near the surface must be westward and 

eastward north and south of the equator respectively. So the resultant near-

surface wind pattern looks like below. 

 
(0.5 point for consistency with part (d), even if part (d) was wrong) 

(0.5 point for correct answer) 
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Suppose the Hadley circulation can be simplified as a heat engine shown in the 

schematic below. Focusing on the Hadley circulation reaching into the winter 

hemisphere as shown below, the physical transformation of the air mass from A to B 

and from D to E are adiabatic, while that from B to C, C to D and from E to A are 

isothermal. Air gains heat by contact with the Earth's surface and by condensation of 

water from the atmosphere, while air loses heat by radiation into space. 
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(f) (2 points) Given that atmospheric pressure at a vertical level owes its origin to 

the weight of the air above that level, order the pressures pA, pB, pC, pD, pE, 

respectively at the points A, B, C, D, E by a series of inequalities. 

(Given that pA = 1000 hPa and pD = 225 hPa. Note that 1 hPa is 100 Pa.) 

 

Solution: 

 

Since there is less and less air above as one climbs upward in the atmosphere, 

atmospheric pressure must decrease upwards. 

So, 

A B C E D Cp p p and p p p    (0.5 point) 

The process EA represents an isothermal expansion as heat is gained from the 

surface. So, 

E Ap p  (0.5 point) 

Since the total heat gain must equal the total heat loss, more heat must be lost in 

the isothermal compression CD than in the isothermal expansion BC. So net heat 

loss occurs from B to D and hence  

D Bp p  (0.5 point) 

So with the values of the pressure at A and D, we deduce that: 

A Dp p  (0.5 point) 

Collecting all inequalities together, 

E A D B Cp p p p p     

 

(g) (2 points) Let the temperature next to the surface and at the top of the atmosphere 

be TH and TC respectively. Given that the pressure difference between points A 

and E is 20 hPa, calculate TC for TH = 300 K. 

Note that the ratio of molar gas constant (R) to molar heat capacity at constant 

pressure (cp) for air, κ, is 2/7. 

 

Solution: 

 

Since E Ap p  and pA = 1000 hPa, we have pE = 1020 hPa. 

From the adiabatic compression from D to E, we have: 

 

𝑝𝐸
−𝜅𝑇𝐻 = 𝑝𝐷

−𝜅𝑇𝐶       (1 point) 

𝑇𝐶 = (
𝑝𝐷

𝑝𝐸
)

𝜅
× 𝑇𝐻 = (

225

1020
)

2/7
× 300𝐾 = 195𝐾 (1 point) 
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(h) (2 points) Calculate the pressure pB. 

 

Solution: 

 

From the adiabatic expansion AB and adiabatic compression DE, 

 

 

 

 

 

 

 

(i) For an air mass moving once around the winter Hadley circulation, using the 

molar gas constant, R, and the quantities defined above, obtain expressions for 

(A) (2 points) the net work done per unit mole Wnet ignoring surface friction; 

(B) (1 point) the heat loss per unit mole Qloss at the top of the atmosphere. 

 

Solution: 

 

(A) Work done per mole in an isothermal process is generally given by 

𝑊 = ∫ 𝑝 𝑑𝑉 = ∫ 𝑝 𝑑 (
𝑅𝑇

𝑝
) = −𝑅𝑇∫ 𝑝−1𝑑𝑝 = −𝑅𝑇 ln 𝑝 + 𝑐𝑜𝑛𝑠𝑡. (1 point) 

 

Work done per mole in processes EA and BCD are respectively, 

𝑊𝐸𝐴 = −𝑅𝑇𝐻 ln 𝑝𝐴 + 𝑅𝑇𝐻 ln 𝑝𝐸 = 𝑅𝑇𝐻 ln (
𝑝𝐸

𝑝𝐴
)  

𝑊𝐵𝐶𝐷 = 𝑅𝑇𝐶 ln (
𝑝𝐵

𝑝𝐷
)  

 

Work done in an adiabatic process is used entirely to raise the internal energy of 

the air mass. Since the decrease in internal energy in process AB exactly cancels 

the increase in internal energy in process DE because the respective decrease and 

increase in temperature cancel, no net work is done in the adiabatic processes. 
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So the net work done per mole on the air mass is: 

𝑊𝑛𝑒𝑡 = 𝑊𝐸𝐴 + 𝑊𝐵𝐶𝐷  

= 𝑅𝑇𝐻 ln (
𝑝𝐸

𝑝𝐴
) + 𝑅𝑇𝐶 ln (

𝑝𝐵

𝑝𝐷
) 

= 𝑅(𝑇𝐻 − 𝑇𝐶) ln (
𝑝𝐸

𝑝𝐴
) + 𝑅𝑇𝐶 ln (

𝑝𝐵

𝑝𝐷

𝑝𝐸

𝑝𝐴
) 

= 𝑅(𝑇𝐻 − 𝑇𝐶) ln (
𝑝𝐸

𝑝𝐴
)      𝑜𝑟     𝑅(𝑇𝐻 − 𝑇𝐶) ln (

𝑝𝐷

𝑝𝐵
) 

using equation (∗) in part (h) 

(1 point) 

 

 

(B) The heat loss per mole at the top of the atmosphere is the same as the work 

done per mole on the air mass because there is no change in internal 

energy for an isothermal process. 

𝑄𝑙𝑜𝑠𝑠 = 𝑊𝐶𝐷  (0.5 point) 

   = 𝑅𝑇𝐶 ln (
𝑝𝐷

𝑝𝐶
) (0.5 point) 
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(j) (1 point) What is the value of the ideal thermodynamic efficiency εi for the 

winter Hadley circulation? 

 

Solution: 

𝜀𝑖 = 1 −
𝑇𝐶

𝑇𝐻
   (0.5 point) 

   = 1 −
195

300
= 0.35 (0.5 point) 

 

 

(k) (2 points) Prove that the actual thermodynamic efficiency ε for the winter Hadley 

circulation is always smaller than εi, showing all mathematical steps. 

 

Solution: 

𝜀 =
𝑊𝑛𝑒𝑡

𝑄𝑙𝑜𝑠𝑠 + 𝑊𝑛𝑒𝑡
 

1

𝜀
− 1 =

𝑄𝑙𝑜𝑠𝑠

𝑊𝑛𝑒𝑡
=

𝑅𝑇𝐶 ln (
𝑝𝐷

𝑝𝐶
)

𝑅(𝑇𝐻 − 𝑇𝐶) ln (
𝑝𝐸

𝑝𝐴
)

 

=
𝑇𝐶 ln (

𝑝𝐷

𝑝𝐵
×

𝑝𝐵

𝑝𝐶
)

(𝑇𝐻 − 𝑇𝐶) ln (
𝑝𝐸

𝑝𝐴
)

 

                                          >
𝑇𝐶 ln(

𝑝𝐷
𝑝𝐵

)

(𝑇𝐻 − 𝑇𝐶) ln(
𝑝𝐸
𝑝𝐴

)
 as  

𝑝𝐵

𝑝𝐶
> 1 (1 point) 

                                          =
𝑇𝐶

𝑇𝐻−𝑇𝐶
  using equation (∗) in part (h) 

                   
1

𝜀
> 1 +

𝑇𝐶

𝑇𝐻 − 𝑇𝐶
=

𝑇𝐻

𝑇𝐻 − 𝑇𝐶
 

                                                         𝜀 <
𝑇𝐻−𝑇𝐶

𝑇𝐻
= 𝜀𝑖   (1 point) 
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(l) (1 point) Which of the following statements best explains why ε is less than the 

ideal value? Tick the correct answer(s). There can be more than one correct 

answer. 

(I) We have ignored work done against surface friction. 

(II) Condensation occurs at a temperature lower than the temperature of the 

heat source. 

(III) There is irreversible evaporation of water at the surface. 

(IV) The ideal efficiency is applicable only when there is no phase change of 

water. 

 

Solution: (II) & (III)  (0.5 point each) 

To discourage guessing, minus 0.5 point for each wrong answer. 

The minimum points to be awarded in this part is 0. 
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Question 2 

 

The two-slit electron interference experiment was first performed by Möllenstedt et al, Merli-

Missiroli and Pozzi in 1974 and Tonomura et al in 1989. In the two-slit electron interference 

experiment, a monochromatic electron point source emits particles at S that first passes 

through an electron “biprism” before impinging on an observational plane; S1 and S2 are 

virtual sources at distance d. In the diagram, the filament is pointing into the page. Note that 

it is a very thin filament (not drawn to scale in the diagram).  

 

 
The electron “biprism” consists of a grounded cylindrical wire mesh with a fine filament F at 

the center. The distance between the source and the “biprism” is ℓ, and the distance between 

the distance between the “biprism” and the screen is L. 



Page 2 of 6 
 

(a) (2 points) Taking the center of the circular cross section of the filament as the 

origin O, find the electric potential at any point (x,z) very near the filament in 

terms of Va, a and b where Va is the electric potential of the surface of the 

filament, a is the radius of the filament and b is the distance between the center of 

the filament and the cylindrical wire mesh. (Ignore mirror charges.) 

 

 

 

 

 

 

 

 

 

  

   
 

    
  

 

 
 

Writing out |E| = 
 

     
   

 

  
 ( ) 

                                     
 

  

 

    
  

 

 
  (1 point) 

Note that 

 ( )  
 

    
  

 

 
  (= 0 at the mesh) 

Also at the edge of the filament, Va =  (   ) , so 

Giving together 

 ( )    
  (   )

  (   )
  where   √      

(1 point for final expression) 
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(b) (4 points) An incoming electron plane wave with wave vector kz is deflected by 

the “biprism” due to the x-component of the force exerted on the electron. 

Determine kx the x-component of the wave vector due to the “biprism” in terms of 

the electron charge, e, vz, Va, kz, a and b, where e and vz are the charge and the  

z-component of the velocity of the electrons (kx kz). Note that  ⃗  
    

 
 where 

h is the Planck constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
 

  
∫ (   )

 

  

( 
  (    )

  
)        

  
 

  
∫

      

(      )   
 
 

 

  

        

 
     

    
 
 

 

       
     

     
 
 

 

  

  
 

  

      
 
 

  

  
 

    

   
   

 
 

 

There are several ways to work out the solution: 

A charge in an electric field will experience a force and hence a change in 

momentum. Note that potential energy of the electron (charge =    ) is 

    ( )  Using impulse acting on the electron due to the electric field,  

(2 points) 

(2 points for final expression) 

 

The alternative solution is to write down the equations of motion for the 

electrons (2 points) and determine the deflection of the electron as it passes 

through the “biprism”: 

Since    
 

    
  

 

 
, 

(2 points for final expression) 
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(c) Before the point S, the electrons are emitted from a field emission tip and 

accelerated through a potential V0. Determine the wavelength of the electron in 

terms of the (rest) mass m, charge –    and V0, 

(i) (2 points) assuming relativistic effects can be ignored. 

 

 

 

 

(ii) (3 points) taking relativistic effects into consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (  )  (   )  

 (
 

 
 )

 

 (   )  

    

  
 (           )

  (   )  

         (  
    

    
 
) 

  
 

√      (  
    

    
 )

 

(

                                            
                                                 
                                                             

) 

Consider 

 

 

 
 √          

  
 

√      

 

Equating the kinetic energy to eV0 (1 point) 

(1 point for final expression) 
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(d) In Tonomura et al experiment, 

vz   =   c/2,    

Va  =   10 V,  

V0  =   50 kV,  

a  =   0.5 m,  

b =   5 mm, 

ℓ =   25 cm, 

L =   1.5 m, 

h =   6.6 x 10
-34

 Js, 

electron charge,    =  1.6 x 10
-19

 C, 

mass of electron, m = 9.1 x 10
-31

 kg, 

and the speed of light in vacuo, c = 3 x 10
8
 ms

-1
  

 

(i) (2 points) calculate the value of kx ,  

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) (2 points) determine the fringe separation of the interference pattern on   

the screen, 

 

 

 

 

 

(iii) (1 point) If the electron wave is a spherical wave instead of a plane wave, is 

the fringe spacing larger, the same or smaller than the fringe spacing 

calculated in (ii)? 

 

 

 

   
     

     
 
 

 

   
 

   
                   

Previous equation: 

Plugging the relevant numbers into the equation gives: 

(1 point for plugging the correct values) 

           (1 point for final expression) 

(
                                    

 

 
                                       

 

) 

Fringe separation is given by 
 

 

  

  
      

Larger. (1 point for the correct answer) 
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(iv) (2 points) In part (c), determine the percentage error in the wavelength of 

the electron using non-relativistic approximation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(v) (2 points) Calculate the distance d between the apparent double slits. 

 

 

 

 

 

 

 

 

 

 

 

  
  (   )

 
 

             

(

 
                                                
                                  

 
) 

The double slit formula is given by 

where m is the order and y is the distance for maximum intensity 
from the central fringe. 

In this case, since the fringe spacing is 907Å, 

 

 
 √       

        
 

√      

 

               

     
 

√     (  
   

    
 )

 

               

      
            

    
 

       

(

 
                                                                    
                                                                                                             

 
) 

Non-relativistic: 

Relativistic: 

Percentage error: 

or 2.4 percent. 



Question 3

(a) (4 points) Draw a diagram to describe the physical layout of an ideal (observer, lens
and point source in a straight line) lensing system. Draw the light path and mark the
quantities α and rE . Also mark the angular Einstein radius θE (the angular deflection
of the source image as seen from earth), and the other quantities that an observer on
earth can measure.

Solution:

r̃E

rE

α

DS
DL

Source Lens Observer

ψ θE

α

Apparent Source

Other relevant quantities include the distances to the lens and source DL and DS.
(DL and DS need not be equal.)

• 1 point for correct layout

– Correct answers should show that light is bent
– Apparent source is not required
– Accept answers that show the system as a thin lens approximation

(sharp deflection angles)

• 1 point for light direction correctly marked

– Arrows on the light path

• 1 point for θE , α and rE correctly identified

– 1 correct: 0.4 points
– 2 correct: 0.7 points
– 3 correct: 1.0 points

• 1 point for DL and DS (observables; may have different notation)

– 0.5 points each

Notes:

• ψ and r̃E need not be identified, but may be useful in a later part.



• rE should be perpendicular to the projected light path, but in our astro-
nomical system, it makes no difference if it is perpendicular to the source-
observer line since θE is small. Accept answers that have rE perpendicular
to the source-observer line.

(b) (2 points) Sketch the image of the source (such as a star), as seen by an observer on
earth, in the case where the source, lensing object and observer are on a straight line.

Solution: The image of the source should be a symmetrical (1 point) and circular
(1 point) ring around the lensing object.
Notes:

• Do not accept solutions that indicate a magnified image of the source. This
includes answers which state that the image is a filled in circle.

• 1 point for answers that have 2 source images symmetrically on either side
of the lens because the system should be considered in 3 dimensions instead
of 2.

• Text answers (without any sketch or diagram) are not accepted. Correct
answers must have a sketch (as specified in the question).

(c) (3 points) Sketch the image of the source (such as a star), as seen by an observer on
earth, in the non-ideal case where the source, lensing object and observer are not in a
straight line. Sketch the source-lens system to explain why this is so.

Solution:

WHAT: (1.5 points) The observer will see light from one side of the lens but not
the other side. This means that the Einstein ring should be an arc instead of a
complete circle. The ring may be distorted or broken depending on how much
deviation from an ideal case. Correct answers should not be a perfect circle or
straight line.
Note:

• Solutions that give 2 source images on either side of the lens (with asymme-
try) are awarded 1 point instead of 1.5 point because the system should be
considered in 3 dimensions instead of 2.

• Text answers (without any sketch or diagram) are not accepted. Correct
answers must have a sketch (as specified in the question).

WHY: (1.5 points)

One possible answer:

rE

DS
DL

Source

Lens

ObserverrE

For slight deviations from the ideal case, accept also the following diagram if rE1

Page 2



is smaller than rE2.

rE1

DS
DL

Source

Lens

ObserverrE2

In general, accept answers which show that the asymmetry in the system will cause
the observer to see something asymmetrical.
Notes:

The key concept in this question is asymmetry. Correct answers for either part
must demonstrate that departures from the ideal case will result in asymmetry in
the observed system, and that the asymmetry about the source-observer line is the
cause of the asymmetry in the observation.

(d) (3 points) The Schwarzschild radius of a black hole defines the point of no return. A
correct expression for the Schwarzschild radius can be obtained by taking it to be the
radius where the escape speed is equal to the speed of light. This means that something
inside the Schwarzschild radius cannot escape the black hole.
Using Newtonian mechanics, derive the formula for the escape speed at a distance r
away from a point object of mass M. Hence, derive the Schwarzschild radius for a
point object of mass M in terms of the gravitational constant G and the speed of light
c. Show your steps and reasoning clearly. (This happens to give the correct expression
for the Schwarzschild radius that comes from general relativity.)

Solution: By definition, the gravitational potential energy of a test mass m at a
distance r from the mass is (0.5 point)

φ = −GMm
r

.

To escape the gravitational potential, the total energy of the test mass needs to be
at least 0 so it should have a kinetic energy of (0.5 point)

K =
GMm

r
=

1
2

mv2
e .

Rearranging the above, the escape speed at distance from mass r is (1 point)

ve =

�
2GM

r
.

Substitute ve = c and rearrange to get (1 point)

rS =
2GM

c2 .

2 points for deriving escape speed (Any reasonable and physically sound method
based on Newtonian mechanics)
1 point for deriving the Schwarzschild radius from the escape speed.
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(e) (1 point) Using the formula for light deflection, write down an expression for the
Schwarzschild radius of a lensing object in the case where the source, lens and ob-
server is in a straight line.

Solution: The Schwarzschild radius is

rS =
2GM

c2 so rS =
1
2

αrE

Notes: Full marks for correct working.

(f) (2 points) Consider the case where we have a lensing object of the order of a few
solar masses (M ∼ a few×1030 kg) in the nearby regions of the galaxy (distance DL ∼
a few× 1018 m away) and a source object somewhat further out (DS ∼ a few×DL).
What can we say about α and θE in this case? (Choose your answer on your answer
sheet. Points will be deducted for wrong answers.)

• α is large and tanα , sinα , cosα
must be calculated exactly.

• α is small and the small angle ap-
proximations to tanα , sinα , cosα
are permissable.

• α is irrelevant and need not be cal-
culated

• θE is large and tanθE , sinθE ,
cosθE must be calculated exactly.

• θE is small and the small angle
approximations to tanθE , sinθE ,
cosθE are permissable.

• θE is irrelevant and need not be cal-
culated

Solution:

• α is small

• θE is small

Notes:

• Choices pertaining to α and θE are to be marked independently (1 point
each).

• The conditions are mutually exclusive so accept only one condition for each
quantity (α , θE). Answers that select more than one condition for a quantity
(α , θE) are wrong (no point to be awarded).

Reasoning: Working out the numbers, we can find that the Schwarzschild radius
is on the order of 104 m. Because α has a maximum of 2π (largest possible angle),
this means the physical Einstein radius rE ∼ 104 m is very small compared to the
distance to the lens DL ∼ 1020 m. The geometry of the system therefore means
that α is actually a very small angle.

Another approximation comes from the geometry of the system which sets bounds
on α and θE so that (see figure in part (a))

tanθE =
rE

DL
=

2rS/α
DL

≈ 10−16

α
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which suggests that α or θE or both should be small.
Based on the geometry of the setup and what we have already established (α
small), we then have the following cases:

• θE large means that DL is small which is not the case here.

• α small, θE small is the only valid outcome here

The result and constraints in the question suggests that α and θE are both small
Because θE is small, the Einstein radius rE ∼ 104 m is very small compared to the
distance to the lensing object DL ∼ 1020 m or source DS. We can therefore take
the small angle approximation where α and θE is involved.

(g) (3 points) Using the conditions in part (f), rewrite your expression in part (e) in terms
of measurable quantities (which are θE , DS and DL) for a lensing object of the order
of a few solar masses (M ∼ a few× 1030 kg) and in the nearby regions of the galaxy
(distance DL ∼ a few×1018 m away) with a source object somewhat further out (DS ∼
a few×DL). Show your working.

Solution: Adding up exterior angles, we see that α = θE + ψ so θE = α −ψ
where is small (ψ and r̃E defined on the following diagram). Also note that rE is
approximately perpendicular to the source-observer system because θE is small.

r̃E

rE

α

DS
DL

Source Lens Observer

ψ θE

α

Apparent Source

Using the small angle approximation for α and θE , we can write
rE

DL
= tanθE ≈ θE and

r̃E

DS
=

rE

DS −DL
= tanψ ≈ ψ

This gives (1 point)

α =
rE

DL
+

rE

DS −DL
So that (1 point)

rS =
1
2

rEα =
1
2

r2
E

�
DS

DL(DS −DL)

�

To write this in terms of θE , DL and DS, we use rE = θEDL to get (1 point)

rS =
1
2

θ 2
E

�
DSDL

DS −DL

�

Notes:

• 1 point for α
• 1 point for rS

• 1 point for final equation
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(h) (2 points) Suppose we have an event where a lensing object of 6.0×1030 kg (3.0 solar
masses), 2.6×1018 m away from earth passes in front of a star 9.2×1018 m away from
earth. This happens such that the ideal configuration occurs during the event. What is
the angular Einstein radius θE (as seen from earth) during this event when the source,
lens and observer line up?

Solution: The Schwarzschild radius of the lens is

rS =
2× (6.673×10−11)×6.0×1030

(3.0×108)2 = 8.9×103 m

From the previous part, the angular Einstein radius is given by

θ 2
E = 2rS ×

�
DS −DL

DSDL

�

= 2×8.9×103 ×
�

(9.2−2.6)×1018

(9.2×1018)× (2.6×1018)

�

= 4.9×10−15

Thus the angular Einstein radius is

θE =

�
4.9×10−15 = 7.0×10−8 radians = 0.014 arcseconds

(1 point for correct answer, 1 point for correct working)
Notes:

• Students are expected to use the formula derived in part (g) to answer this
question.

• For the final answer:

– 0.5 point off for missing units. While angles are mathematically di-
mensionless, a good student should be cognisant of the fact that there
are different physical units for angular measurement, and that units for
angles should be specified.

– 0.5 point off for final answers given to 1 significant figure or less.
– 1 point off if the final number is incorrect.

Page 6


