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Theoretical Question 1: The Shockley-James Paradox 

SOLUTION 

a. The magnetic field created by the large loop at its center is: 

𝐵 =
𝜇0𝐼2

2𝑅
 

Since 𝑟 ≪ 𝑅, this is the field throughout the area of the small loop. Therefore, the flux through the small loop is given 

by: 

𝛷𝐵1 = 𝜋𝑟2𝐵 =
𝜋𝜇0𝑟2𝐼2

2𝑅
 

The mutual inductance is then given by: 

𝑀21 =
𝜋𝜇0𝑟2

2𝑅
 

b. Since 𝑀12 = 𝑀21 = 𝑀, we have: 

𝛷𝐵2 = 𝑀𝐼1 =
𝜋𝜇0𝑟2𝐼1

2𝑅
 

Taking the derivative with respect to time, this becomes: 

𝜀2 =
𝜋𝜇0𝑟2𝐼1̇

2𝑅
 

c. The EMF is work per unit charge, while the electric field is force per unit charge. Therefore: 

𝐸 =
𝜀2

2𝜋𝑅
=

𝜇0𝑟2𝐼1̇

4𝑅2
 

d. The electric field from part (c) leads to a force: 

𝐹 = 𝐸𝑄 =
µ

0
𝑟2𝑄𝐼̇

4𝑅2
 

Integrating over 𝑑𝑡 (and disregarding the sign), we get the impulse: 

𝛥𝑝 =
𝜇0𝑟2𝐼𝑄

4𝑅2
 

e. The current can be written as: 

𝐼 = 𝑛𝐴𝑞𝑣 

where 𝑣 is the charge carriers’ velocity. We therefore have: 
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𝑣 =
𝐼

𝑛𝐴𝑞
 

The momentum is then given by: 

𝑝 = 𝛾𝑚𝑛𝐴𝑙𝑣 =
𝑚𝑛𝐴𝑙𝑣

√1 − 𝑣2/𝑐2
=

𝑚𝐼𝑙

𝑞
(1 − (

𝐼

𝑛𝐴𝑞𝑐
)

2

)

−1/2

 

where 𝛾 is the Lorentz factor associated with 𝑣. 

f. The hidden momentum is due to the charge carriers in the two vertical sides of the loop. Let 𝑚 be the mass of the 

charge carriers, let 𝑞 be their charge, and let 𝛥𝑈 = 𝑘𝑄𝑞𝑙/𝑅2 be the potential energy difference for a charge carrier 

between the two sides. Denote the longitudinal densities and velocities of the charges in the two sides by 𝜆1, 𝑣1, 𝜆2 

and 𝑣2. Let 𝛾1 and 𝛾2 be the appropriate Lorentz factors. From the constant value of the current, we have: 

𝑞𝜆1𝑣1 = 𝑞𝜆2𝑣2 = 𝐼 

Energy conservation for the charge carriers passing from one side to the other reads: 

(𝛾2 − 𝛾1) · 𝑚𝑐2 =  𝛥𝑈 

The total momentum now reads: 

𝑝ℎ𝑖𝑑 = 𝑝2 − 𝑝1 = 𝑚𝑙(𝛾2𝜆2𝑣2 − 𝛾1𝜆1𝑣1) =
𝑚𝐼𝑙

𝑞
(𝛾2 − 𝛾1) =

𝐼𝑙𝛥𝑈

𝑞𝑐2
=

𝑘𝑄𝐼𝑙2

𝑅2𝑐2
 

Note that all the microscopic quantities 𝑚, 𝑞, 𝜆𝑖 and 𝑣𝑖 have dropped out. 

g) In part (d), the magnetic moment is µ = 𝜋𝑟2𝐼, and we get: 

𝛥𝑝 =
µ

0
𝑄µ

4𝜋𝑅2
 

In part (f), the magnetic moment is µ = 𝑙2𝐼, and we get: 

𝑝ℎ𝑖𝑑 =
𝑘𝑄µ

𝑅2𝑐2
=

µ
0

𝑄µ

4𝜋𝑅2
 

We see that the results are identical. 

h) The answer is (A)+(C). (A) is true because 𝛥𝑈 between the near side and the far side of the loop vanishes. (B) 

cannot be true, because the back-reaction of the induced charges on the external charge is a higher-order effect; for 

instance, it involves higher powers of 𝑄. Then the conservation of center-of-mass velocity requires that (C) is true. 
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Theoretical Question 2: Creaking Door 

SOLUTION 

 

a1. The motion here is pure sliding under a constant kinetic friction. This is harmonic motion with a displaced 

equilibrium point. The angular frequency is given by: 

𝜔0 = √𝑘/𝑚 

From here, the period is: 

𝑇0 =
2𝜋

𝜔0
= 2𝜋√

𝑚

𝑘
 

The initial slope is given by: 

(
𝑑𝑥

𝑑𝑡
)

0
= 𝑢 − 𝑣0 

Therefore, the amplitude of oscillations is: 

𝐴 =
(𝑑𝑥/𝑑𝑡)0

𝜔0
= (𝑢 − 𝑣0) √

𝑚

𝑘
 

 

a2. The graph is sinusoidal, as shown below. 
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The initial point is given by: 

𝑥0 =
𝜇𝑘𝑚𝑔

𝑘
 

This is the equilibrium point of the sine function. The students are not required to find this equilibrium point, but they 

are required to understand that it is positive. 

b. This will be a stick-slip graph. The ”humps” are sinusoidal, with a non-continuous derivative at their intersections 

with the horizontal segments. The peaks of the humps are higher than 𝑣 = 𝑢, since 𝑢 must be the average velocity of 

the box. In fact, they are also higher than 𝑣 = 2𝑢, but this is not required from the students.

 

c. Let’s pass into the reference frame of the driven end of the spring. The position of the box is then given by minus 

the elongation 𝑥. The motion is an oscillation around the equilibrium position 𝑥0. The slip phase is sinusoidal as in 

part (a), while the stick phase corresponds to motion with a constant velocity – 𝑢. The stick phase ends when the 

elastic force balances the static friction, i.e. at 𝑥𝑠 = 𝜇𝑠𝑚𝑔/𝑘, and starts again at the symmetric point with respect to 

𝑥0.  

 

𝑣 = 𝑢 

𝑥𝑠 

𝑥0 
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We see that the average elongation is again the sine’s equilibrium point: 

 �̅� = 𝑥0 =
𝜇𝑘𝑚𝑔

𝑘
 

d. Again, let us pass into the reference frame of the driven end of the spring. During the stick phase, the box traverses 

a distance of: 

2(𝑥𝑠 − 𝑥0) = 2(𝜇𝑠 − 𝜇𝑘)𝑚𝑔/𝑘. 

Its velocity during this phase is 𝑢, so the duration of the stick phase is: 

𝑡𝑠𝑡𝑖𝑐𝑘 =
2(𝜇𝑠 − 𝜇𝑘)𝑚𝑔

𝑘𝑢
 

The slip phase is a sinusoidal motion around 𝑥0 with angular frequency 𝜔0. The sinusoidal period is missing a phase 

of 2𝜑, where 𝜑 is given by the ratio of initial position and initial velocity with respect to the equilibrium point: 

tan 𝜑 =
𝜔0(𝑥𝑠 − 𝑥0)

𝑢
=

(𝜇𝑠 − 𝜇𝑘)𝑔

𝑢
√

𝑚

𝑘
 

Then the length of the slip phase is: 

𝑡𝑠𝑙𝑖𝑝 = 𝑇0 (1 −
𝜑

𝜋
) = 2√

𝑚

𝑘
(𝜋 − tan−1 (

(𝜇𝑠 − 𝜇𝑘)𝑔

𝑢
√

𝑚

𝑘
)) 

And the total period is: 

𝑇 = 𝑡𝑠𝑡𝑖𝑐𝑘 + 𝑡𝑠𝑙𝑖𝑝 = 2√
𝑚

𝑘
(

(𝜇𝑠 − 𝜇𝑘)𝑔

𝑢
√

𝑚

𝑘
+ 𝜋 − tan−1 (

(𝜇𝑠 − 𝜇𝑘)𝑔

𝑢
√

𝑚

𝑘
)) 

e. Consider again stick-slip motion in the reference frame of the driven end of the spring. During the sinusoidal slip 

phase, the sine’s amplitude will decrease due to the dissipation. At the beginning of the slip phase, the velocity is – 𝑢, 

while the sine is at the phase 𝜑, which we found in the solution to the previous part. Thus, the sine’s velocity 

amplitude is 𝑢/ cos 𝜑. For periodic stock-slip to occur, the sine must return to the slope – 𝑢. Due to the dissipation, 

this will happen at a phase larger than 2𝜋 − 𝜑. In other words, dissipation shortens the stick phase. The critical case is 

when stick phase shortens to zero. This will happen if the sine reaches the slope – 𝑢 precisely at the equilibrium point, 

i.e. at the phase 2𝜋. If the slope at 2𝜋 is less steep than −𝑢, the box will continue its damped sinusoidal motion 

without ever reaching a stick phase again.  

If it is to be killed by weak dissipation, the stick phase must be short to begin with. This corresponds to a large 𝑢. The 

slip phase then takes up almost an entire period of the sine wave. Thus, to a good approximation, the amplitude loss 

during the slip phase is given by 𝜂. The critical point is when the velocity amplitude drops from 𝑢/ cos 𝜑 to 𝑢 during 

one period: 

𝜂 = |
𝛥𝐴

𝐴
| = |

𝑢/ cos 𝜑 − 𝑢

𝑢/ cos 𝜑
| = 1 − cos 𝜑 ≈

𝜑2

2
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where the LHS is the change in the amplitude due to dissipation over one period. Using the results from (d) in the 

limit of small 𝜑, we get: 

𝜂 =
𝑚(𝜇𝑠 − 𝜇𝑘)2𝑔2

2𝑘𝑢𝑐
2  

𝑢𝑐 = (𝜇𝑠 − 𝜇𝑘)𝑔√
𝑚

2𝑘𝜂
 

Another derivation method based on the same reasoning is to use explicitly the initial amplitude 𝐴 of the harmonic 

motion: 

𝑢𝑐 = 𝜔0𝐴(1 − 𝜂),          𝐴2 = (𝑥𝑠 − 𝑥0)2 + (𝑚/𝑘)𝑢𝑐
2 

A third method is to consider energy losses |𝛥𝐸/𝐸| = 2𝜂 in the reference frame of the spring’s driven end: 

2𝜂 ∙
1

2
𝑚𝑢𝑐

2 =
1

2
𝑘(𝑥𝑠 − 𝑥0)2 

f. For small rotations, the lower edge of the cylinder will remain stuck to the base. When the cylinder is deformed by 

an angle 𝛼, a point on its upper edge shifts by a distance ℎ𝛼. This corresponds to a rotation angle 𝜃 = ℎ𝛼/𝑟 of the 

door around the cylinder’s axis. The shear force on an area element 𝑑𝐴 of the base is given by: 

𝑑𝐹 = 𝐺𝛼𝑑𝐴 =
𝐺𝑟

ℎ
 𝜃𝑑𝐴 

The corresponding torque is: 

𝑑𝜏 = 𝑟𝑑𝐹 =
𝐺𝑟2

ℎ
 𝜃𝑑𝐴 

Summing over the contact area with the base, the total torque is: 

𝜏 =
𝐺𝑟2

ℎ
 𝜃 · 2𝜋𝑟𝛥𝑟 =

2𝜋𝐺𝑟3𝛥𝑟

ℎ
 𝜃 

Therefore, the torsion coefficient is: 

𝜅 =
2𝜋𝐺𝑟3𝛥𝑟

ℎ
≈ 2000Nm 

The numerical result is not required from the student. Any expression which reduces to the one above in the limit 

𝛥𝑟 ≪ 𝑟 will be accepted. 

g. We neglect the duration of the slip phase. Using the results of section (d) with 𝑀 instead of 𝑚 and rotation instead 

of linear motion, we get: 

𝑡𝑠𝑡𝑖𝑐𝑘 =
2(𝜇𝑠 − 𝜇𝑘)𝑀𝑔𝑟

𝜅𝛺
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𝛺 =
2(𝜇𝑠 − 𝜇𝑘)𝑀𝑔𝑟

𝜅𝑡𝑠𝑡𝑖𝑐𝑘
=

2(𝜇𝑠 − 𝜇𝑘)𝑀𝑔𝑟𝑓

𝜅
=

2(𝜇𝑠 − 𝜇𝑘)𝑀𝑔ℎ𝑓

𝜋𝐺𝑟2𝛥𝑟
= 1.12 · 10−2s−1 

Any expression which reduces to the one above in the limit 𝛥𝑟 ≪ 𝑟 will be accepted. Numerical results from such 

different expressions may vary significantly, since 𝛥𝑟/𝑟 = 0.2 is not really negligible. Each numerical result should 

be checked against its expression.  
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Theoretical Question 3: Birthday Balloon 

SOLUTION 

a. Solution using forces: 

Let the balloon’s radius be 𝑟, and let 𝑃 be the pressure of the inside air. Consider the balloon’s rear half, and write 

down the equilibrium of forces on it along the cylinder’s axis: 

𝜋𝑟2(𝑃 − 𝑃0) = 2𝜋𝑟𝜎𝐿 

On the other hand, let us cut the balloon in half with a plane that runs along its axis, and consider a half-cylindrical 

section of length 𝑥. The equilibrium of forces in perpendicular to the cutting plane reads: 

2𝑟𝑥(𝑃 − 𝑃0) = 2𝑥𝜎𝑡 

from which we derive 𝜎𝐿/𝜎𝑡 = 1/2. 

Solution using energies: 

If we stretch the balloon longitudinally by length 𝑑𝐿, the energy cost is: 

𝐸1 = 2𝜋𝑟𝜎𝐿 · 𝑑𝐿 

If we inflate the balloon radially with an increment 𝑑𝑟, the energy cost is: 

𝐸2 = 𝐿𝜎𝑡 · 2𝜋𝑑𝑟 

The two deformations can be combined while keeping the volume fixed, if we take 𝜋𝑟2𝑑𝐿 = −𝐿𝑑(𝜋𝑟2) = −2𝜋𝐿𝑟𝑑𝑟, 

i.e. 𝑟𝑑𝐿 = −2𝐿𝑑𝑟. The equilibrium state is the one where the combined energy cost 𝐸1 + 𝐸2 of such a deformation is 

zero. This gives again the result 𝜎𝐿/𝜎𝑡 = 1/2. 

b. From part (a), we are reminded of the relation between surface tension and pressure: 

𝑃 = 𝑃0 +
𝜎𝑡

𝑟
= 𝑃0 +

𝑘(𝑟 − 𝑟0)

𝑟0𝑟
= 𝑃0 + 𝑘 (

1

𝑟0
−

1

𝑟
) 

The volume is related to the radius by: 

𝑉 =  𝜋𝑟2𝐿0 

So we get: 

𝑃(𝑉) = 𝑃0 + 𝑘 (
1

𝑟0
− √

𝜋𝐿0

𝑉
) 

The graph of 𝑃 − 𝑃0 is a hyperbola-like function increasing from 0 at 𝑉 = 𝜋𝑟0
2𝐿0 to an asymptotic value of 𝑘/𝑟0 at 

𝑉 → ∞. 
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The maximal pressure is obtained at 𝑉 → ∞: 

𝑃𝑚𝑎𝑥 = 𝑃0 +
𝑘

𝑟0
 

c. The graph of 𝑃 − 𝑃0 as a function of 𝑉 has the same qualitative form as 𝑃 − 𝑃0 = 𝜎𝑡/𝑟 as a function of 𝑟, shown 

below. The graph rises from zero, then decreases, and then increases again. The points 𝑟 = 1cm and 𝑟 = 2.5cm lie in 

the decreasing portion (and not on the local extrema).  

 

The pressures at the two requested points are approximately given by: 

𝑃 − 𝑃0(𝑟 = 1cm) =
𝜎

𝑟
=

30

0.01
= 3000Pa;         𝑃 − 𝑃0(𝑟 = 2.5cm) =

30

0.025
= 1200Pa 

d. The work done on the pressure-controlling mechanism during continuous inflation from volume 𝑉𝑖 to volume 𝑉𝑓 is: 

𝑊𝑚𝑒𝑐ℎ = −𝑃(𝑉𝑓 − 𝑉𝑖) 

The work done on the atmosphere is: 

𝑊𝑠𝑢𝑟𝑟 = 𝑃0(𝑉𝑓 − 𝑉𝑖) 

The condition for the jump is: 

𝑊𝑟𝑢𝑏𝑏𝑒𝑟 + 𝑊𝑠𝑢𝑟𝑟 + 𝑊𝑚𝑒𝑐ℎ = 0 

This translates into Maxwell’s equal-areas condition: 

∫ (𝑃 − 𝑃0)𝑑𝑉
𝑉𝑓

𝑉𝑖

= (𝑃 − 𝑃0)(𝑉𝑓 − 𝑉𝑖) 

Or, equivalently: 
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∫ 𝑃𝑑𝑉
𝑉𝑓

𝑉𝑖

= 𝑃(𝑉𝑓 − 𝑉𝑖) 

The cubic function 𝑃(𝑉) is symmetric around the point 𝑉 = 𝑢, 𝑃 − 𝑃0 = 𝑎𝑐. 

The equal-areas condition is therefore satisfied at: 

𝑃𝑐 = 𝑃0 + 𝑎𝑐 

The volumes 𝑉1 and 𝑉2 are given by the points where: 

(𝑉 − 𝑢)3 − 𝑏(𝑉 − 𝑢) = 0 

This gives: 

𝑉1,2 = 𝑢 ± √𝑏 

e. The range of volumes where a phase separation will occur is 𝑉1 < 𝑉 < 𝑉2. The pressure is constant throughout this 

range, and equals the transition pressure 𝑃𝑐. The graph of 𝑃 − 𝑃0 as a function of 𝑉 is monotonous, with a rising piece, 

a horizontal plateau at 𝑉1 < 𝑉 < 𝑉2, 𝑃 = 𝑃𝑐, followed by another rising piece. At the start and end of the plateau, the 

slope has a discontinuity, i.e. the graph has a kink. 

 

f. The radii of the two domains correspond to the volumes 𝑉1 and 𝑉2. As the total volume increases from 𝑉1 to 𝑉2, the 

volume of the thin domain changes linearly from 𝑉1 to 0. We get: 

𝑉𝑡ℎ𝑖𝑛 =
𝑉1

𝑉2 − 𝑉1

(𝑉2 − 𝑉) 

Converting this into length, we have: 
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𝐿𝑡ℎ𝑖𝑛 =
𝑉𝑡ℎ𝑖𝑛

𝜋𝑟1
2 =

𝑉1(𝑉2 − 𝑉)

𝜋𝑟1
2(𝑉2 − 𝑉1)

 

g. The increase in the balloon’s volume as a result of converting a length 𝐿𝑡ℎ𝑖𝑛 into the thick phase is: 

𝛥𝑉 =
𝑉2 − 𝑉1

𝑉1
𝛥𝑉𝑡ℎ𝑖𝑛 =

𝜋𝑟1
2(𝑉2 − 𝑉1)

𝑉1
𝛥𝐿𝑡ℎ𝑖𝑛 

The corresponding work is: 

𝛥𝑊 = 𝑃𝑐𝛥𝑉 =
𝜋𝑟1

2𝑃𝑐(𝑉2 − 𝑉1)

𝑉1
𝛥𝐿𝑡ℎ𝑖𝑛 

Therefore: 

𝛥𝑊

𝛥𝐿𝑡ℎ𝑖𝑛
=

𝜋𝑟1
2𝑃𝑐(𝑉2 − 𝑉1)

𝑉1
 

Additional discussion (doesn’t appear as part of the question): 

During a realistic inflation, perturbations are not strong enough to keep the system in global equilibrium at all times. 

The experimental graph increases up to 𝑃𝑐, continues to increase some way beyond it, reaches a local maximum, then 

decreases and settles on the plateau at 𝑃𝑐. This over-increase of the pressure is responsible for the fact that inflating a 

balloon is difficult during the first few puffs. After the plateau, the graph sharply increases as discussed above. The 

decrease towards the plateau “overshoots” slightly again, reaches a local minimum and rises again to settle on the 

plateau. This behavior is depicted in the graph below. 

 
The illustration is taken from:  

http://www.science-project.com/_members/science-projects/1989/12/1989-12-body.html 

 

http://www.science-project.com/_members/science-projects/1989/12/1989-12-body.html
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Theoretical Question 1: The Shockley-James Paradox 

MARKING SCHEME 

 

a) 1.0 Finding 𝐵 at the center 0.3  

Writing 𝛷𝐵1 = 𝜋𝑟2𝐵 0.3  

Final answer 0.4 No credit for internal propagating error 

b) 0.8 Understanding that 𝛷𝐵2 = 𝑀𝐼1 0.2  

Understanding that 𝜀2 = −�̇�𝐵2 0.2 Disregard sign 

Final answer 0.4 No credit for internal propagating error 

c) 0.5 Writing 𝜀2 = 2𝜋𝑟𝐸 0.3 Partial credit for 𝜀2 = ∮𝐸𝑑𝑙 - 0.1 

Final answer 0.2 No credit for internal propagating error 

d) 1.0 Writing 𝐹 = 𝑄𝐸 0.2  

Writing 𝐹 as a function of 𝐼1̇ 0.2  

Writing 𝛥𝑝 = ∫𝐹𝑑𝑡 0.2  

Final answer 0.4  

e) 1.1 Understanding that 𝑁 = 𝑛𝑙𝐴 0.2  

Understanding that 𝑣 = 𝐼/(𝑛𝐴𝑞) 0.3  

Understanding that 

𝑝 = 𝑁𝑚𝑣/√1 − 𝑣2/𝑐2 (or 𝛾𝑁𝑚𝑣) 

0.3  

Final answer 0.3 No credit for internal propagating error 

f) 3.3 Understanding that 𝐼 = 𝜆𝑞𝑣 or 𝐼 = 𝑛𝐴𝑞𝑣 0.3  

Understanding that there are separate 𝑣1,2 

and 𝜆1,2 (or 𝑛1,2) 

0.4  

Expressing 𝑝ℎ𝑖𝑑 in terms of the charge 

densities and velocities 

0.4 E.g. 𝑝ℎ𝑖𝑑 = 𝑚𝑙(𝜆2𝛾2𝑣2 − 𝜆1𝛾1𝑣1) 

Cancelling out the charge densities 0.7 E.g. 𝑝ℎ𝑖𝑑 = (𝛾2 − 𝛾1)𝐼𝑙𝑚/𝑞 

Understanding that 𝛥𝐸𝑘 = 𝛥𝑈 0.5  

Finding 𝛥𝑈 = 𝑘𝑄𝑞𝑙/𝑅2 0.4  

Final answer 0.6 If the result was reverse-engineered from part (g), 

this will be the only credit given. 

No credit for internal propagating error. 

g) 0.8 Writing 𝜇 = 𝐼𝜋𝑟2 for part (d) 0.1  

Re-expressing the result of part (d) 0.3  

Writing 𝜇 = 𝐼𝑙2 for part (f) 0.1  

Re-expressing the result of part (f) 0.3 No credit here if the answer to (f) was reverse-

engineered. 

h) 1.5 Correct answer (yes/no) for each statement 0.5*3 No credit at all if a statement was decided 

incorrectly. 
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Theoretical Question 2:  Creaking Door 

MARKING SCHEME 

a1) 0.6 Understood in 𝑇0 , 𝐴 calculation that the motion is 

purely harmonic 

0.1  

Result for 𝑇0 0.2  

Result for 𝐴 0.3 Correct amplitude 𝑢 − 𝑣0 of �̇� – 0.1 

Deducing 𝐴 (using either direct division by 𝜔 or 

energy conservation in the moving frame) – 0.2 

a2) 0.4 Sinusoidal shape with enough periods 0.1  

Starts at a positive slope 0.1  

Starts at 𝑥 > 0 0.1  

Positive mean value of 𝑥 0.1 Judge sparingly, penalize only in obvious cases 

b) 1.2 Enough periods 0.1  

Starts at 𝑣 = 0 (stick) 0.1  

Has finite segments with 𝑣 = 0 (stick phases) 0.3  

The “humps” (slip phases) are always above the 

horizontal segments 

0.2 Always to the same side – 0.1 

Always above – 0.1 

Continuity of 𝑣between the different segments 0.1  

Slope (acceleration) discontinuity between the 

horizontal segments (stick) and the humps (slip) 

0.1  

𝑢 is drawn below the maximum of 𝑣(𝑡) 0.3  

Penalty for clearly unreasonable shape of the 

humps (very asymmetric, contain straight lines 

etc.) 

-0.3  

c) 0.5 Correct result 0.5 Wrote the formal integral for 〈𝑥〉 - 0.1 

d) 2.4 Writing 𝑇 = 𝑡𝑠𝑡𝑖𝑐𝑘 + 𝑡𝑠𝑙𝑖𝑝 0.1  

Finding the detachment offset 𝑥1 = (𝜇𝑠 − 𝜇𝑘)𝑚𝑔/

𝑘 (or finding 2𝑥1) 

0.3  

Finding the stick time 𝑡𝑠𝑡𝑖𝑐𝑘 = 2𝑥1/𝑢 0.2 Correct except for factor-of-2 – 0.1 

Understanding that 𝑡𝑠𝑙𝑖𝑝 is part of a harmonic 

period 𝑇0 

 

0.2  

Finding the phase corresponding to 𝑡𝑠𝑙𝑖𝑝 1.1 Partial credit for the amplitude of the harmonic 

motion – 0.3 

Final result for 𝑡𝑠𝑙𝑖𝑝 0.2 Correct except for factor-of-2 – 0.1 

Final result for 𝑇 0.3 Correct except for factors-of-2 – 0.2 

Otherwise, no credit for propagating errors. 

e) 2.4 Understanding that at 𝑢𝑐 , the box sticks back to the 

floor at the equilibrium of the harmonic motion 

0.4  

 Understanding that at 𝑢𝑐 , 𝑡𝑠𝑡𝑖𝑐𝑘 ≪ 𝑡𝑠𝑙𝑖𝑝  0.4  
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 Writing correct equations for 𝑢𝑐 1.2 Partial credit for correct equations involving the 

amplitude 𝐴 of the harmonic motion or the 

detachment phase 𝜑, without finding them – 0.4 

 Final answer 0.4  

f) 1.0 Relation between 𝜏 and 𝛼 0.4  

 Relation between 𝛼 and 𝜃 0.4  

 Final answer 0.2 Any expression which reduces to the official one 

in the limit 𝛥𝑟 ≪ 𝑟 will be accepted. 

g) 1.5 Understanding that 𝑡𝑠𝑡𝑖𝑐𝑘 ≫ 𝑡𝑠𝑙𝑖𝑝 0.2  

 Correct expression for the result 1.0 Any expression which reduces to the official one 

in the limit 𝛥𝑟 ≪ 𝑟 will be accepted. 

 

Penalty for factor-of-2 (when not propagated) – 

0.2 

Partial credit for using 𝑡𝑠𝑡𝑖𝑐𝑘 from part (d) 

without taking the limit 𝑡𝑠𝑡𝑖𝑐𝑘 ≫ 𝑡𝑠𝑙𝑖𝑝 - 0.3 

 Correct numerical result 0.3 A numerical result without an expression will not 

receive credit. 

If the expression was acceptable but is different 

from the official one, the result will be graded 

according to the student’s expression. 
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Theoretical Question 3: Birthday Balloon 

MARKING SCHEME 

a) 1.8 Relation between 𝑃 − 𝑃0 and 𝜎𝑡 0.8  

Relation between 𝑃 − 𝑃0 and 𝜎𝐿 0.6  

Final answer 0.4 No credit for internal propagating error 

b) 1.0 Finding 𝑃(𝑉) 0.4 Relation between 𝑃 − 𝑃0 and 𝜎𝑡 - 0.1 

Relation between 𝑟 and 𝑉 – 0.1 

Final answer for 𝑃(𝑉) – 0.2 

Graph 0.4 Starts at 𝑉 > 0 – 0.1 

Starts at 𝑃 − 𝑃0 = 0 – 0.1 

Monotonously rising – 0.1 

Convex – 0.1 

Finding 𝑃𝑚𝑎𝑥 0.2  

c) 1.3 Graph 1.1 Starts at 𝑉 > 0 – 0.1 

Starts at 𝑃 − 𝑃0 = 0 – 0.1 

Rising at the end – 0.1 

Decreasing in the middle – 0.2 

Maximum marked – 0.1 

Minimum marked – 0.1 

𝑟 = 0.5cm marked after the maximum – 0.2 

𝑟 = 2.5cm marked after 𝑟 = 0.5cm and before the 

minimum – 0.2 

Penalty for negative 𝑃 − 𝑃0 - 0.3 

𝑃 − 𝑃0 value at 𝑟 = 0.5cm 0.1  

𝑃 − 𝑃0 value at 𝑟 = 2.5cm 0.1  

d) 2.3 Result for 𝑃𝑐 1.2 Partial credit for writing the equal-areas law – 0.6 

Writing the equal-areas law with misplaced 𝑃0 - 0.3 

Equation for 𝑉1,2 0.5  

Result for 𝑉1 0.3  

Result for 𝑉2 0.3  

e) 1.0 Starts at 𝑉 > 0 0.1  

Starts at 𝑃 − 𝑃0 = 0 0.1  

Rising at the end 0.1  

Horizontal in the middle 0.3  

Slope discontinuity at the ends of the 

horizontal segment 

0.1  

𝑃𝑐 − 𝑃0 coincides with the horizontal 

segment 

0.1  

𝑉1 coincides with the beginning of the 

horizontal segment 

0.1  

𝑉2 coincides with the end of the horizontal 0.1  
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segment 

Penalty for negative 𝑃 − 𝑃0 -0.3  

f) 1.4 Finding 𝑉𝑡ℎ𝑖𝑛 1.0 Partial credit for correct equations for 𝑉𝑡ℎ𝑖𝑛 – 0.6 

Partial credit if there are less equations than 

unknowns – 0.2 

Partial credit for linear relation between 𝑉𝑡ℎ𝑖𝑛 and 𝑉 

without correct equations – 0.3 

 Relation between 𝑉𝑡ℎ𝑖𝑛 and 𝐿𝑡ℎ𝑖𝑛 0.2  

 Final answer 0.2 No credit for internal propagating error 

g) 1.2 Writing 𝛥𝑊 = 𝑃𝑐𝛥𝑉 0.3  

 Relation between 𝛥𝑉 and 𝛥𝑉𝑡ℎ𝑖𝑛 0.5 Partial credit for understanding that 𝛥𝑉 is not equal 

but proportional to 𝛥𝑉𝑡ℎ𝑖𝑛 – 0.2 

 Relation between 𝛥𝑉𝑡ℎ𝑖𝑛 and 𝛥𝐿𝑡ℎ𝑖𝑛 0.2  

 Final answer 0.2 No credit for internal propagating error 

 

 

 

 

 


