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§1 USAMO 2009/1, proposed by Ian Le

Given circles ω1 and ω2 intersecting at points X and Y , let `1 be a line through the center of ω1

intersecting ω2 at points P and Q and let `2 be a line through the center of ω2 intersecting ω1 at

points R and S. Prove that if P , Q, R, and S lie on a circle then the center of this circle lies on

line XY .

Let r1, r2, r3 denote the circumradii of ω1, ω2, and ω3, respectively.
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We wish to show that O3 lies on the radical axis of ω1 and ω2. Let us encode the
conditions using power of a point. Because O1 is on the radical axis of ω2 and ω3,

Powω2(O1) = Powω3(O1)

=⇒ O1O
2
2 − r22 = O1O

2
3 − r23.

Similarly, because O2 is on the radical axis of ω1 and ω3, we have

Powω1(O2) = Powω3(O2)

=⇒ O1O
2
2 − r21 = O2O

2
3 − r23.

Subtracting the two gives

(O1O
2
2 − r22)− (O1O

2
2 − r21) = (O1O

2
3 − r23)− (O2O

2
3 − r23)

=⇒ r21 − r22 = O1O
2
3 −O2O

2
3

=⇒ O2O
2
3 − r22 = O1O

2
3 − r21

=⇒ Powω2(O3) = Powω1(O3)

as desired.
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§2 USAMO 2009/2, proposed by Kiran Kedlaya and Tewordos
Amdeberhan

Let n be a positive integer. Determine the size of the largest subset of {−n,−n+ 1, . . . , n− 1, n}
which does not contain three elements a, b, c (not necessarily distinct) satisfying a+ b+ c = 0.

The answer is n with n even and n+ 1 with n odd; the construction is to take all odd
numbers.

To prove this is maximal, it suffices to show it for n even; we do so by induction on
even n ≥ 2 with the base case being trivial. Letting A be the subset, we consider three
cases:

(i) If |A ∩ {−n,−n+ 1, n− 1, n}| ≤ 2, then by the hypothesis for n− 2 we are done.

(ii) If both n ∈ A and −n ∈ A, then there can be at most n− 2 elements in A \ {±n},
one from each of the pairs (1, n− 1), (2, n− 2), . . . and their negations.

(iii) If n, n − 1,−n + 1 ∈ A and −n /∈ A, and at most n − 3 more can be added, one
from each of (1, n − 2), (2, n − 3), . . . and (−2,−n + 2), (−3,−n + 3), . . . . (In
particular −1 /∈ A. Analogous case for −A if n /∈ A.)

Thus in all cases, |A| ≤ n as needed.

Remark. Examples of equality cases:

• All odd numbers

• For n even, the set {1, 2, . . . , n}

• For n = 4, the set {−3, 2, 3, 4} also achieves the optimum. I suspect there are more.
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§3 USAMO 2009/3, proposed by Sam Vandervelde

We define a chessboard polygon to be a simple polygon whose sides are situated along lines of the
form x = a or y = b, where a and b are integers. These lines divide the interior into unit squares,
which are shaded alternately grey and white so that adjacent squares have different colors. To
tile a chessboard polygon by dominoes is to exactly cover the polygon by non-overlapping 1× 2
rectangles. Finally, a tasteful tiling is one which avoids the two configurations of dominoes and
colors shown on the left below. Two tilings of a 3× 4 rectangle are shown; the first one is tasteful,
while the second is not, due to the vertical dominoes in the upper right corner.

Distasteful tilings

Prove that (a) if a chessboard polygon can be tiled by dominoes, then it can be done so

tastefully, and (b) such a tasteful tiling is unique.

Proof of (a): This is easier, and by induction. Let P denote the chessboard polygon
which can be tiled by dominoes.

Consider a lower-left square s of the polygon, and WLOG is it black (other case
similar). Then we have two cases:

• If there exists a domino tiling of P where s is covered by a vertical domino, then
delete this domino and apply induction on the rest of P. This additional domino
will not cause any distasteful tilings.

• Otherwise, assume s is covered by a horizontal domino in every tiling. Again delete
this domino and apply induction on the rest of P. The resulting tasteful tiling
should not have another horizontal domino adjacent to the one covering s, because
otherwise we could have replaced that 2× 2 square with two vertical dominoes to
arrive in the first case. So this additional domino will not cause any distasteful
tilings.

Remark. The second case can actually arise, for example in the following picture.

Thus one cannot just try to cover s with a vertical domino and claim the rest of P is tile-able.
So the induction is not as easy as one might hope.

One can phrase the solution algorithmically too, in the following way: any time we see a
distasteful tiling, we rotate it to avoid the bad pattern. The bottom-left corner eventually
becomes stable, and an induction shows the termination of the algorithm.

Proof of (b): We now turn to proving uniqueness. Suppose for contradiction there
are two distinct tasteful tilings. Overlaying the two tilings on top of each other induces
several cycles of overlapping dominoes at positions where the tilings differ.
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Henceforth, it will be convenient to work with the lattice Z2, treating the squares as
black/white points, and we do so. Let γ be any such cycle and let s denote a lower
left point, and again WLOG it is black. Orient γ counterclockwise henceforth. Restrict
attention to the lattice polygon Q enclosed by γ (we consider points of γ as part of Q).

In one of the two tilings of (lattice points of) Q, the point s will be covered by a
horizontal domino; in the other tiling s will be covered by a vertical domino. From now
on we will focus only on the latter one. Observe that we now have a set of dominoes
along γ, such that γ points from the white point to the black point within each domino.

Now impose coordinates so that s = (0, 0). Consider the stair-case sequence of points
p0 = s = (0, 0), p1 = (1, 0), p2 = (1, 1), p3 = (2, 1), and so on. By hypothesis, p0 is
covered by a vertical domino. Then p1 must be covered by a horizontal domino, to avoid
a distasteful tiling. Then if p2 is in Q, then it must be covered by a vertical domino to
avoid a distasteful tiling, and so on. We may repeat this argument as long the points pi
lie inside Q. (See figure below; the staircase sequence is highlighted by red halos.)

s

a

b

The curve γ by definition should cross y = x− 1 at the point b = (1, 0). Let a denote
the first point of this sequence after p1 for which γ crosses y = x− 1 again.

Now a is tiled by a vertical domino whose black point is to the right of `. But the line
segment ` cuts Q into two parts, and the orientation of γ has this path also entering
from the right. This contradicts the fact that the orientation of γ points only from white
to black within dominoes. This contradiction completes the proof.

Remark. Note the problem is false if you allow holes (consider a 3 × 3 with the middle
square deleted).
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