
4. Let ABC be a triangle. A circle passing through A and B intersects segments AC and BC
at D and E, respectively. Rays BA and ED intersect at F while lines BD and CF intersect
at M . Prove that MF = MC if and only if MB ·MD = MC2.

First Solution: Extend segment DM through M to G such that FG ‖ CD.

1 point for constructing G.

Then MF = MC if and only if quadrilateral CDFG is a parallelogram, or, FD ‖ CG. Hence
MC = MF if and only if ∠GCD = ∠FDA, that is, ∠FDA+ ∠CGF = 180◦.

1 point for reducing side information to angle information.

Because quadrilateral ABED is cyclic, ∠FDA = ∠ABE. It follows that MC = MF if and
only if

180◦ = ∠FDA+ ∠CGF = ∠ABE + ∠CGF,

that is, quadrilateral CBFG is cyclic, which is equivalent to

∠CBM = ∠CBG = ∠CFG = ∠DCF = ∠DCM.

Because ∠DMC = ∠CMB, ∠CBM = ∠DCM if and only if triangles BCM and CDM are
similar, that is

CM

BM
=
DM

CM
,

or MB ·MD = MC2.

5 points for completing the proof.

Remark: The possible marks for this problem are 0, 1, 2, 7. This is not
a very hard geometry problem. If a student knows many facts but cannot
make final connections between the facts, he can only get at most 2 points.

Second Solution:

We first assume that MB · MD = MC2. Because MC
MD = MB

MC and ∠CMD = ∠BMC,
triangles CMD and BMC are similar. Consequently, ∠MCD = ∠MBC.

1 point for proving this fact.

Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE. Hence

∠FCA = ∠MCD = ∠MBC = ∠DBE = ∠DAE = ∠CAE,

implying that AE ‖ CF , so ∠AEF = ∠CFE. Because quadrilateral ABED is cyclic,
∠ABD = ∠AED. Hence

∠FBM = ∠ABD = ∠AED = ∠AEF = ∠CFE = ∠MFD.

Because ∠FBM = ∠DFM and ∠FMB = ∠DMF , triangles BFM and FDM are similar.
Consequently, FM

DM = BM
FM , or FM2 = BM · DM = CM2. Therefore MC2 = MB ·MD

implies MC = MF .



2 points for proving this part.

Now we assume that MC = MF . Applying Ceva’s Theorem to triangle BCF and cevians
BM , CA, FE gives

BA

AF
· FM
MC

· CE
EB

= 1,

implying that BA
AF = BE

EC , so AE ‖ CF .

2 points for proving this fact.

Consequently, ∠DCM = ∠DAE. Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE.
Hence

∠DCM = ∠DAE = ∠DBE = ∠CBM.

Because ∠CBM = ∠DCM and ∠CMB = ∠DMC, triangles BCM and CDM are similar.
Consequently, CM

DM = BM
CM , or CM2 = BM ·DM .

Combining the above, we conclude that MF = MC if and only if MB ·MD = MC2.

2 points for proving this part.

Remark: 3 points for proving MB ·MD = MC2 implying MF = MC;
4 points for MF = MC implying MB ·MD = MC2. Two partial credits
from different parts are not additive. A partial credits in one part and a full
mark in the other are not additive. Possible marks are 0, 1, 2, 3 (only for
completing the first part), 4 (only for completing the second part), 7.



5. Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2

2a2 + (b+ c)2
+

(2b+ c+ a)2

2b2 + (c+ a)2
+

(2c+ a+ b)2

2c2 + (a+ b)2
≤ 8.

First Solution: By multiplying a, b, and c by a suitable factor, we reduce the problem to
the case when a+ b+ c = 3. The desired inequality reads

(a+ 3)2

2a2 + (3− a)2
+

(b+ 3)2

2b2 + (3− b)2
+

(c+ 3)2

2c2 + (3− c)2
≤ 8.

1 point for homogeneous approach and expressing b+ c in terms of
a.

Set

f(x) =
(x+ 3)2

2x2 + (3− x)2

It suffices to prove that f(a) + f(b) + f(c) ≤ 8. Note that

f(x) =
x2 + 6x+ 9

3(x2 − 2x+ 3)
=

1

3
· x

2 + 6x+ 9

x2 − 2x+ 3

=
1

3

(
1 +

8x+ 6

x2 − 2x+ 3

)
=

1

3

(
1 +

8x+ 6

(x− 1)2 + 2

)
≤ 1

3

(
1 +

8x+ 6

2

)
=

1

3
(4x+ 4).

Hence,

f(a) + f(b) + f(c) ≤ 1

3
(4a+ 4 + 4b+ 4 + 4c+ 4) = 8,

as desired.

6 points for completing the proof. No partial credits given in this
part.

Remark: The possible marks for this approach is 0, 1, 7.

Second Solution: Note that

(2x+ y)2 + 2(x− y)2 = 4x2 + 4xy + y2 + 2x2 − 4xy + 2y2

= 3(2x2 + y2).

Setting x = a and y = b+ c yields

(2a+ b+ c)2 + 2(a− b− c)2 = 3(2a2 + (b+ c)2).

Thus, we have

(2a+ b+ c)2

2a2 + (b+ c)2
=

3(2a2 + (b+ c)2)− 2(a− b− c)2

2a2 + (b+ c)2
= 3− 2(a− b− c)2

2a2 + (b+ c)2
.

and its analogous forms. Thus, the desired inequality is equivalent to

(a− b− c)2

2a2 + (b+ c)2
+

(b− a− c)2

2b2 + (c+ a)2
+

(c− a− b)2

2c2 + (a+ b)2
≥ 1

2
.



3 points for transforming into this formation. Serious but unsuc-
cessful attempt to use a and b+ c as two variables will be awarded
1 point.

Because (b+ c)2 ≤ 2(b2 + c2), we have 2a2 +(b+ c)2 ≤ 2(a2 + b2 + c2) and its analogous forms.
It suffices to show that

(a− b− c)2

2(a2 + b2 + c2)
+

(b− a− c)2

2(a2 + b2 + c2)
+

(c− a− b)2

2(a2 + b2 + c2)
≥ 1

2
,

or,
(a− b− c)2 + (b− a− c)2 + (c− a− b)2 ≥ a2 + b2 + c2. (1)

3 points for reducing to this inequality.

Multiplying this out the left-hand side of the last inequality gives 3(a2+b2+c2)−2(ab+bc+ca).
Therefore the inequality (1) is equivalent to 2[a2 + b2 + c2 − (ab + bc + ca)] ≥ 0, which is
evident because

2[a2 + b2 + c2 − (ab+ bc+ ca)] = (a− b)2 + (b− c)2 + (c− a)2.

Equalities hold if (b+ c)2 = 2(b2 + c2) and (c+ a)2 = 2(c2 + a2), that is, a = b = c.

1 point for completing the proof.

Remark: Because the last step is only meaningful with previous steps, the
final 1 point will not be awarded to students if no evidence why it is useful
was provided. One the other hand, any serious attempt to use a and b+ c as
two variables will be awarded 1 point. The possible marks for this approach
is 0, 1, 3, 6, 7.

Third Solution: Given a function f of three variables, define the cyclic sum∑
cyc

f(p, q, r) = f(p, q, r) + f(q, r, p) + f(r, p, q).

We first convert the inequality into

2a(a+ 2b+ 2c)

2a2 + (b+ c)2
+

2b(b+ 2c+ 2a)

2b2 + (c+ a)2
+

2c(c+ 2a+ 2b)

2c2 + (a+ b)2
≤ 5.

Splitting the 5 among the three terms yields the equivalent form∑
cyc

4a2 − 12a(b+ c) + 5(b+ c)2

3[2a2 + (b+ c)2]
≥ 0. (2)

1 points for transforming into this formation.



The numerator of the term shown factors as (2a−x)(2a−5x), where x = b+ c. We will show
that

(2a− x)(2a− 5x)

3(2a2 + x2)
≥ −4(2a− x)

3(a+ x)
. (3)

Indeed, (3) is equivalent to

(2a− x)[(2a− 5x)(a+ x) + 4(2a2 + x2)] ≥ 0,

which reduces to

(2a− x)(10a2 − 3ax− x2) = (2a− x)2(5a+ x) ≥ 0,

evident. We proved that

4a2 − 12a(b+ c) + 5(b+ c)2

3[2a2 + (b+ c)2]
≥ −4(2a− b− c)

3(a+ b+ c)
,

hence (2) follows. Equality holds if and only if 2a = b+ c, 2b = c+ a, 2c = a+ b, i.e., when
a = b = c.

6 points for transform into this formation.

Remark: The possible marks of this approach are 0, 1 and 7.

Fourth Solution: Given a function f of three variables, we define the symmetric sum∑
sym

f(x1, . . . , xn) =
∑
σ

f(xσ(1), . . . , xσ(n))

where σ runs over all permutations of 1, . . . , n (for a total of n! terms). For example, if n = 3,
and we write x, y, z for x1, x2, x3,∑

sym

x3 = 2x3 + 2y3 + 2z3∑
sym

x2y = x2y + y2z + z2x+ x2z + y2x+ z2y∑
sym

xyz = 6xyz.

We combine the terms in the desired inequality over a common denominator and use sym-
metric sum notation to simplify the algebra. The numerator of the difference between the
two sides is ∑

sym

8a6 + 8a5b+ 2a4b2 + 10a4bc+ 10a3b3 − 52a3b2c+ 14a2b2c2.

1 point for multiplying out correctly.



Recalling Schur’s Inequality, we have

a3 + b3 + c3 + 3abc− (a2b+ b2c+ ca + ab2 + bc2 + ca2)

= a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0,

or ∑
sym

a3 − 2a2b+ abc ≥ 0.

Hence,

0 ≤ 14abc
∑
sym

a3 − 2a2b+ abc = 14
∑
sym

a4bc− 28a3b2c+ 14a2b2c2

3 points for proving this inequality.

and by repeated AM-GM Inequality,

0 ≤
∑
sym

4a6 − 4a4bc

(because a46 + a6 + a6 + a6 + b6 + c6 ≥ 6a4bc and its analogous forms)

1 point for proving this inequality.

and
0 ≤

∑
sym

4a6 + 8a5b+ 2a4b2 + 10a3b3 − 24a3b2c.

2 points for proving this inequality.

Adding these three inequalities yields the desired result.

Remark: In this approach, we have 1 + 1 = 2 and the other partial
credits are not additive. (Indeed, because the last two inequalities are in
very artificial forms, it is almost impossible to state and prove them with
the third to last inequality.) The possible marks for this approaches are 0,
1, 2, 3, 7.



6. At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003.
Bert is allowed to make moves of the following form: he may pick a vertex and replace the
number written there by the absolute value of the difference between the numbers written at
the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the
number 0 appears at all six vertices.

Note: Let

A
B

F

C

E
D

denote a position, where A,B,C,D,E, F denote the numbers written on the vertices of the
hexagon. We write

A
B

F

C

E
D (mod 2)

if we consider the numbers written modulo 2.

Solution: Define the sum and maximum of a position to be the sum and maximum of the
six numbers at the vertices. We will show that from any position in which the sum is odd, it
is possible to reach the all-zero position.

1 point for making this claim.

Our strategy alternates between two steps:

(a) from a position with odd sum, move to a position with exactly one odd number;

(b) from a position with exactly one odd number, move to a position with odd sum and
strictly smaller maximum, or to the all-zero position.

Note that no move will ever increase the maximum, so this strategy is guaranteed to terminate,
because each step of type (b) decreases the maximum by at least one, and it can only terminate
at the all-zero position. It suffices to show how each step can be carried out.

2 points for making this claim.

First, consider a position

A
B

F

C

E
D

with odd sum. Then either A+C+E or B+D+F is odd; assume without loss of generality
that A+ C + E is odd. If exactly one of A, C and E is odd, say A is odd, we can make the
sequence of moves

1
B

F

0

0
D → 1

1

1

0

0
0→ 0

1

1

0

0
0→ 0

1

0

0

0
0 (mod 2),

where a letter or number in boldface represents a move at that vertex, and moves that do
not affect each other have been written as a single move for brevity. Hence we can reach a
position with exactly one odd number. Similarly, if A, C, E are all odd, then the sequence
of moves

1
B

F

1

1
D → 1

0

0

1

1
0→ 1

0

0

0

0
0 (mod 2),

brings us to a position with exactly one odd number. Thus we have shown how to carry out
step (a).



2 points for proving this part.

Now assume that we have a position

A
B

F

C

E
D

with A odd and all other numbers even. We want to reach a position with smaller maximum.
Let M be the maximum. There are two cases, depending on the parity of M .

• In this case, M is even, so one of B, C, D, E, F is the maximum. In particular, A < M .

We claim after making moves at B, C, D, E, and F in that order, the sum is odd and
the maximum is less than M . Indeed, the following sequence

1
0

0

0

0
0→ 1

1

0

0

0
0→ 1

1

0

1

0
0→ 1

1

0

1

0
1→ 1

1

0

1

1
1→ 1

1

0

1

1
1 (mod 2).

shows how the numbers change in parity with each move. Call this new position

A′
B′

F ′
C ′

E′
D′. The sum is odd, since there are five odd numbers. The numbers A′,

B′, C ′, D′, E′ are all less than M , since they are odd and M is even, and the maximum
can never increase. Also, F ′ = |A′ − E′| ≤ max{A′, E′} < M . So the maximum has
been decreased.

• In this case, M is odd, so M = A and the other numbers are all less than M .

If C > 0, then we make moves at B, F , A, and F , in that order. The sequence of
positions is

1
0

0

0

0
0→ 1

1

0

0

0
0→ 1

1

1

0

0
0→ 0

1

1

0

0
0→ 0

1

0

0

0
0 (mod 2).

Call this new position A′
B′

F ′
C ′

E′
D′. The sum is odd, since there is exactly one odd

number. As before, the only way the maximum could not decrease is if B′ = A; but this
is impossible, since B′ = |A−C| < A because 0 < C < M = A. Hence we have reached
a position with odd sum and lower maximum.

If E > 0, then we apply a similar argument, interchanging B with F and C with E.

If C = E = 0, then we can reach the all-zero position by the following sequence of moves:

A
B

F

0

0
D → A

A

A

0

0
0→ 0

A

A

0

0
0→ 0

0

0

0

0
0.

(Here 0 represents zero, not any even number.)

Hence we have shown how to carry out a step of type (b), proving the desired result. The
problem statement follows since 2003 is odd.

2 points for proving this part.

Note: Observe that from positions of the form

0
1

1

1

1
0 (mod 2) or rotations

it is impossible to reach the all-zero position, because a move at any vertex leaves the same
value modulo 2. Dividing out the greatest common divisor of the six original numbers does



not affect whether we can reach the all-zero position, so we may assume that the numbers in
the original position are not all even. Then by a more complete analysis in step (a), one can
show from any position not of the above form, it is possible to reach a position with exactly
one odd number, and thus the all-zero position. This gives a complete characterization of
positions from which it is possible to reach the all-zero position.

There are many ways to carry out the case analysis in this problem; the one used here is fairly
economical. The important idea is the formulation of a strategy that decreases the maximum
value while avoiding the “bad” positions described above.

Remark: Partial credits are not additive. 1 point will be rewarded for
somewhat applying a maximum value argument. 3 points will be awarded
for stating the strategies clearly and carrying out some significant progress
in proving the strategies can indeed be realized, in other words, 2 + 2 = 3.
Possible marks for this approach are 0, 1, 2, 3, 6/7. (Because this problem
requires strong combinatorial argument skill, 6 points can be rewarded to
solutions with minimum errors. On the other hand, a score of 5 points shall
be very extremely special, if not possible.)

Second Solution: We will show that if there is a pair of opposite vertices with odd sum
(which of course is true if the sum of all the vertices is odd), then we can reduce to a position
of all zeros.

1 point for making this claim.

Focus on such a pair (a, d) with smallest possible max(a, d). We will show we can always
reduce this smallest maximum of a pair of opposite vertices with odd sum or reduce to the
all-zero position. Because the smallest maximum takes nonnegative integer values, we must
be able to achieve the all-zero position.

1 point for making this claim.

To see this assume without loss of generality that a ≥ d and consider an arc (a, x, y, d) of the
position

a
x

∗
y

∗
d

Consider updating x and y alternately, starting with x. If max(x, y) > a, then in at most
two updates we reduce max(x, y). Thus, we can repeat this alternate updating process and
we must eventually reach a point when max(x, y) ≤ a, and hence this will be true from then
on.

1 point for applying this process.

Under this alternate updating process, the arc of the hexagon will eventually enter an unique
cycle of length four modulo 2 in at most one update. Indeed, we have

1
0

∗
0

∗
0→ 1

1

∗
0

∗
0→ 1

1

∗
1

∗
0→ 1

0

∗
1

∗
0→ 1

0

∗
0

∗
0 (mod 2)



and

1
0

∗
0

∗
0→ 1

0

∗
0

∗
0 (mod 2); 1

1

∗
0

∗
0→ 1

1

∗
0

∗
0 (mod 2)

1
1

∗
1

∗
0→ 1

1

∗
1

∗
0 (mod 2); 1

0

∗
1

∗
0→ 1

0

∗
1

∗
0 (mod 2),

or

0
0

∗
1

∗
1→ 0

1

∗
1

∗
1→ 0

1

∗
0

∗
1→ 0

0

∗
0

∗
1→ 0

0

∗
1

∗
1 (mod 2)

and

0
0

∗
0

∗
1→ 0

0

∗
0

∗
1 (mod 2); 0

0

∗
1

∗
1→ 0

0

∗
1

∗
1 (mod 2)

0
1

∗
1

∗
1→ 0

1

∗
0

∗
1 (mod 2); 0

1

∗
0

∗
1→ 0

1

∗
0

∗
1 (mod 2).

Further note that each possible parity for x and y will occur equally often.

2 points for proving this part.

Applying this alternate updating process to both arcs (a, b, c, d) and (a, e, f, d) of

a
b

f

c

e
d,

we can make the other four entries be at most a and control their parity. Thus we can create
a position

a
x1
x5

x2
x4
d

with xi + xi+3 (i = 1, 2) odd and Mi = max(xi, xi+3) ≤ a. In fact, we can have m =
min(M1,M2) < a, as claimed, unless both arcs enter a cycle modulo 2 where the values
congruent to a modulo 2 are always exactly a. More precisely, because the sum of xi and xi+3

is odd, one of them is not congruent to a and so has its value strictly less than a. Thus both
arcs must pass through the state (a, a, a, d) (modulo 2, this is either (0, 0, 0, 1) or (1, 1, 1, 0))
in a cycle of length four. It is easy to check that for this to happen, d = 0. Therefore, we can
achieve the position

a
a

a

a

a
0.

From this position, the sequence of moves

a
a

a

a

a
0→ a

0

0

a

a
0→ 0

0

0

0

0
0

completes the task.

2 points for proving this part.

Remark: For this approach, we have the following addition rule: 1+1 = 2
(as both of the first two claims are quiet insightful), 1 + 1 + 1 = 2, 1 + 2 = 2
(which seems hard to be realized), 1+1+2 = 1+1+1+2 = 3. The possible
marks for this approach are 0, 1, 2, 3, 6/7. (Because this problem requires
strong combinatorial argument skill, 6 points can be rewarded to solutions
with minimum errors. On the other hand, a score of 5 points shall be very
extremely special, if not possible.)


