Первый Контест Symmetrix: Старшая Лига

1. Prove that for every positive integer n there exists an n-digit number divisible by 5^{n} all of whose digits are odd.
2. A convex polygon \mathcal{P} in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon \mathcal{P} are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.
3. Let $n \neq 0$. For every sequence of integers

$$
A=a_{0}, a_{1}, a_{2}, \ldots, a_{n}
$$

satisfying $0 \leq a_{i} \leq i$, for $i=0, \ldots, n$, define another sequence

$$
t(A)=t\left(a_{0}\right), t\left(a_{1}\right), t\left(a_{2}\right), \ldots, t\left(a_{n}\right)
$$

by setting $t\left(a_{i}\right)$ to be the number of terms in the sequence A that precede the term a_{i} and are different from a_{i}. Show that, starting from any sequence A as above, fewer than n applications of the transformation t lead to a sequence B such that $t(B)=B$.

