Республиканская олимпиада по математике, 2018 год, 11 класс

- 1. В равнобокой трапеции ABCD точка O середина основания AD. Окружность с центром в точке O и радиусом BO касается прямой AB. Пусть отрезок AC пересекает эту окружность в точке K ($C \neq K$), и пусть M такая точка, что ABCM параллелограмм. Описанная окружность треугольника CMD пересекает отрезок AC в точке L ($L \neq C$). Докажите, что AK = CL. (M. Кунгожин)
- **2.** Дано натуральное число $m \geq 2$. Последовательность натуральных чисел (b_0, b_1, \dots, b_m) назовем вогнутой, если $b_k + b_{k-2} \leq 2b_{k-1}$ для всех $2 \leq k \leq m$. Докажите, что существует не более 2^m вогнутых последовательностей, начинающихся с $b_0 = 1$ и $b_1 = 2$. (Д. Елиусизов)
- **3.** \mathbb{N} множество натуральных чисел. Существует ли функция $f: \mathbb{N} \to \mathbb{N}$ такая, что для любых натуральных m и n выполнено равенство f(mf(n)) = f(m) f(m+n) + n? (Сатылханов К.)
- **4.** Докажите, что для любых действительных чисел $a,b,c,d\in(0,1)$ выполняется неравенство $(ab-cd)\,(ac+bd)\,(ad-bc)+\min\,(a,b,c,d)<1.$ (Сатылханов К.)
- **5.** Дано множество $S = \{xy \, (x+y) \, ; | ; x,y \in \mathbb{N} \}$. Пусть a и n натуральные числа такие, что $a+2^k \in S$ для каждого $k=1,2,\ldots,n$. Найдите наибольшее возможное значение n. (Сатылханов K.)
- **6.** Внутри выпуклого четырехугольника ABCD отмечена точка M такая, что $\angle AMB = \angle ADM + \angle BCM$ и $\angle AMD = \angle ABM + \angle DCM$. Докажите, что $AM \cdot CM + BM \cdot DM \geq \sqrt{AB \cdot BC \cdot CD \cdot DA}$. (Н. Седракян)