Республиканская олимпиада по математике, 2005 год, 10 класс

1. При каких нижеперечисленных значениях A, B, C система уравнений

$$\left\{ \begin{array}{l} (x-y)(z-t)(z-x)(z-t)^2 = A, \\ (y-z)(t-x)(t-y)(x-z)^2 = B, \\ (x-z)(y-t)(z-t)(y-z)^2 = C, \end{array} \right.$$

имеет решение в вещественных числах, и при каких нет? а) A=2, B=8, C=6; б) A=2, B=6, C=8.

- **2.** Докажите неравенство $ab+bc+ac \geq 2(a+b+c)$ для положительных действительных чисел $a,\ b,\ c$ если известно, что a+b+c+2=abc. (Д. Елиусизов)
- **3.** Найдите все функции $f: \mathbb{R} \to \mathbb{R}$, где \mathbb{R} поле вещественных чисел, удовлетворяющие тождеству f(xy+f(x))=xf(y)+f(x) для любых $x,y\in \mathbb{R}$. $(\mathcal{A}.\ \textit{Елиусизов})$
- **4.** Известно, что $p, p+2, p+2^n, p+2+2^n$ простые числа. Найдите возможные целые значения n.
- **5.** В остроугольном треугольнике ABC угол $\angle A = 45^{\circ}$, а высоты BB_1 , и CC_1 пересекаются в точке H. Докажите, что прямые BC, B_1C_1 и прямая l, проходящая через точку A перпендикулярно AC, пересекаются в одной точке тогда и только тогда, когда H середина отрезка BB_1 .
- **6.** Найдите все тройки натуральных чисел, удовлетворяющих свойству: произведение любых двух чисел при делении на третье число дает остаток 1.
- 7. Обозначим через S_i , множество i-элементных подмножеств множества $M=\{1,2,...,n\}$ для каждого $0 \le i \le n$. Пусть k < n/2. Докажите, что существует функция $f: S_k \to S_{k+1}$ удовлетворяющая следующим условиям: а) если $X \ne Y \in S_k$, то $f(X) \ne f(Y)$; б) $X \subset f(X)$ для любого $X \in S_k$.
- 8. На окружности радиуса 1 отмечены n точек. Докажите, что существует не более $\frac{n^2}{3}$ различных отрезков, длины которых больше $\sqrt{2}$, с концами в этих точках.