# Dušan Djukić Vladimir Janković Ivan Matić Nikola Petrović 

## IMO Shortlist 2005

## From the book "The IMO Compendium"



## © Springer

(C)2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc. 233, Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholary analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar items, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

## Problems

### 1.1 The Forty-Sixth IMO <br> Mérida, Mexico, July 8-19, 2005

### 1.1.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral triangle $A B C$ : $A_{1}, A_{2}$ on $B C$; $B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$. These points are vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
2. Let $a_{1}, a_{2}, \ldots$ be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer $n$, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave $n$ different remainders on division by $n$. Prove that each integer occurs exactly once in the sequence.
3. Let $x, y$ and $z$ be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

Second Day (July 14)
4. Consider the sequence $a_{1}, a_{2}, \ldots$ defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine all positive integers that are relatively prime to every term of the sequence.
5. Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let $E$ and $F$ be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at $P$, the lines $B D$ and $E F$
meet at $Q$, the lines $E F$ and $A C$ meet at $R$. Consider all the triangles $P Q R$ as $E$ and $F$ vary. Show that the circumcircles of these triangles have a common point other than $P$.
6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

### 1.1.2 Shortlisted Problems

1. A1 (ROM) Find all monic polynomials $p(x)$ with integer coefficients of degree two for which there exists a polynomial $q(x)$ with integer coefficients such that $p(x) q(x)$ is a polynomial having all coefficients $\pm 1$.
2. A2 (BUL) Let $\mathbb{R}^{+}$denote the set of positive real numbers. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(x) f(y)=2 f(x+y f(x))
$$

for all positive real numbers $x$ and $y$.
3. A3 (CZE) Four real numbers $p, q, r, s$ satisfy

$$
p+q+r+s=9 \quad \text { and } \quad p^{2}+q^{2}+r^{2}+s^{2}=21
$$

Prove that $a b-c d \geq 2$ holds for some permutation $(a, b, c, d)$ of ( $p, q, r, s)$.
4. A4 (IND) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+y)+f(x) f(y)=f(x y)+2 x y+1
$$

for all real $x$ and $y$.
5. A5 (KOR) $)^{\mathrm{IMO3}}$ Let $x, y$ and $z$ be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

6. C1 (AUS) A house has an even number of lamps distributed among its rooms in such a way that there are at least three lamps in every room. Each lamp shares a switch with exactly one other lamp, not necessarily from the same room. Each change in the switch shared by two lamps changes their states simultaneously. Prove that for every initial state of the lamps there exists a sequence of changes in some of the switches at the end of which each room contains lamps which are on as well as lamps which are off.
7. C2 (IRN) Let $k$ be a fixed positive integer. A company has a special method to sell sombreros. Each customer can convince two persons to buy a sombrero after he/she buys one; convincing someone already convinced does not count. Each
of these new customers can convince two others and so on. If each one of the two customers convinced by someone makes at least $k$ persons buy sombreros (directly or indirectly), then that someone wins a free instructional video. Prove that if $n$ persons bought sombreros, then at most $n /(k+2)$ of them got videos.
8. C3 (IRN) In an $m \times n$ rectangular board of $m n$ unit squares, adjacent squares are ones with a common edge, and a path is a sequence of squares in which any two consecutive squares are adjacent. Each square of the board can be colored black or white. Let $N$ denote the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge, and let $M$ denote the number of colorings in which there exist at least two non-intersecting black paths from the left edge to the right edge. Prove that $N^{2} \geq 2^{m n} M$.
9. $\mathbf{C 4}$ (COL) Let $n \geq 3$ be a given positive integer. We wish to label each side and each diagonal of a regular $n$-gon $P_{1} \ldots P_{n}$ with a positive integer less than or equal to $r$ so that:
(i) every integer between 1 and $r$ occurs as a label;
(ii) in each triangle $P_{i} P_{j} P_{k}$ two of the labels are equal and greater than the third. Given these conditions:
(a) Determine the largest positive integer $r$ for which this can be done.
(b) For that value of $r$, how many such labellings are there?
10. C5 (SMN) There are $n$ markers, each with one side white and the other side black, aligned in a row so that their white sides are up. In each step, if possible, we choose a marker with the white side up (but not one of outermost markers), remove it and reverse the closest marker to the left and the closest marker to the right of it. Prove that one can achieve the state with only two markers remaining if and only if $n-1$ is not divisible by 3 .
11. C6 (ROM) ${ }^{\mathrm{IMO6}}$ In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.
12. C7 (USA) Let $n \geq 1$ be a given integer, and let $a_{1}, \ldots, a_{n}$ be a sequence of integers such that $n$ divides the sum $a_{1}+\cdots+a_{n}$. Show that there exist permutations $\sigma$ and $\tau$ of $1,2, \ldots, n$ such that $\sigma(i)+\tau(i) \equiv a_{i}(\bmod n)$ for all $i=1, \ldots, n$.
13. C8 (BUL) Let $M$ be a convex $n$-gon, $n \geq 4$. Some $n-3$ of its diagonals are colored green and some other $n-3$ diagonals are colored red, so that no two diagonals of the same color meet inside $M$. Find the maximum possible number of intersection points of green and red diagonals inside $M$.
14. G1 (GRE) In a triangle $A B C$ satisfying $A B+B C=3 A C$ the incircle has center $I$ and touches the sides $A B$ and $B C$ at $D$ and $E$, respectively. Let $K$ and $L$ be the symmetric points of $D$ and $E$ with respect to $I$. Prove that the quadrilateral $A C K L$ is cyclic.
15. G2 (ROM) ${ }^{\mathrm{IMO1}}$ Six points are chosen on the sides of an equilateral triangle $A B C$ : $A_{1}, A_{2}$ on $B C ; B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$. These points are vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
16. G3 (UKR) Let $A B C D$ be a parallelogram. A variable line $l$ passing through the point $A$ intersects the rays $B C$ and $D C$ at points $X$ and $Y$, respectively. Let $K$ and $L$ be the centers of the excircles of triangles $A B X$ and $A D Y$, touching the sides $B X$ and $D Y$, respectively. Prove that the size of angle $K C L$ does not depend on the choice of the line $l$.
17. G4 (POL) ${ }^{\mathrm{IM} 05}$ Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let $E$ and $F$ be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at $P$, the lines $B D$ and $E F$ meet at $Q$, the lines $E F$ and $A C$ meet at $R$. Consider all the triangles $P Q R$ as $E$ and $F$ vary. Show that the circumcircles of these triangles have a common point other than $P$.
18. G5 (ROM) Let $A B C$ be an acute-angled triangle with $A B \neq A C$, let $H$ be its orthocenter and $M$ the midpoint of $B C$. Points $D$ on $A B$ and $E$ on $A C$ are such that $A E=A D$ and $D, H, E$ are collinear. Prove that $H M$ is orthogonal to the common chord of the circumcircles of triangles $A B C$ and $A D E$.
19. G6 (RUS) The median $A M$ of a triangle $A B C$ intersects its incircle $\omega$ at $K$ and $L$. The lines through $K$ and $L$ parallel to $B C$ intersect $\omega$ again at $X$ and $Y$. The lines $A X$ and $A Y$ intersect $B C$ at $P$ and $Q$. Prove that $B P=C Q$.
20. G7 (KOR) In an acute triangle $A B C$, let $D, E, F, P, Q, R$ be the feet of perpendiculars from $A, B, C, A, B, C$ to $B C, C A, A B, E F, F D, D E$, respectively. Prove that $p(A B C) p(P Q R) \geq p(D E F)^{2}$, where $p(T)$ denotes the perimeter of triangle $T$.
21. N1 (POL) $)^{\mathrm{IMO} 4}$ Consider the sequence $a_{1}, a_{2}, \ldots$ defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots)
$$

Determine all positive integers that are relatively prime to every term of the sequence.
22. $\mathbf{N} 2(\mathbf{N E T})^{\mathrm{IMO} 2}$ Let $a_{1}, a_{2}, \ldots$ be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer $n$, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave $n$ different remainders on division by $n$. Prove that each integer occurs exactly once in the sequence.
23. $\mathbf{N} 3$ (MON) Let $a, b, c, d, e$ and $f$ be positive integers. Suppose that the sum $S=a+b+c+d+e+f$ divides both $a b c+d e f$ and $a b+b c+c a-d e-e f-f d$. Prove that $S$ is composite.
24. N4 (COL) Find all positive integers $n>1$ for which there exists a unique integer $a$ with $0<a \leq n!$ such that $a^{n}+1$ is divisible by $n!$.
25. N5 (NET) Denote by $d(n)$ the number of divisors of the positive integer $n$. A positive integer $n$ is called highly divisible if $d(n)>d(m)$ for all positive integers $m<n$. Two highly divisible integers $m$ and $n$ with $m<n$ are called consecutive if there exists no highly divisible integer $s$ satisfying $m<s<n$.
(a) Show that there are only finitely many pairs of consecutive highly divisible integers of the form $(a, b)$ with $a \mid b$.
(b) Show that for every prime number $p$ there exist infinitely many positive highly divisible integers $r$ such that $p r$ is also highly divisible.
26. N6 (IRN) Let $a$ and $b$ be positive integers such that $a^{n}+n$ divides $b^{n}+n$ for every positive integer $n$. Show that $a=b$.
27. N7 (RUS) Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, where $a_{0}, \ldots, a_{n}$ are integers, $a_{n}>0, n \geq 2$. Prove that there exists a positive integer $m$ such that $P(m!)$ is a composite number.

## Solutions

### 2.1 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly, $p(x)$ has to be of the form $p(x)=x^{2}+a x \pm 1$ where $a$ is an integer. For $a= \pm 1$ and $a=0$ polynomial $p$ has the required property: it suffices to take $q=1$ and $q=x+1$, respectively.
Suppose now that $|a| \geq 2$. Then $p(x)$ has two real roots, say $x_{1}, x_{2}$, which are also roots of $p(x) q(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, a_{i}= \pm 1$. Thus

$$
1=\left|\frac{a_{n-1}}{x_{i}}+\cdots+\frac{a_{0}}{x_{i}^{n}}\right| \leq \frac{1}{\left|x_{i}\right|}+\cdots+\frac{1}{\left|x_{i}\right|^{n}}<\frac{1}{\left|x_{i}\right|-1}
$$

which implies $\left|x_{1}\right|,\left|x_{2}\right|<2$. This immediately rules out the case $|a| \geq 3$ and the polynomials $p(x)=x^{2} \pm 2 x-1$. The remaining two polynomials $x^{2} \pm 2 x+1$ satisfy the condition for $q(x)=x \mp 1$.
Summing all, the polynomials $p(x)$ with the desired property are $x^{2} \pm x \pm 1$, $x^{2} \pm 1$ and $x^{2} \pm 2 x+1$.
2. Given $y>0$, consider the function $\varphi(x)=x+y f(x), x>0$. This function is injective: indeed, if $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$ then $f\left(x_{1}\right) f(y)=f\left(\varphi\left(x_{1}\right)\right)=f\left(\varphi\left(x_{2}\right)\right)=$ $f\left(x_{2}\right) f(y)$, so $f\left(x_{1}\right)=f\left(x_{2}\right)$, so $x_{1}=x_{2}$ by the definition of $\varphi$. Now if $x_{1}>x_{2}$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$, we have $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$ for $y=\frac{x_{1}-x_{2}}{f\left(x_{2}\right)-f\left(x_{1}\right)}>0$, which is impossible; hence $f$ is non-decreasing. The functional equation now yields $f(x) f(y)=2 f(x+y f(x)) \geq 2 f(x)$ and consequently $f(y) \geq 2$ for $y>0$. Therefore

$$
f(x+y f(x))=f(x y)=f(y+x f(y)) \geq f(2 x)
$$

holds for arbitrarily small $y>0$, implying that $f$ is constant on the interval $(x, 2 x]$ for each $x>0$. But then $f$ is constant on the union of all intervals $(x, 2 x]$ over all $x>0$, that is, on all of $\mathbb{R}^{+}$. Now the functional equation gives us $f(x)=2$ for all $x$, which is clearly a solution.
Second Solution. In the same way as above we prove that $f$ is non-decreasing, hence its discontinuity set is at most countable. We can extend $f$ to $\mathbb{R} \cup\{0\}$ by defining $f(0)=\inf _{x} f(x)=\lim _{x \rightarrow 0} f(x)$ and the new function $f$ is continuous at 0 as well. If $x$ is a point of continuity of $f$ we have $f(x) f(0)=\lim _{y \rightarrow 0} f(x) f(y)=$ $\lim _{y \rightarrow 0} 2 f(x+y f(x))=2 f(x)$, hence $f(0)=2$. Now, if $f$ is continuous at $2 y$ then $2 f(y)=\lim _{x \rightarrow 0} f(x) f(y)=\lim _{x \rightarrow 0} 2 f(x+y f(x))=2 f(2 y)$. Thus $f(y)=f(2 y)$, for all but countably many values of $y$. Being non-decreasing $f$ is a constant, hence $f(x)=2$.
3. Assume w.l.o.g. that $p \geq q \geq r \geq s$. We have

$$
(p q+r s)+(p r+q s)+(p s+q r)=\frac{(p+q+r+s)^{2}-p^{2}-q^{2}-r^{2}-s^{2}}{2}=30
$$

It is easy to see that $p q+r s \geq p r+q s \geq p s+q r$ which gives us $p q+r s \geq 10$. Now setting $p+q=x$ we obtain $x^{2}+(9-x)^{2}=(p+q)^{2}+(r+s)^{2}=21+2(p q+r s) \geq$ 41 which is equivalent to $(x-4)(x-5) \geq 0$. Since $x=p+q \geq r+s$ we conclude that $x \geq 5$. Thus

$$
25 \leq p^{2}+q^{2}+2 p q=21-\left(r^{2}+s^{2}\right)+2 p q \leq 21+2(p q-r s)
$$

or $p q-r s \geq 2$, as desired.
Remark. The quadruple $(p, q, r, s)=(3,2,2,2)$ shows that the estimate 2 is the best possible.
4. Setting $y=0$ yields $(f(0)+1)(f(x)-1)=0$, and since $f(x)=1$ for all $x$ is impossible, we get $f(0)=-1$. Now plugging in $x=1$ and $y=-1$ gives us $f(1)=1$ or $f(-1)=0$. In the first case setting $x=1$ in the functional equation yields $f(y+1)=2 y+1$, i.e. $f(x)=2 x-1$ which is one solution.
Suppose now that $f(1)=a \neq 1$ and $f(-1)=0$. Plugging $(x, y)=(z, 1)$ and $(x, y)=(-z,-1)$ in the functional equation yields

$$
\begin{align*}
f(z+1) & =(1-a) f(z)+2 z+1  \tag{*}\\
f(-z-1) & =f(z)+2 z+1
\end{align*}
$$

It follows that $f(z+1)=(1-a) f(-z-1)+a(2 z+1)$, i.e. $f(x)=(1-a) f(-x)+$ $a(2 x-1)$. Analogously $f(-x)=(1-a) f(x)+a(-2 x-1)$, which together with the previous equation yields

$$
\left(a^{2}-2 a\right) f(x)=-2 a^{2} x-\left(a^{2}-2 a\right)
$$

Now $a=2$ is clearly impossible. For $a \notin\{0,2\}$ we get $f(x)=\frac{-2 a x}{a-2}-1$. This function satisfies the requirements only for $a=-2$, giving the solution $f(x)=$ $-x-1$. In the remaining case, when $a=0$, we have $f(x)=f(-x)$. Setting $y=z$ and $y=-z$ in the functional equation and subtracting yields $f(2 z)=4 z^{2}-1$, so $f(x)=x^{2}-1$ which satisfies the equation.
Thus the solutions are $f(x)=2 x-1, f(x)=-x-1$ and $f(x)=x^{2}-1$.
5. The desired inequality is equivalent to

$$
\begin{equation*}
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 3 \tag{*}
\end{equation*}
$$

By the Cauchy inequality we have $\left(x^{5}+y^{2}+z^{2}\right)\left(y z+y^{2}+z^{2}\right) \geq\left(x^{5 / 2}(y z)^{1 / 2}+\right.$ $\left.y^{2}+z^{2}\right)^{2} \geq\left(x^{2}+y^{2}+z^{2}\right)^{2}$ and therefore

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}} \leq \frac{y z+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}
$$

We get analogous inequalities for the other two summands in $(*)$. Summing these up yields

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 2+\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}
$$

which together with the well-known inequality $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$ gives us the result.

Second solution. Multiplying the both sides with the common denominator and using the notation as in Chapter 2 (Muirhead's inequality) we get

$$
T_{5,5,5}+4 T_{7,5,0}+T_{5,2,2}+T_{9,0,0} \geq T_{5,5,2}+T_{6,0,0}+2 T_{5,4,0}+2 T_{4,2,0}+T_{2,2,2}
$$

By Schur's and Muirhead's inequalities we have that $T_{9,0,0}+T_{5,2,2} \geq 2 T_{7,2,0} \geq$ $2 T_{7,1,1}$. Since $x y z \geq 1$ we have that $T_{7,1,1} \geq T_{6,0,0}$. Therefore

$$
\begin{equation*}
T_{9,0,0}+T_{5,2,2} \geq 2 T_{6,0,0} \geq T_{6,0,0}+T_{4,2,0} \tag{1}
\end{equation*}
$$

Moreover, Muirhead's inequality combined with $x y z \geq 1$ gives us $T_{7,5,0} \geq T_{5,5,2}$, $2 T_{7,5,0} \geq 2 T_{6,5,1} \geq 2 T_{5,4,0}, T_{7,5,0} \geq T_{6,4,2} \geq T_{4,2,0}$, and $T_{5,5,5} \geq T_{2,2,2}$. Adding these four inequalities to (1) yields the desired result.
6. A room will be called economic if some of its lamps are on and some are off. Two lamps sharing a switch will be called twins. The twin of a lamp $l$ will be denoted $\bar{l}$.
Suppose we have arrived at a state with the minimum possible number of uneconomic rooms, and that this number is strictly positive. Let us choose any uneconomic room, say $R_{0}$, and a lamp $l_{0}$ in it. Let $\overline{l_{0}}$ be in a room $R_{1}$. Switching $l_{0}$ we make $R_{0}$ economic; thereby, since the number of uneconomic rooms cannot be decreased, this change must make room $R_{1}$ uneconomic. Now choose a lamp $l_{1}$ in $R_{1}$ having the twin $\bar{l}_{1}$ in a room $R_{2}$. Switching $l_{1}$ makes $R_{1}$ economic, and thus must make $R_{2}$ uneconomic. Continuing in this manner we obtain a sequence $l_{0}, l_{1}, \ldots$ of lamps with $l_{i}$ in a room $R_{i}$ and $\bar{l}_{i} \neq l_{i+1}$ in $R_{i+1}$ for all $i$. The lamps $l_{0}, l_{1}, \ldots$ are switched in this order. This sequence has the property that switching $l_{i}$ and $\bar{l}_{i}$ makes room $R_{i}$ economic and room $R_{i+1}$ uneconomic.
Let $R_{m}=R_{k}$ with $m>k$ be the first repetition in the sequence $\left(R_{i}\right)$. Let us stop switching the lamps at $l_{m-1}$. The room $R_{k}$ was uneconomic prior to switching $l_{k}$. Thereafter lamps $l_{k}$ and $\bar{l}_{m-1}$ have been switched in $R_{k}$, but since these two lamps are distinct (indeed, their twins $\bar{l}_{k}$ and $l_{m-1}$ are distinct), the room $R_{k}$ is now economic as well as all the rooms $R_{0}, R_{1}, \ldots, R_{m-1}$. This decreases the number of uneconomic rooms, contradicting our assumption.
7. Let $v$ be the number of video winners. One easily finds that for $v=1$ and $v=2$, the number $n$ of customers is at least $2 k+3$ and $3 k+5$ respectively. We prove by induction on $v$ that if $n \geq k+1$ then $n \geq(k+2)(v+1)-1$.
We can assume w.l.o.g. that the total number $n$ of customers is minimum possible for given $v>0$. Consider a person $P$ who was convinced by nobody but himself. Then $P$ must have won a video; otherwise $P$ could be removed from the group without decreasing the number of video winners. Let $Q$ and $R$ be the two persons convinced by $P$. We denote by $\mathscr{C}$ the set of persons made by $P$ through $Q$ to buy a sombrero, including $Q$, and by $\mathscr{D}$ the set of all other customers excluding $P$. Let $x$ be the number of video winners in $\mathscr{C}$. Then there are $v-x-1$ video winners in $\mathscr{D}$. We have $|\mathscr{C}| \geq(k+2)(x+1)-1$, by induction hypothesis if $x>0$ and because $P$ is a winner if $x=0$. Similarly, $|\mathscr{D}| \geq(k+2)(v-x)-1$. Thus $n \geq 1+(k+2)(x+1)-1+(k+2)(v-x)-1$, i.e. $n \geq(k+2)(v+1)-1$.
8. Suppose that a two-sided $m \times n$ board $T$ is considered, where exactly $k$ of the squares are transparent. A transparent square is colored only on one side (then it looks the same from the other side), while a non-transparent one needs to be colored on both sides, not necessarily in the same color.
Let $C=C(T)$ be the set of colorings of the board in which there exist two black paths from the left edge to the right edge, one on top and one underneath, not intersecting at any transparent square. If $k=0$ then $|C|=N^{2}$. We prove by induction on $k$ that $2^{k}|C| \leq N^{2}$ : this will imply the statement of the problem, as $|C|=M$ for $k=m n$.
Let $q$ be a fixed transparent square. Consider any coloring $B$ in $C$ : If $q$ is converted into a non-transparent square, a new board $T^{\prime}$ with $k-1$ transparent squares is obtained, so by the induction hypothesis $2^{k-1}\left|C\left(T^{\prime}\right)\right| \leq N^{2}$. Since $B$ contains two black paths at most one of which passes through $q$, coloring $q$ in either color on the other side will result in a coloring in $C^{\prime}$; hence $\left|C\left(T^{\prime}\right)\right| \geq 2|C(T)|$, implying $2^{k}|C(T)| \leq N^{2}$ and finishing the induction.
Second solution. By path we shall mean a black path from the left edge to the right edge. Let $\mathscr{A}$ denote the set of pairs of $m \times n$ boards each of which has a path. Let $\mathscr{B}$ denote the set of pairs of boards such that the first board has two nonintersecting paths. Obviously, $|\mathscr{A}|=N^{2}$ and $|\mathscr{B}|=2^{m n} M$. To show $|\mathscr{A}| \geq|\mathscr{B}|$ we will construct an injection $f: \mathscr{B} \rightarrow \mathscr{A}$.
Among paths on a given board we define path $x$ to be lower than $y$ if the set of squares "under" $x$ is a subset of the squares under $y$. This relation is a relation of incomplete order. However, for each board with at least one path there exists the lowest path (comparing two intersecting paths, we can always take the "lower branch" on each non-intersecting segment). Now, for a given element of $\mathscr{B}$, we "swap" the lowest path and all squares underneath on the first board with the corresponding points on the other board. This swapping operation is the desired injection $f$. Indeed, since the first board still contains the highest path (which didn't intersect the lowest one), the new configuration belongs to $\mathscr{A}$. On the other hand, this configuration uniquely determines the lowest path on the original element of $\mathscr{B}$; hence no two different elements of $\mathscr{B}$ can go to the same element of $\mathscr{A}$. This completes the proof.
9. Let $[X Y]$ denote the label of segment $X Y$, where $X$ and $Y$ are vertices of the polygon. Consider any segment $M N$ with the maximum label $[M N]=r$. By condition (ii), for any $P_{i} \neq M, N$, exactly one of $P_{i} M$ and $P_{i} N$ is labelled by $r$. Thus the set of all vertices of the $n$-gon splits into two complementary groups: $\mathscr{A}=\left\{P_{i} \mid\left[P_{i} M\right]=r\right\}$ and $\mathscr{B}=\left\{P_{i} \mid\left[P_{i} N\right]=r\right\}$. We claim that a segment $X Y$ is labelled by $r$ if and only if it joins two points from different groups. Assume w.l.o.g. that $X \in \mathscr{A}$. If $Y \in \mathscr{A}$, then $[X M]=[Y M]=r$, so $[X Y]<r$. If $Y \in \mathscr{B}$, then $[X M]=r$ and $[Y M]<r$, so $[X Y]=r$ by (ii), as we claimed.
We conclude that a labelling satisfying (ii) is uniquely determined by groups $\mathscr{A}$ and $\mathscr{B}$ and labellings satisfying (ii) within $A$ and $B$.
(a) We prove by induction on $n$ that the greatest possible value of $r$ is $n-1$. The degenerate cases $n=1,2$ are trivial. If $n \geq 3$, the number of different labels
of segments joining vertices in $\mathscr{A}$ (resp. $\mathscr{B}$ ) does not exceed $|\mathscr{A}|-1$ (resp. $|\mathscr{B}|-1$ ), while all segments joining a vertex in $\mathscr{A}$ and a vertex in $\mathscr{B}$ are labelled by $r$. Therefore $r \leq(|\mathscr{A}|-1)+(|\mathscr{B}|-1)+1=n-1$. The equality is achieved if all the mentioned labels are different.
(b) Let $a_{n}$ be the number of labellings with $r=n-1$. We prove by induction that $a_{n}=\frac{n!(n-1)!}{2^{n-1}}$. This is trivial for $n=1$, so let $n \geq 2$. If $|\mathscr{A}|=k$ is fixed, the groups $\mathscr{A}$ and $\mathscr{B}$ can be chosen in $\binom{n}{k}$ ways. The set of labels used within $\mathscr{A}$ can be selected among $1,2, \ldots, n-2$ in $\binom{n-2}{k-1}$ ways. Now the segments within groups $\mathscr{A}$ and $\mathscr{B}$ can be labelled so as to satisfy (ii) in $a_{k}$ and $a_{n-k}$ ways, respectively. This way every labelling has been counted twice, since choosing $\mathscr{A}$ is equivalent to choosing $\mathscr{B}$. It follows that

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k}\binom{n-2}{k-1} a_{k} a_{n-k} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{a_{k}}{k!(k-1)!} \cdot \frac{a_{n-k}}{(n-k)!(n-k-1)!} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{1}{2^{k-1}} \cdot \frac{1}{2^{n-k-1}}=\frac{n!(n-1)!}{2^{n-1}} .
\end{aligned}
$$

10. Denote by $L$ the leftmost and by $R$ the rightmost marker. To start with, note that the parity of the number of black-side-up markers remains unchanged. Hence, if only two markers remain, these markers must have the same color up. We 'll show by induction on $n$ that the game can be successfully finished if and only if $n \equiv 0$ or $n \equiv 2(\bmod 3)$, and that the upper sides of $L$ and $R$ will be black in the first case and white in the second case.
The statement is clear for $n=2,3$. Assume that we finished the game for some $n$, and denote by $k$ the position of the marker $X$ (counting from the left) that was last removed. Having finished the game, we have also finished the subgames with the $k$ markers from $L$ to $X$ and with the $n-k+1$ markers from $X$ to $R$ (inclusive). Thereby, before $X$ was removed, the upper side of $L$ had been black if $k \equiv 0$ and white if $k \equiv 2(\bmod 3)$, while the upper side of $R$ had been black if $n-k+1 \equiv 0$ and white if $n-k+1 \equiv 2(\bmod 3)$. Markers $L$ and $R$ were reversed upon the removal of $X$. Therefore, in the final position $L$ and $R$ are white if and only if $k \equiv n-k+1 \equiv 0$, which yields $n \equiv 2(\bmod 3)$, and black if and only if $k \equiv n-k+1 \equiv 2$, which yields $n \equiv 0(\bmod 3)$.
On the other hand, a game with $n$ markers can be reduced to a game with $n-3$ markers by removing the second, fourth, and third marker in this order. This finishes the induction.
Second solution. An invariant can be defined as follows. To each white marker with $k$ black markers to its left we assign the number $(-1)^{k}$. Let $S$ be the sum of the assigned numbers. Then it is easy to verify that the remainder of $S$ modulo 3 remains unchanged throughout the game: For example, when a white marker with two white neighbors and $k$ black markers to its left is removed, $S$ decreases by $3(-1)^{t}$.

Initially, $S=n$. In the final position with two markers remained $S$ equals 0 if the two markers are black and 2 if these are white (note that, as before, the two markers must be of the same color). Thus $n \equiv 0$ or $2(\bmod 3)$.
Conversely, a game with $n$ markers is reduced to $n-3$ markers as in the first solution.
11. Assume there were $n$ contestants, $a_{i}$ of whom solved exactly $i$ problems, where $a_{0}+\cdots+a_{5}=n$. Let us count the number $N$ of pairs $(C, P)$, where contestant $C$ solved the pair of problems $P$. Each of the 15 pairs of problems was solved by at least $\frac{2 n+1}{5}$ contestants, implying $N \geq 15 \cdot \frac{2 n+1}{5}=6 n+3$. On the other hand, $a_{i}$ students solved $\frac{i(i-1)}{2}$ pairs; hence

$$
6 n+3 \leq N \leq a_{2}+3 a_{3}+6 a_{4}+10 a_{5}=6 n+4 a_{5}-\left(3 a_{3}+5 a_{2}+6 a_{1}+6 a_{0}\right)
$$

Consequently $a_{5} \geq 1$. Assume that $a_{5}=1$. Then we must have $N=6 n+4$, which is only possible if 14 of the pairs of problems were solved by exactly $\frac{2 n+1}{5}$ students and the remaining one by $\frac{2 n+1}{5}+1$ students, and all students but the winner solved 4 problems.
The problem $t$ not solved by the winner will be called tough and the pair of problems solved by $\frac{2 n+1}{5}+1$ students special.
Let us count the number $M_{p}$ of pairs $(C, P)$ for which $P$ contains a fixed problem $p$. Let $b_{p}$ be the number of contestants who solved $p$. Then $M_{t}=3 b_{t}$ (each of the $b_{t}$ students solved three pairs of problems containing $t$ ), and $M_{p}=3 b_{p}+1$ for $p \neq t$ (the winner solved four such pairs). On the other hand, each of the five pairs containing $p$ was solved by $\frac{2 n+1}{5}$ or $\frac{2 n+1}{5}+1$ students, so $M_{p}=2 n+2$ if the special pair contains $p$, and $M_{p}=2 n+1$ otherwise.
Now since $M_{t}=3 b_{t}=2 n+1$ or $2 n+2$, we have $2 n+1 \equiv 0$ or $2(\bmod 3)$. But if $p \neq t$ is a problem not contained in the special pair, we have $M_{p}=3 b_{p}+1=$ $2 n+1$; hence $2 n+1 \equiv 1(\bmod 3)$, which is a contradiction.
12. Suppose that there exist desired permutations $\sigma$ and $\tau$ for some sequence $a_{1}, \ldots, a_{n}$. Given a sequence $\left(b_{i}\right)$ with sum divisible by $n$ which differs modulo $n$ from $\left(a_{i}\right)$ only in two positions, say $i_{1}$ and $i_{2}$, we show how to construct desired permutations $\sigma^{\prime}$ and $\tau^{\prime}$ for sequence $\left(b_{i}\right)$. In this way, starting from an arbitrary sequence $\left(a_{i}\right)$ for which $\sigma$ and $\tau$ exist, we can construct desired permutations for any other sequence with sum divisible by $n$. All congruences below are modulo $n$.
We know that $\sigma(i)+\tau(i) \equiv b_{i}$ for all $i \neq i_{1}, i_{2}$. We construct the sequence $i_{1}, i_{2}, i_{3}, \ldots$ as follows: for each $k \geq 2, i_{k+1}$ is the unique index such that

$$
\begin{equation*}
\sigma\left(i_{k-1}\right)+\tau\left(i_{k+1}\right) \equiv b_{i_{k}} \tag{*}
\end{equation*}
$$

Let $i_{p}=i_{q}$ be the repetition in the sequence with the smallest $q$. We claim that $p=1$ or $p=2$. Assume on the contrary that $p>2$. Summing up $(*)$ for $k=$ $p, p+1, \ldots, q-1$ and taking the equalities $\sigma\left(i_{k}\right)+\tau\left(i_{k}\right)=b_{i_{k}}$ for $i_{k} \neq i_{1}, i_{2}$ into account we obtain $\sigma\left(i_{p-1}\right)+\sigma\left(i_{p}\right)+\tau\left(i_{q-1}\right)+\tau\left(i_{q}\right) \equiv b_{p}+b_{q-1}$. Since $i_{q}=i_{p}$, it
follows that $\sigma\left(i_{p-1}\right)+\tau\left(i_{q-1}\right) \equiv b_{q-1}$ and therefore $i_{p-1}=i_{q-1}$, a contradiction. Thus $p=1$ or $p=2$ as claimed.
Now we define the following permutations:

$$
\begin{aligned}
& \sigma^{\prime}\left(i_{k}\right)=\sigma\left(i_{k-1}\right) \text { for } k=2,3, \ldots, q-1 \text { and } \sigma^{\prime}\left(i_{1}\right)=\sigma\left(i_{q-1}\right), \\
& \tau^{\prime}\left(i_{k}\right)=\tau\left(i_{k+1}\right) \text { for } k=2,3, \ldots, q-1 \text { and } \tau^{\prime}\left(i_{1}\right)=\left\{\begin{array}{l}
\tau\left(i_{2}\right) \text { if } p=1 \\
\tau\left(i_{1}\right) \text { if } p=2
\end{array}\right. \\
& \sigma^{\prime}(i)=\sigma(i) \text { and } \tau^{\prime}(i)=\tau(i) \text { for } i \notin\left\{i_{1}, \ldots, i_{q-1}\right\}
\end{aligned}
$$

Permutations $\sigma^{\prime}$ and $\tau^{\prime}$ have the desired property. Indeed, $\sigma^{\prime}(i)+\tau^{\prime}(i)=b_{i}$ obviously holds for all $i \neq i_{1}$, but then it must also hold for $i=i_{1}$.
13. For every green diagonal $d$, let $C_{d}$ denote the number of green-red intersection points on $d$. The task is to find the maximum possible value of the sum $\sum_{d} C_{d}$ over all green diagonals.
Let $d_{i}$ and $d_{j}$ be two green diagonals and let the part of polygon $M$ lying between $d_{i}$ and $d_{j}$ have $m$ vertices. There are at most $n-m-1$ red diagonals intersecting both $d_{i}$ and $d_{j}$, while each of the remaining $m-2$ diagonals meets at most one of $d_{i}, d_{j}$. It follows that

$$
\begin{equation*}
C_{d_{i}}+C_{d_{j}} \leq 2(n-m-1)+(m-2)=2 n-m-4 \tag{*}
\end{equation*}
$$

We now arrange the green diagonals in a sequence $d_{1}, d_{2}, \ldots, d_{n-3}$ as follows. It is easily seen that there are two green diagonals $d_{1}$ and $d_{2}$ that divide $M$ into two triangles and an $(n-2)$-gon; then there are two green diagonals $d_{3}$ and $d_{4}$ that divide the $(n-2)$-gon into two triangles and an $(n-4)$-gon, and so on. We continue this procedure until we end up with a triangle or a quadrilateral. Now the part of $M$ between $d_{2 k-1}$ and $d_{2 k}$ has at least $n-2 k$ vertices for $1 \leq k \leq$ $r$, where $n-3=2 r+e, e \in\{0,1\}$; hence, by $(*), C_{d_{2 k-1}}+C_{d_{2 k}} \leq n+2 k-4$. Moreover, $C_{d_{n-3}} \leq n-3$. Summing up yields

$$
\begin{aligned}
C_{d_{1}}+C_{d_{2}}+\cdots+C_{d_{n-3}} & \leq \sum_{k=1}^{r}(n+2 k-4)+e(n-3) \\
& =3 r^{2}+e(3 r+1)=\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil .
\end{aligned}
$$

This value is attained in the following example. Let $A_{1} A_{2} \ldots A_{n}$ be the $n$-gon $M$ and let $l=\left[\frac{n}{2}\right]+1$. The diagonals $A_{1} A_{i}, i=3, \ldots, l$ and $A_{l} A_{j}, j=l+2, \ldots, n$ are colored in green, whereas the diagonals $A_{2} A_{i}, i=l+1, \ldots, n$, and $A_{l+1} A_{j}$, $j=3, \ldots, l-1$ are colored in red.
Thus the answer is $\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil$.
14. Let $F$ be the point of tangency of the incircle with $A C$ and let $M$ and $N$ be the respective points of tangency of $A B$ and $B C$ with the corresponding excircles. If $I$ is the incenter and $I_{a}$ and $P$ respectively the center and the tangency point with ray $A C$ of the excircle corresponding to $A$, we have $\frac{A I}{I L}=\frac{A I}{I F}=\frac{A I_{a}}{I_{a} P}=\frac{A I_{a}}{I_{a} N}$, which implies that $\triangle A I L \sim \triangle A I_{a} N$. Thus $L$ lies on $A N$, and analogously $K$ lies on $C M$. Denote $x=A F$ and $y=C F$. Since $B D=B E, A D=B M=x$, and $C E=B N=y$,
the condition $A B+B C=3 A C$ gives us $D M=y$ and $E N=x$. Now the triangles $C L N$ and $M K A$ are congruent since their altitudes $K D$ and $L E$ satisfy $D K=E L$, $D M=C E$, and $A D=E N$. Thus $\angle A K M=\angle C L N$, implying that $A C K L$ is cyclic.
15. Let $P$ be the fourth vertex of the rhombus $C_{2} A_{1} A_{2} P$. Since $\triangle C_{2} P C_{1}$ is equilateral, we easily conclude that $B_{1} B_{2} C_{1} P$ is also a rhombus. Thus $\triangle P B_{1} A_{2}$ is equilateral and $\angle\left(C_{2} A_{1}, C_{1} B_{2}\right)=\angle A_{2} P B_{1}=60^{\circ}$. It easily follows that $\triangle A C_{1} B_{2} \cong \triangle B A_{1} C_{2}$ and consequently $A C_{1}=B A_{1}$; similarly $B A_{1}=C B_{1}$. Therefore triangle $A_{1} B_{1} C_{1}$ is equilateral. Now it follows from $B_{1} B_{2}=B_{2} C_{1}$ that $A_{1} B_{2}$ bisects $\angle C_{1} A_{1} B_{1}$. Similarly, $B_{1} C_{2}$ and $C_{1} A_{2}$ bisect $\angle A_{1} B_{1} C_{1}$ and $\angle B_{1} C_{1} A_{1}$; hence $A_{1} B_{2}, B_{1} C_{2}$, $C_{1} A_{2}$ meet at the incenter of $A_{1} B_{1} C_{1}$, i.e. at the center of $A B C$.
16. Since $\angle A D L=\angle K B A=180^{\circ}-\frac{1}{2} \angle B C D$ and $\angle A L D=\frac{1}{2} \angle A Y D=\angle K A B$, triangles $A B K$ and $L D A$ are similar. Thus $\frac{B K}{B C}=\frac{B K}{A D}=\frac{A B}{D L}=\frac{D C}{D L}$, which together with $\angle L D C=\angle C B K$ gives us $\triangle L D C \sim \triangle C B K$. Therefore $\angle K C L=360^{\circ}-\angle B C D-$ $(\angle L C D+\angle K C B)=360^{\circ}-\angle B C D-(\angle C K B+\angle K C B)=180^{\circ}-\angle C B K$, which is constant.
17. To start with, we note that points $B, E, C$ are the images of $D, F, A$ respectively under the rotation around point $O$ for the angle $\omega=\angle D O B$, where $O$ is the intersection of the perpendicular bisectors of $A C$ and $B D$. Then $O E=O F$ and $\angle O F E=\angle O A C=90-\frac{\omega}{2}$; hence the points $A, F, R, O$ are on a circle and $\angle O R P=180^{\circ}-\angle O F A$. Analogously, the points $B, E, Q, O$ are on a circle and $\angle O Q P=180^{\circ}-\angle O E B=\angle O E C=\angle O F A$. This shows that $\angle O R P=$ $180^{\circ}-\angle O Q P$, i.e. the point $O$ lies on the circumcircle of $\triangle P Q R$, thus being the desired point.
18. Let $O$ and $O_{1}$ be the circumcenters of triangles $A B C$ and $A D E$, respectively. It is enough to show that $H M \| O O_{1}$. Let $A A^{\prime}$ be the diameter of the circumcircle of $A B C$. We note that if $B_{1}$ is the foot of the altitude from $B$, then $H E$ bisects $\angle C H B_{1}$. Since the triangles $C O M$ and $C H B_{1}$ are similar (indeed, $\angle C H B=\angle C O M=\angle A$ ), we have $\frac{C E}{E B_{1}}=\frac{C H}{H B_{1}}=\frac{C O}{O M}=\frac{2 C O}{A H}=\frac{A^{\prime} A}{A H}$.
Thus, if $Q$ is the intersection point of the bisector of $\angle A^{\prime} A H$ with $H A^{\prime}$, we obtain $\frac{C E}{E B_{1}}=\frac{A^{\prime} Q}{Q H}$, which together with $A^{\prime} C \perp A C$ and $H B_{1} \perp A C$ gives us $Q E \perp A C$. Analogously, $Q D \perp A B$. Therefore $A Q$ is a diameter of the circumcircle of $\triangle A D E$ and $O_{1}$ is the midpoint of $A Q$. It follows that $O O_{1}$ is a middle line in $\triangle A^{\prime} A Q$ which is parallel to $H M$.


Second solution. We again prove that $O O_{1} \| H M$. Since $A A^{\prime}=2 A O$, it suffices to prove $A Q=2 A O_{1}$.
Elementary calculations of angles give us $\angle A D E=\angle A E D=90^{\circ}-\frac{\alpha}{2}$. Applying the law of sines to $\triangle D A H$ and $\triangle E A H$ we now have $D E=D H+E H=\frac{A H \cos \beta}{\cos \frac{\alpha}{2}}+$
$\frac{A H \cos \gamma}{\cos \frac{\alpha}{2}}$. Since $A H=2 O M=2 R \cos \alpha$, we obtain

$$
A O_{1}=\frac{D E}{2 \sin \alpha}=\frac{A H(\cos \beta+\cos \gamma)}{2 \sin \alpha \cos \frac{\alpha}{2}}=\frac{2 R \cos \alpha \sin \frac{\alpha}{2} \cos \left(\frac{\beta-\gamma}{2}\right)}{\sin \alpha \cos \frac{\alpha}{2}}
$$

We now calculate $A Q$. Let $N$ be the intersection of $A Q$ with the circumcircle. Since $\angle N A O=\frac{\beta-\gamma}{2}$, we have $A N=2 R \cos \left(\frac{\beta-\gamma}{2}\right)$. Noting that $\triangle Q A H \sim \triangle Q N M$ (and that $M N=R-O M$ ), we have

$$
A Q=\frac{A N \cdot A H}{M N+A H}=\frac{2 R \cos \left(\frac{\beta-\gamma}{2}\right) \cdot 2 \cos \alpha}{1+\cos \alpha}=\frac{2 R \cos \left(\frac{\beta-\gamma}{2}\right) \cos \alpha}{\cos ^{2} \frac{\alpha}{2}}=2 A O_{1} .
$$

19. We denote by $D, E, F$ the points of tangency of the incircle with $B C, C A, A B$, respectively, by $I$ the incenter, and by $Y^{\prime}$ the intersection of $A X$ and $L Y$. Since $E F$ is the polar line to the point $A$ with respect to the incircle, it meets $A L$ at point $R$ such that $A, R ; K, L$ are conjugated, i.e. $\frac{K R}{R L}=\frac{K A}{A L}$. Then $\frac{K X}{L Y^{\prime}}=$ $\frac{K A}{A L}=\frac{K R}{R L}=\frac{K X}{L \bar{Y}}$ and therefore $L Y=$ $L \bar{Y}$, where $\bar{Y}$ is the intersection of $X R$ and $L Y$. Thus showing that $L Y=L Y^{\prime}$
 (which is the same as showing that $P M=M Q$, i.e. $C P=Q B$ ) is equivalent to showing that $X Y$ contains $R$. Since $X K Y L$ is an inscribed trapezoid, it is enough to show that $R$ lies on its axis of symmetry, that is, $D I$.
Since $A M$ is the median, the triangles $A R B$ and $A R C$ have equal areas and since $\angle(R F, A B)=\angle(R E, A C)$ we have that $1=\frac{S_{\triangle A B R}}{S_{\triangle A C R}}=\frac{(A B \cdot F R)}{(A C \cdot E R)}$. Hence $\frac{A B}{A C}=\frac{E R}{F R}$. Let $I^{\prime}$ be the point of intersection of the line through $F$ parallel to $I E$ with the line $I R$. Then $\frac{F I^{\prime}}{E I}=\frac{F R}{R E}=\frac{A C}{A B}$ and $\angle I^{\prime} F I=\angle B A C$ (angles with orthogonal rays). Thus the triangles $A B C$ and $F I I^{\prime}$ are similar, implying that $\angle F I I^{\prime}=\angle A B C$. Since $\angle F I D=180^{\circ}-\angle A B C$, it follows that $R, I$, and $D$ are collinear.
20. We shall show the inequalities $p(A B C) \geq 2 p(D E F)$ and $p(P Q R) \geq \frac{1}{2} p(D E F)$. The statement of the problem will immediately follow.
Let $D_{b}$ and $D_{c}$ be the reflections of $D$ in $A B$ and $A C$, and let $A_{1}, B_{1}, C_{1}$ be the midpoints of $B C, C A, A B$, respectively. It is easy to see that $D_{b}, F, E, D_{c}$ are collinear. Hence $p(D E F)=D_{b} F+F E+E D_{c}=D_{b} D_{c} \leq D_{b} C_{1}+C_{1} B_{1}+B_{1} D_{c}=$ $\frac{1}{2}(A B+B C+C A)=\frac{1}{2} p(A B C)$.
To prove the second inequality we observe that $P, Q$, and $R$ are the points of tangency of the excircles with the sides of $\triangle D E F$. Let $F Q=E R=x, D R=$ $F P=y$, and $D Q=E P=z$, and let $\delta, \varepsilon, \varphi$ be the angles of $\triangle D E F$ at $D, E, F$, respectively. Let $Q^{\prime}$ and $R^{\prime}$ be the projections of $Q$ and $R$ onto $E F$, respectively. Then $Q R \geq Q^{\prime} R^{\prime}=E F-F Q^{\prime}-R^{\prime} E=E F-x(\cos \varphi+\cos \varepsilon)$. Summing this with the analogous inequalities for $F D$ and $D E$ we obtain

$$
p(P Q R) \geq p(D E F)-x(\cos \varphi+\cos \varepsilon)-y(\cos \delta+\cos \varphi)-z(\cos \delta+\cos \varepsilon)
$$

Assuming w.l.o.g. that $x \leq y \leq z$ we also have $D E \leq F D \leq F E$ and consequently $\cos \varphi+\cos \varepsilon \geq \cos \delta+\cos \varphi \geq \cos \delta+\cos \varepsilon$. Now Chebyshev's inequality gives us $p(P Q R) \geq p(D E F)-\frac{2}{3}(x+y+z)(\cos \varepsilon+\cos \varphi+\cos \delta) \geq p(D E F)-(x+$ $y+z)=\frac{1}{2} p(D E F)$, where we used $x+y+z=\frac{1}{2} p(D E F)$ and the fact that the sum of the cosines of the angles in a triangle does not exceed $\frac{3}{2}$. This finishes the proof.
21. We will show that 1 is the only such number. It is sufficient to prove that for every prime number $p$ there exists some $a_{m}$ such that $p \mid a_{m}$. For $p=2,3$ we have $p \mid a_{2}=48$. Assume now that $p>3$. Appyling Fermat's theorem, we have:

$$
6 a_{p-2}=3 \cdot 2^{p-1}+2 \cdot 3^{p-1}+6^{p-1}-6 \equiv 3+2+1-6=0(\bmod p)
$$

Hence $p \mid a_{p-2}$, i.e. $\operatorname{gcd}\left(p, a_{p-2}\right)=p>1$. This completes the proof.
22. It immediately follows from the condition of the problem that all the terms of the sequence are distinct. We also note that $\left|a_{i}-a_{n}\right| \leq n-1$ for all integers $i, n$ where $i<n$, because if $d=\left|a_{i}-a_{n}\right| \geq n$ then $\left\{a_{1}, \ldots, a_{d}\right\}$ contains two elements congruent to each other modulo $d$, which is a contradiction. It easily follows by induction that for every $n \in \mathbb{N}$ the set $\left\{a_{1}, \ldots, a_{n}\right\}$ consists of consecutive integers. Thus, if we assumed some integer $k$ did not appear in the sequence $a_{1}, a_{2}, \ldots$, the same would have to hold for all integers either larger or smaller than $k$, which contradicts the condition that infinitely many positive and negative integers appear in the sequence. Thus, the sequence contains all integers.
23. Let us consider the polynomial

$$
P(x)=(x+a)(x+b)(x+c)-(x-d)(x-e)(x-f)=S x^{2}+Q x+R
$$

where $Q=a b+b c+c a-d e-e f-f d$ and $R=a b c+d e f$.
Since $S \mid Q, R$, it follows that $S \mid P(x)$ for every $x \in \mathbb{Z}$. Hence, $S \mid P(d)=(d+$ $a)(d+b)(d+c)$. Since $S>d+a, d+b, d+c$ and thus cannot divide any of them, it follows that $S$ must be composite.
24. We will show that $n$ has the desired property if and only if it is prime.

For $n=2$ we can take only $a=1$. For $n>2$ and even, $4 \mid n!$, but $a^{n}+1 \equiv$ $1,2(\bmod 4)$, which is impossible. Now we assume that $n$ is odd. Obviously $(n!-1)^{n}+1 \equiv(-1)^{n}+1=0(\bmod n!)$. If $n$ is composite and $d$ its prime divisor, then $\left(\frac{n!}{d}-1\right)^{n}+1=\sum_{k=1}^{n}\binom{n}{k} \frac{n!^{k}}{d^{k}}$, where each summand is divisible by $n$ ! because $d^{2} \mid n!$; therefore $n$ ! divides $\left(\frac{n!}{d}-1\right)^{n}+1$. Thus, all composite numbers are ruled out.
It remains to show that if $n$ is an odd prime and $n!\mid a^{n}+1$, then $n!\mid a+1$ and therefore $a=n!-1$ is the only relevant value for which $n!\mid a^{n}+1$. Consider any prime number $p \leq n$. If $p \left\lvert\, \frac{a^{n}+1}{a+1}\right.$, we have $p \mid(-a)^{n}-1$ and by Fermat's theorem $p \mid(-a)^{p-1}-1$. Therefore $p \mid(-a)^{(n, p-1)}-1=-a-1$, i.e. $a \equiv-1(\bmod p)$. But then $\frac{a^{n}+1}{a+1}=a^{n-1}-a^{n-2}+\cdots-a+1 \equiv n(\bmod p)$, implying that $p=n$. It
follows that $\frac{a^{n}+1}{a+1}$ is coprime to $(n-1)$ ! and consequently $(n-1)$ ! divides $a+1$. Moreover, the above consideration shows that $n$ must divide $a+1$. Thus $n!\mid a+1$ as claimed. This finishes our proof.
25. We will use the abbreviation HD to denote a "highly divisible integer". Let $n=2^{\alpha_{2}(n)} 3^{\alpha_{3}(n)} \cdots p^{\alpha_{p}(n)}$ be the factorization of $n$ into primes. We have $d(n)=$ $\left(\alpha_{2}(n)+1\right) \cdots\left(\alpha_{p}(n)+1\right)$. We start with the following two lemmas.
Lemma 1. If $n$ is a HD and $p, q$ primes with $p^{k}<q^{l}(k, l \in \mathbb{N})$, then

$$
k \alpha_{q}(n) \leq l \alpha_{p}(n)+(k+1)(l-1)
$$

Proof. The inequality is trivial if $\alpha_{q}(n)<l$. Suppose that $\alpha_{q}(n) \geq l$. Then $n p^{k} / q^{l}$ is an integer less than $q$, and $d\left(n p^{k} / q^{l}\right)<d(n)$, which is equivalent to $\left(\alpha_{q}(n)+1\right)\left(\alpha_{p}(n)+1\right)>\left(\alpha_{q}(n)-l+1\right)\left(\alpha_{p}(n)+k+1\right)$ implying the desired inequality.
Lemma 2. For each $p$ and $k$ there exist only finitely many HD's $n$ such that $\alpha_{p}(n) \leq k$.
Proof. It follows from Lemma 1 that if $n$ is a HD with $\alpha_{p}(n) \leq k$, then $\alpha_{q}(n)$ is bounded for each prime $q$ and $\alpha_{q}(n)=0$ for $q>p^{k+1}$. Therefore there are only finitely many possibilities for $n$.
We are now ready to prove both parts of the problem.
(a) Suppose that there are infinitely many pairs $(a, b)$ of consecutive HD's with $a \mid b$. Since $d(2 a)>d(a)$, we must have $b=2 a$. In particular, $d(s) \leq d(a)$ for all $s<2 a$. All but finitely many HD's $a$ are divisible by 2 and by $3^{7}$. Then $d(8 a / 9)<d(a)$ and $d(3 a / 2)<d(a)$ yield

$$
\begin{gathered}
\left(\alpha_{2}(a)+4\right)\left(\alpha_{3}(a)-1\right)<\left(\alpha_{2}(a)+1\right)\left(\alpha_{3}(a)+1\right) \Rightarrow 3 \alpha_{3}(a)-5<2 \alpha_{2}(a) \\
\alpha_{2}(a)\left(\alpha_{3}(a)+2\right) \leq\left(\alpha_{2}(a)+1\right)\left(\alpha_{3}(a)+1\right) \Rightarrow \alpha_{2}(a) \leq \alpha_{3}(a)+1
\end{gathered}
$$

We now have $3 \alpha_{3}(a)-5<2 \alpha_{2}(a) \leq 2 \alpha_{3}(a)+2 \Rightarrow \alpha_{3}(a)<7$, which is a contradiction.
(b) Assume for a given prime $p$ and positive integer $k$ that $n$ is the smallest HD with $\alpha_{p} \geq k$. We show that $\frac{n}{p}$ is also a HD. Assume the opposite, i.e. that there exists a HD $m<\frac{n}{p}$ such that $d(m) \geq d\left(\frac{n}{p}\right)$. By assumption, $m$ must also satisfy $\alpha_{p}(m)+1 \leq \alpha_{p}(n)$. Then

$$
d(m p)=d(m) \frac{\alpha_{p}(m)+2}{\alpha_{p}(m)+1} \geq d(n / p) \frac{\alpha_{p}(n)+1}{\alpha_{p}(n)}=d(n)
$$

contradicting the initial assumption that $n$ is a HD (since $m p<n$ ). This proves that $\frac{n}{p}$ is a HD. Since this is true for every positive integer $k$ the proof is complete.
26. Assuming $b \neq a$, it trivially follows that $b>a$. Let $p>b$ be a prime number and let $n=(a+1)(p-1)+1$. We note that $n \equiv 1(\bmod p-1)$ and $n \equiv-a(\bmod p)$. It follows that $r^{n}=r \cdot\left(r^{p-1}\right)^{a+1} \equiv r(\bmod p)$ for every integer $r$. We now have $a^{n}+$ $n \equiv a-a=0(\bmod p)$. Thus, $a^{n}+n$ is divisible by $p$, and hence by the condition
of the problem $b^{n}+n$ is also divisible by $p$. However, we also have $b^{n}+n \equiv$ $b-a(\bmod p)$, i.e. $p \mid b-a$, which contradicts $p>b$. Hence, it must follow that $b=a$. We note that $b=a$ trivially fulfills the conditions of the problem for all $a \in \mathbb{N}$.
27. Let $p$ be a prime and $k<p$ an even number. We note that $(p-k)!(k-1)!\equiv$ $(-1)^{k-1}(p-k)!(p-k+1) \ldots(p-1)=(-1)^{k-1}(p-1)!\equiv 1(\bmod p)$ by Wilson's theorem. Therefore

$$
\begin{aligned}
(k-1)!^{n} P((p-k)!) & =\sum_{i=0}^{n} a_{i}[(k-1)!]^{n-i}[(p-k)!(k-1)!]^{i} \\
& \equiv \sum_{i=0}^{n} a_{i}[(k-1)!]^{n-i}=S((k-1)!)(\bmod p),
\end{aligned}
$$

where $S(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$. Hence $p \mid P((p-k)!)$ if and only if $p \mid$ $S((k-1)!)$. Note that $S((k-1)!)$ depends only on $k$. Let $k>2 a_{n}+1$. Then, $s=(k-1)!/ a_{n}$ is an integer which is divisible by all primes smaller than $k$. Hence $S((k-1)!)=a_{n} b_{k}$ for some $b_{k} \equiv 1(\bmod s)$. It follows that $b_{k}$ is divisible only by primes larger than $k$. For large enough $k$ we have $\left|b_{k}\right|>1$. Thus for every prime divisor $p$ of $b_{k}$ we have $p \mid P((p-k)!)$.
It remains to select a large enough $k$ for which $|P((p-k)!)|>p$. We take $k=$ $(q-1)$ !, where $q$ is a large prime. All the numbers $k+i$ for $i=1,2, \ldots, q-1$ are composite (by Wilson's theorem, $q \mid k+1$ ). Thus $p=k+q+r$, for some $r \geq 0$. We now have $|P((p-k)!)|=|P((q+r)!)|>(q+r)!>(q-1)!+q+r=p$, for large enough $q$, since $n=\operatorname{deg} P \geq 2$. This completes the proof.
Remark. The above solution actually also works for all linear polynomials $P$ other than $P(x)=x+a_{0}$. Nevertheless, these particular cases are easily handled. If $\left|a_{0}\right|>1$, then $P(m!)$ is composite for $m>\left|a_{0}\right|$, whereas $P(x)=x+1$ and $P(x)=x-1$ are both composite for, say, $x=5$ !. Thus the condition $n \geq 2$ was redundant.

## Notation and Abbreviations

## A. 1 Notation

We assume familiarity with standard elementary notation of set theory, algebra, logic, geometry (including vectors), analysis, number theory (including divisibility and congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

- $\mathscr{B}(A, B, C), A-B-C$ : indicates the relation of betweenness, i.e., that $B$ is between $A$ and $C$ (this automatically means that $A, B, C$ are different collinear points).
- $A=l_{1} \cap l_{2}$ : indicates that $A$ is the intersection point of the lines $l_{1}$ and $l_{2}$.
$\circ A B$ : line through $A$ and $B$, segment $A B$, length of segment $A B$ (depending on context).
- $[A B$ : ray starting in $A$ and containing $B$.
- $(A B$ : ray starting in $A$ and containing $B$, but without the point $A$.
- $(A B)$ : open interval $A B$, set of points between $A$ and $B$.
- $[A B]$ : closed interval $A B$, segment $A B,(A B) \cup\{A, B\}$.
- $(A B]$ : semiopen interval $A B$, closed at $B$ and open at $A,(A B) \cup\{B\}$.

The same bracket notation is applied to real numbers, e.g., $[a, b)=\{x \mid a \leq x<$ $b\}$.

- $A B C$ : plane determined by points $A, B, C$, triangle $A B C(\triangle A B C)$ (depending on context).
- $[A B, C$ : half-plane consisting of line $A B$ and all points in the plane on the same side of $A B$ as $C$.
- $(A B, C:[A B, C$ without the line $A B$.
- $a, b, c, \alpha, \beta, \gamma$ : the respective sides and angles of triangle $A B C$ (unless otherwise indicated).
- $k(O, r)$ : circle $k$ with center $O$ and radius $r$.
- $d(A, p)$ : distance from point $A$ to line $p$.
- $S_{A_{1} A_{2} \ldots A_{n}}$ : area of $n$-gon $A_{1} A_{2} \ldots A_{n}$ (special case for $n=3, S_{A B C}$ : area of $\triangle A B C$ ).
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ : the sets of natural, integer, rational, real, complex numbers (respectively).
- $\mathbb{Z}_{n}$ : the ring of residues modulo $n, n \in \mathbb{N}$.
- $\mathbb{Z}_{p}$ : the field of residues modulo $p, p$ being prime.
- $\mathbb{Z}[x], \mathbb{R}[x]$ : the rings of polynomials in $x$ with integer and real coefficients respectively.
- $R^{*}$ : the set of nonzero elements of a ring $R$.
- $R[\alpha], R(\alpha)$, where $\alpha$ is a root of a quadratic polynomial in $R[x]:\{a+b \alpha \mid a, b \in$ $R\}$.
- $X_{0}: X \cup\{0\}$ for $X$ such that $0 \notin X$.
- $X^{+}, X^{-}, a X+b, a X+b Y:\{x \mid x \in X, x>0\},\{x \mid x \in X, x<0\},\{a x+b \mid x \in X\}$, $\{a x+b y \mid x \in X, y \in Y\}$ (respectively) for $X, Y \subseteq \mathbb{R}, a, b \in \mathbb{R}$.
- $[x],\lfloor x\rfloor$ : the greatest integer smaller than or equal to $x$.
- $\lceil x\rceil$ : the smallest integer greater than or equal to $x$.

The following is notation simultaneously used in different concepts (depending on context).

- $|A B|,|x|,|S|$ : the distance between two points $A B$, the absolute value of the number $x$, the number of elements of the set $S$ (respectively).
- $(x, y),(m, n),(a, b)$ : (ordered) pair $x$ and $y$, the greatest common divisor of integers $m$ and $n$, the open interval between real numbers $a$ and $b$ (respectively).


## A. 2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible. However, one nonstandard abbreviation stood out as particularly convenient:

- w.l.o.g.: without loss of generality.

Other abbreviations include:

- RHS: right-hand side (of a given equation).
- LHS: left-hand side (of a given equation).
- QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric mean, the harmonic mean (respectively).
- gcd, lcm: greatest common divisor, least common multiple (respectively).
- i.e.: in other words.
- e.g.: for example.


## Codes of the Countries of Origin

| ARG | Argentina | HKG | Hong Kong | POL | Poland |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ARM | Armenia | HUN | Hungary | POR | Portugal |
| AUS | Australia | ICE | Iceland | PRK | Korea, North |
| AUT | Austria | INA | Indonesia | PUR | Puerto Rico |
| BEL | Belgium | IND | India | ROM | Romania |
| BLR | Belarus | IRE | Ireland | RUS | Russia |
| BRA | Brazil | IRN | Iran | SAF | South Africa |
| BUL | Bulgaria | ISR | Israel | SER | Serbia |
| CAN | Canada | ITA | Italy | SIN | Singapore |
| CHN | China | JAP | Japan | SLO | Slovenia |
| COL | Colombia | KAZ | Kazakhstan | SMN | Serbia and Montenegro |
| CRO | Croatia | KOR | Korea, South | SPA | Spain |
| CUB | Cuba | KUW | Kuwait | SVK | Slovakia |
| CYP | Cyprus | LAT | Latvia | SWE | Sweden |
| CZE | Czech Republic | LIT | Lithuania | THA | Thailand |
| CZS | Czechoslovakia | LUX | Luxembourg | TUN | Tunisia |
| EST | Estonia | MCD | Macedonia | TUR | Turkey |
| FIN | Finland | MEX | Mexico | TWN | Taiwan |
| FRA | France | MON | Mongolia | UKR | Ukraine |
| FRG | Germany, FR | MOR | Morocco | USA | United States |
| GBR | United Kingdom | NET | Netherlands | USS | Soviet Union |
| GDR | Germany, DR | NOR | Norway | UZB | Uzbekistan |
| GEO | Georgia | NZL | New Zealand | VIE | Vietnam |
| GER | Germany | PER | Peru | YUG | Yugoslavia |
| GRE | Greece | PHI | Philippines |  |  |

