40th International Mathematical Olympiad Bucharest Day I July 16, 1999

1. Determine all finite sets S of at least three points in the plane which satisfy the following condition:

for any two distinct points A and B in S, the perpendicular bisector of the line segment AB is an axis of symmetry for S.

- 2. Let n be a fixed integer, with $n \ge 2$.
 - (a) Determine the least constant C such that the inequality

$$\sum_{1 \le i < j \le n} x_i x_j (x_i^2 + x_j^2) \le C \left(\sum_{1 \le i \le n} x_i\right)^4$$

holds for all real numbers $x_1, \dots, x_n \ge 0$.

- (b) For this constant C, determine when equality holds.
- 3. Consider an $n \times n$ square board, where n is a fixed even positive integer. The board is divided into n^2 unit squares. We say that two different squares on the board are adjacent if they have a common side.

N unit squares on the board are marked in such a way that every square (marked or unmarked) on the board is adjacent to at least one marked square.

Determine the smallest possible value of N.

40th International Mathematical Olympiad Bucharest Day II July 17, 1999

4. Determine all pairs (n, p) of positive integers such that

p is a prime, n not exceeded 2p, and $(p-1)^n + 1$ is divisible by n^{p-1} .

5. Two circles G_1 and G_2 are contained inside the circle G, and are tangent to G at the distinct points M and N, respectively. G_1 passes through the center of G_2 . The line passing through the two points of intersection of G_1 and G_2 meets G at A and B. The lines MA and MB meet G_1 at C and D, respectively.

Prove that CD is tangent to G_2 .

6. Determine all functions $f : \mathbf{R} \longrightarrow \mathbf{R}$ such that

f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1

for all real numbers x, y.