EGMO 2016, Day 1 - Solutions

Problem 1. Let n be an odd positive integer, and let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative real numbers. Show that

$$
\min _{i=1, \ldots, n}\left(x_{i}^{2}+x_{i+1}^{2}\right) \leq \max _{j=1, \ldots, n}\left(2 x_{j} x_{j+1}\right),
$$

where $x_{n+1}=x_{1}$.
Solution. In what follows, indices are reduced modulo n. Consider the n differences $x_{k+1}-x_{k}, k=1, \ldots, n$. Since n is odd, there exists an index j such that $\left(x_{j+1}-x_{j}\right)\left(x_{j+2}-x_{j+1}\right) \geq 0$. Without loss of generality, we may and will assume both factors non-negative, so $x_{j} \leq x_{j+1} \leq x_{j+2}$. Consequently,

$$
\min _{k=1, \ldots, n}\left(x_{k}^{2}+x_{k+1}^{2}\right) \leq x_{j}^{2}+x_{j+1}^{2} \leq 2 x_{j+1}^{2} \leq 2 x_{j+1} x_{j+2} \leq \max _{k=1, \ldots, n}\left(2 x_{k} x_{k+1}\right) .
$$

Remark. If $n \geq 3$ is odd, and one of the x_{k} is negative, then the conclusion may no longer hold. This is the case if, for instance, $x_{1}=-b$, and $x_{2 k}=a$, $x_{2 k+1}=b, k=1, \ldots,(n-1) / 2$, where $0 \leq a<b$, so the string of numbers is

$$
-b, b, a, b, a, \ldots, b, a .
$$

If n is even, the conclusion may again no longer hold, as shown by any string of alternate real numbers: a, b, a, b, \ldots, a, b, where $a \neq b$.

Problem 2. Let $A B C D$ be a cyclic quadrilateral, and let diagonals $A C$ and $B D$ intersect at X. Let C_{1}, D_{1} and M be the midpoints of segments $C X$, $D X$ and $C D$, respectively. Lines $A D_{1}$ and $B C_{1}$ intersect at Y, and line $M Y$ intersects diagonals $A C$ and $B D$ at different points E and F, respectively. Prove that line $X Y$ is tangent to the circle through E, F and X.

Solution. We are to prove that $E X Y=E F X$; alternatively, but equivalently, $A Y X+X A Y=B Y F+X B Y$.

Since the quadrangle $A B C D$ is cyclic, the triangles $X A D$ and $X B C$ are similar, and since $A D_{1}$ and $B C_{1}$ are corresponding medians in these triangles, it follows that $X A Y=X A D_{1}=X B C_{1}=X B Y$.

Finally, $\quad A Y X=B Y F$, since X and M are corresponding points in the similar triangles $A B Y$ and $C_{1} D_{1} Y$: indeed, $\quad X A B=X D C=M C_{1} D_{1}$, and $X B A=X C D=M D_{1} C_{1}$.

Problem 3. Let m be a positive integer. Consider a $4 m \times 4 m$ array of square unit cells. Two different cells are to each other if they are in either the same row or in the same column. No cell is related to itself. Some cells are coloured blue, such that every cell is related to at least two blue cells. Determine the minimum number of blue cells.

Solution 1 (Israel). The required minimum is $6 m$ and is achieved by a diagonal string of $m 4 \times 4$ blocks of the form below (bullets mark centres of blue cells):

In particular, this configuration shows that the required minimum does not exceed $6 m$.

We now show that any configuration of blue cells satisfying the condition in the statement has cardinality at least 6 m .

Fix such a configuration and let m_{1}^{r} be the number of blue cells in rows containing exactly one such, let m_{2}^{r} be the number of blue cells in rows containing exactly two such, and let m_{3}^{r} be the number of blue cells in rows containing at least three such; the numbers m_{1}^{c}, m_{2}^{c} and m_{3}^{c} are defined similarly.

Begin by noticing that $m_{3}^{c} \geq m_{1}^{r}$ and, similarly, $m_{3}^{r} \geq m_{1}^{c}$. Indeed, if a blue cell is alone in its row, respectively column, then there are at least two other blue cells in its column, respectively row, and the claim follows.

Suppose now, if possible, the total number of blue cells is less than 6 m . We will show that $m_{1}^{r}>m_{3}^{r}$ and $m_{1}^{c}>m_{3}^{c}$, and reach a contradiction by the preceding: $m_{1}^{r}>m_{3}^{r} \geq m_{1}^{c}>m_{3}^{c} \geq m_{1}^{r}$.

We prove the first inequality; the other one is dealt with similarly. To this end, notice that there are no empty rows - otherwise, each column would contain at least two blue cells, whence a total of at least $8 m>6 m$ blue cells, which is a contradiction. Next, count rows to get $m_{1}^{r}+m_{2}^{r} / 2+m_{3}^{r} / 3 \geq 4 m$,
and count blue cells to get $m_{1}^{r}+m_{2}^{r}+m_{3}^{r}<6 m$. Subtraction of the latter from the former multiplied by $3 / 2$ yields $m_{1}^{r}-m_{3}^{r}>m_{2}^{r} / 2 \geq 0$, and the conclusion follows.

Solution 2. To prove that a minimal configuration of blue cells satisfying the condition in the statement has cardinality at least 6 m , consider a bipartite graph whose vertex parts are the rows and the columns of the array, respectively, a row and a column being joined by an edge if and only if the two cross at a blue cell. Clearly, the number of blue cells is equal to the number of edges of this graph, and the relationship condition in the statement reads: for every row r and every column $c, \operatorname{deg} r+\operatorname{deg} c-\epsilon(r, c) \geq 2$, where $\epsilon(r, c)=2$ if r and c are joined by an edge, and $\epsilon(r, c)=0$ otherwise.

Notice that there are no empty rows/columns, so the graph has no isolated vertices. By the preceding, the cardinality of every connected component of the graph is at least 4 , so there are at most $2 \cdot 4 m / 4=2 m$ such and, consequently, the graph has at least $8 m-2 m=6 m$ edges. This completes the proof.

Remarks. The argument in the first solution shows that equality to 6 m is possible only if $m_{1}^{r}=m_{3}^{r}=m_{1}^{c}=m_{3}^{c}=3 m, m_{2}^{r}=m_{2}^{c}=0$, and there are no rows, respectively columns, containing four blue cells or more.

Consider the same problem for an $n \times n$ array. The argument in the second solution shows that the corresponding minimum is $3 n / 2$ if n is divisible by 4 , and $3 n / 2+1 / 2$ if n is odd; if $n \equiv 2(\bmod 4)$, the minimum in question is $3 n / 2+1$. To describe corresponding minimal configurations C_{n}, refer to the minimal configurations $C_{2}, C_{3}, C_{4}, C_{5}$ below:

The case $n \equiv 0(\bmod 4)$ was dealt with above: a C_{n} consists of a diagonal string of $n / 4$ blocks C_{4}. If $n \equiv r(\bmod 4), r=2,3$, a C_{n} consists of a diagonal string of $\lfloor n / 4\rfloor$ blocks C_{4} followed by a C_{r}, and if $n \equiv 1(\bmod 4)$, a C_{n} consists of a diagonal string of $\lfloor n / 4\rfloor-1$ blocks C_{4} followed by a C_{5}.

Minimal configurations are not necessarily unique (two configurations being equivalent if one is obtained from the other by permuting the rows and/or the columns). For instance, if $n=6$, the configurations below are both minimal:

