Геологическое исследование

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Компания «КазЖелУгЗол» готовит крупномаштабный-план по добыче полезных ископаемых. Компания наняла геолога Асем для исследования n месторождений. Для i-го месторождения из списка компании Асем определила оценку c_i — ожидаемый объем добычи. Поскольку необходимо построить склад возле месторождений, было решено что работа по добыче будет проходить в последовательных месторождениях из списка.

Тем временем отдел финансовой аналитики компании разработал оценку плана $f_k(l,r)$ равную k-му по убыванию значению среди чисел $c_l, c_{l+1}, ..., c_r$. Если в отрезке от l до r менее k чисел, значение $f_k(l,r)$ равно нулю.

Директору компании стало интересно, чему равно значение $S = \sum_{1 \le l \le r \le n} f_k(l,r)$ для какого то k (суммарное значение $f_k(l,r)$ по всем отрезкам (l,r)). Асем уверенна в корректности значений c_i . Помогите написать программу для эффективного подсчета значения S.

Формат входных данных

В первой строке даны два числа n и $k(1\leqslant n\leqslant 10^5, 1\leqslant k\leqslant min(n,500))$. Во второй строке даны n чисел $c_1,c_2,...,c_n$ – оценки месторождений $(1\leqslant c_i\leqslant 10^7)$.

Формат выходных данных

Выведите одно число S.

Система оценки

Данная задача содержит 9 подзадач, в которых выполняются следующие ограничения:

- 1. Тесты из условия. Оценивается в 0 баллов.
- 2. $n \le 100$. Оценивается в 11 баллов.
- 3. $n \leq 5000, k = 1$. Оценивается в 11 баллов.
- 4. $n \leq 5000$. Оценивается в 12 баллов.
- 5. $n \leq 10^5$, k = 1. Оценивается в 15 балла.
- 6. $n \leq 10^5$, k = 2. Оценивается в 10 баллов.
- 7. $n \leq 10^5$, $a_i \leq 2$. Оценивается в 9 баллов.
- 8. $n \leq 10^5$, $a_i \leq 500$. Оценивается в 14 баллов.
- 9. Исходные условия задачи. Оценивается в 18 баллов.

Примеры

стандартный ввод	стандартный вывод
5 3	10
1 2 3 2 1	
7 4	10
1 1 1 1 1 1 1	

Замечание

В первом примере $f_3(1,3) = f_3(3,5) = 1$, $f_3(1,4) = f_3(1,5) = f_3(2,4) = f_3(2,5) = 2$.

Витя - черепашка-ниндзя

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Витя готовится стать членом команды нового поколения черепашек-ниндзя. Ему осталось пройти самое важное испытание - решить задачу Донателло.

Донателло дал Вите таблицу состоящую из n строк и m столбцов. В каждой клетке таблицы написано целое число. Изначально, на клетке в левом верхнем углу таблицы находится фишка. Фишку можно двигать либо на одну клетку вниз либо на одну клетку вправо и только если на соответствующей стороне существует другая клетка. Фишку двигают пока она не окажется на клетке в правом нижнем углу таблицы.

Результатом пути называется сумма чисел на клетках по которым прошла фишка (включая начальную и последнюю клетку). Вите нужно найти путь с максимальным результатом.

Узнав об этом испытании, Леонардо решил что Витя очень легко справится с таким заданием (при его то потенциале). Поэтому, он решил усложнить задачу.

На этот раз, перед тем как двигать фишку, Витя может попросить Леонардо сделать некоторое (возможно нулевое) количество вертикальных и горизонтальных разрезов на таблице своими катанами. Резать можно только по краям клеток и можно считать что катаны Леонардо всегда длиннее сторон таблицы (то есть таблица режется от края до края). В итоге, таблица разделяется на секции. Теперь фишка стоит на левой верхней **секции** и может двигаться на секцию вниз или на секцию вправо пока не окажется на правой нижней секции.

Результатом такого пути называется сумма чисел на клетках секций по которым прошла фишка (включая начальную и последнюю секцию).

Помогите Вите разрезать таблицу и найти путь так, чтобы максимизировать результат.

Формат входных данных

В первой строке даны два целых числа n и m ($1 \le n \le 1000$, $1 \le m \le 50$). В следующих n строках даны по m целых чисел – j-тое число на i-той строке $a_{i,j}$ ($-10^9 \le a_{i,j} \le 10^9$) является числом на клетке в i-той строке и j-том столбце таблицы.

Формат выходных данных

Выведите одно целое число – максимальный результат пути которого можно достичь, после совершения некоторого (возможно нулевого) количества разрезов на таблице.

Система оценки


Данная задача содержит 8 подзадач, в которых выполняются следующие ограничения:

- 1. Тесты из условия. Оценивается в 0 баллов.
- 2. $a_{i,j} > 0$. Оценивается в 5 баллов.
- 3. $a_{i,j} < 0$. Оценивается в 12 баллов.
- 4. m = 2. Оценивается в 10 баллов.
- 5. $n, m \leqslant 10$. Оценивается в 10 баллов.
- 6. $n, m \le 40$. Оценивается в 20 баллов.
- 7. $n \le 100, m \le 50$. Оценивается в 21 балл.
- 8. Исходные условия задачи. Оценивается в 22 балла.

Примеры

стандартный ввод	стандартный вывод
2 2	2604
2000 600	
0 4	
4 5	78
4 23 -10 -2 3	
0 1 7 -3 0	
2 3 -3 30 1	
4 -17 8 0 5	

Замечание

Пояснение ко второму примеру.

Выборы в Массивтобе

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 1024 мегабайта

В городе Массивтобе проводятся очередные выборы акима. Массивтобе — современный город имеющий систему дорог в виде дерева. В нем есть n домов соединенных n-1 двусторонними дорогами так, что из каждого дома можно добраться до всех остальных передвигаясь по этим дорогам.

Айбар — начинающий блогер, который хочет осветить выборы. Он решил снять видео социального опроса в котором он собирается идти по простому пути в городе и спрашивать за кого голосует жители каждого дома. Путь считается простым если он проходит по каждой вершине не более одного раза.

Айбар знает, что видео не наберет много просмотров если в нем не будет доминантного кандидата. Кандидат считается доминантным если более половины опрошенных в видео голосуют за него.

Всего есть n кандидатов с номерами от 1 до n. Вам дан список v_1, v_2, \ldots, v_n , где значение v_i означает, за кого голосуют жители i-го дома. Чтобы произвести как можно больше контента Айбар просит вас посчитать сколько есть различных путей в Массивтобе с доминантным кандидатом. Путь идущий из вершины v в вершину u, считается таким же как и путь из u в v.

Формат входных данных

В первой строке находится одно целое число $n \ (1 \leqslant n \leqslant 77777)$.

Во второй строке находятся n целых чисел v_1, v_2, \ldots, v_n $(1 \le v_i \le n)$.

В каждом из следующих n-1 строк находятся два целых числа a и b $(1 \leqslant a, b \leqslant n, a \neq b)$ означающие существование дороги между домами a и b.

Формат выходных данных

Выведите одно целое число — количество различных путей с доминантным кандидатом.

Система оценки

Данная задача содержит 9 подзадач, в которых выполняются следующие ограничения:

- 1. Примеры из условия. Оценивается в 0 баллов.
- 2. $n \le 100$. Гарантируется, что $a_i = i, b_i = i+1$ для всех $i \ (1 \le i < n)$. Оценивается в 6 баллов.
- 3. $n \le 2000$. Гарантируется, что $a_i = i, b_i = i+1$ для всех $i \ (1 \le i < n)$. Оценивается в 7 баллов.
- 4. $n \leq 2000$. Оценивается в 8 баллов.
- 5. Гарантируется, что $a_i = 1, b_i = i+1$ для всех $i \ (1 \le i < n)$. Оценивается в 10 баллов.
- 6. $v_i \le 100$. Гарантируется, что $a_i = i, b_i = i+1$ для всех $i \ (1 \le i < n)$. Оценивается в 9 баллов.
- 7. Гарантируется, что $a_i = i, b_i = i+1$ для всех $i \ (1 \le i < n)$. Оценивается в 13 баллов.
- 8. $v_i \leqslant 100$. Оценивается в 12 баллов.
- 9. Исходные условия задачи. Оценивается в 35 баллов.

Пример

стандартный вывод
13