Девятый класс

Задача 9-1. (автор А.И.Жиров)

1.

Название вещества	Формула	М _г (тв.)	M _r (газ)	Состав газ. фазы
Хлористый аммоний	NH ₄ Cl	53,5	28,88	NH ₃ , HCl
Хлористая ртуть	Hg ₂ Cl ₂	472	237,04	Hg, HgCl ₂
Хлорная ртуть	HgCl ₂	271,5	271,98	HgCl ₂
Фосфорный хлорангидрид	PCl ₅	208,25	140,04	PCl ₅ , PCl ₃ , Cl ₂
Висмутовый хлорангидрид	BiCl ₃	315,3	327,74	BiCl ₃
Цирконовый хлорангидрид	ZrCl ₄	233	235,34	ZrCl ₄ (HfCl ₄)
Ниобовый хлорангидрид	NbCl ₅	270,16	317,74	TaCl ₅ , (NbCl ₅)
Танталовый хлорангидрид	TaCl ₅	358,2	277,2	NbCl ₅ (TaCl ₅)
Хлористый алюминий	AlCl ₃	133,3	269,7	Al ₂ Cl ₆
Хлорное железо	FeCl ₃	161,8	328,9	Fe ₂ Cl ₆

2.

$$NH_{4}Cl_{(TB.)} \longrightarrow NH_{3(\Gamma.)} + HCl_{(\Gamma.)}$$

$$Hg_{2}Cl_{2(TB.)} \longrightarrow Hg_{(\Gamma.)} + HgCl_{2(\Gamma.)}$$

$$PCl_{5(TB.)} \longrightarrow PCl_{5(\Gamma.)} \longrightarrow PCl_{3(\Gamma.)} + Cl_{2(\Gamma.)}$$

$$BiCl_{3(TB.)} \longrightarrow BiCl_{3(\Gamma.)}$$

$$ZrCl_{4(TB.)} \longrightarrow ZrCl_{4(\Gamma.)}$$

$$NbCl_{5(TB.)} \longrightarrow NbCl_{5(\Gamma.)}$$

$$TaCl_{5(TB.)} \longrightarrow TaCl_{5(\Gamma.)}$$

$$2AlCl_{3(TB.)} \longrightarrow Al_{2}Cl_{6(\Gamma.)}$$

$$2FeCl_{3(TB.)} \longrightarrow Fe_{2}Cl_{6(\Gamma.)}$$

Задача 9-2. (автор А.И.Жиров)

1. Иод в щелочном растворе диспропорционирует:

$$6NaOH + 3I_2 = 5NaI + NaIO_3 + 3H_2O$$

Количество NaOH было 25:40=0,625 (моль). Количество иода - 79:253,8=0,311 (моль). Что вполне соответствует стехиометрии данной реакции (гидроксид натрия в небольшом избытке).

При добавлении хлорида бария в полученный раствор может выпадать только иодат бария (иодид бария, как и хлорид натрия хорошо растворим в воде). Количество добавленного хлорида бария составляет $60 \times 0.2 : 208.2 = 0.0576$ (моль) - избыток. Количество выпавшего иодата бария может составлять 0.311 : 6 = 0.0518 (моль) или $0.0518 \times 487.1 = 25.2$ г (безводного иодата бария).

Следовательно, выпадать может гидрат. Для моногидрата масса выпавшего осадка соответствует $0.0518 \times 505,1 = 26,16 \approx 26$ (г). Состав осадка : $Ba(IO_3)_2 \cdot H_2O$.

Можно полагать, что темный порошок, образующийся из летучих продуктов разложения - иод. Его количество составляет 10.5:253.8=0.0414 (моль), что составляет 0.0414:0.0519=0.797 или 80% иода исходного иодата. Тогда уравнение термического разложения будет иметь вид:

$$5Ba(IO_3)_2 \cdot H_2O = Ba_5(IO_6)_2 + 4I_2 \uparrow + 9O_2 \uparrow + 5H_2O \uparrow$$

Потеря массы составляет $(4 \times 253, 8 + 9 \times 32 + 5 \times 18)$: $5 \times 505, 13 = 0,5516$ или 55,16%.

Количество периодата бария для анализа составляет $1:1132,45=8,83\cdot10^{-4}$ (моль).

$$Ba_5(IO_6)_2 + 14KI + 24HC1 = 8I_2 + 5BaCl_2 + 14KC1 + 12H_2O$$

Количество KI составляет 25×0.20 : 165.9 = 0.030 (моль) - избыток. Количество образовавшегося иода $8.83 \cdot 10^{-4} \times 14 = 7.06 \cdot 10^{-4}$ (моль). Концентрация полученного раствора - 0.0706 М.

$$I_2 + 2Na_2S_2O_3 = Na_2S_4O_6 + 2NaI$$

Тогда на титрование 10 мл раствора иода пойдет $2 \times 10 \times 0,0706$: 0,2 = 14,1 (мл) раствора тиосульфата.

2. Уравнения реакций:

$$6NaOH + 3I_2 = 5NaI + NaIO_3 + 3H_2O$$

$$2NaIO_3 + BaCl_2 + H_2O = Ba(IO_3)_2 \cdot H_2O \downarrow + 2NaCl$$

$$5Ba(IO_3)_2 \cdot H_2O = Ba_5(IO_6)_2 + 4I_2 \uparrow + 9O_2 \uparrow + 5H_2O \uparrow$$

$$Ba_5(IO_6)_2 + 14KI + 24HCl = 8I_2 + 5BaCl_2 + 14KCl + 12H_2O$$

$$I_2 + 2Na_2S_2O_3 = Na_2S_4O_6 + 2NaI$$

Задача 9-3 (автор А.И.Жиров).

- 1. Такие реакции могут давать ионы щелочных металлов калиевой подргуппы (калий, рубидий, цезий) и ион аммония (кроме окраски пламени). Исходя из п.2. речь в тексте идет о калии.
- 2. НООСН(ОН)(ОН)СНСООК гидротартрат калия.

3.

$$2KC1 + H_2[SiF_6] = K_2[SiF_6] \downarrow + 2HC1$$

4.

$$HClO_4 + KCl = KClO_4 \downarrow + HCl$$

5.

$$3KCl + 2Al_2(SO_4)_3 + 36H_2O = 3KAl(SO_4)_2 \cdot 12H_2O \downarrow + AlCl_3$$

6.

$$2KCl + H_2[PtCl_6] = K_2[PtCl_6] \downarrow + 2HCl$$

7. Соли калия окрашивают пламя в фиолетовый цвет.

Задача 9-4. (автор А. И. Жиров)

1. Минералы растворяются и в кислотах и в щелочах могут содержать в своем составе амфотерные металлы (алюминий, цинк, свинец). Продукт термического разложения на воздухе - оксид. Данный металл образует два оксида одинакового состава (желтый и темно-красный) и оксид с большим содержанием кислорода (оранжево-красный). Это может соответствовать оксидам свинца: РьО желтый - массикот, РьО темно-красный - глет, оранжево-красный оксид - Рь₃О₄ (свинцовый сурик). Равные потери массы при растворении в кислоте и при прокаливании могут соответствовать углекислому газу. Молярная масса карбоната составит 44: 0,165 = 266,7, что достаточно близко к составу РьСО₃ (в пределах точности приведенных данных). Тогда церуссит – РьСО₃.

Гидроцеруссит содержит в своем составе меньшее количество карбоната и может быть основным карбонатом свинца. Определим его состав. Молярная масса (на один карбонат-ион) составляет 44:0,113=389,4 (остаток 389,4-60=329,4, что более чем в 1,5 раза превышает атомную массу свинца). В расчете на два карбонат-иона молярная масса составляет 778,8 (разность $778,8-2\times60-3\times207,2=37$, что близко к значению массы двух гидроксогрупп), следовательно состав гидроцеруссита можно записать $Pb_3(OH)_2(CO_3)_2$.

2. Реакции растворения в кислоте:

$$PbCO_3 + 2HNO_3 = Pb(NO_3)_2 + H_2O + CO_2 \uparrow$$

 $Pb_3(OH)_2(CO_3)_2 + 6HNO_3 = 3Pb(NO_3)_2 + 4H_2O + 2CO_2 \uparrow$

Реакции растворения в щелочи:

$$PbCO_3 + 4KOH = K_2[Pb(OH)_4] + K_2CO_3$$

 $Pb_3(OH)_2(CO_3)_2 + 10KOH = 3K_2[Pb(OH)_4] + 2K_2CO_3$

Реакции термического разложения:

$$PbCO_{3} = PbO + CO_{2} \uparrow$$

$$6PbCO_{3} + O_{2} = 2Pb_{3}O_{4} + 6CO_{2} \uparrow$$

$$Pb_{3}(OH)_{2}(CO_{3})_{2} = 3PbO + H_{2}O \uparrow + 2CO_{2} \uparrow$$

$$2Pb_{3}(OH)_{2}(CO_{3})_{2} + O_{2} = 2Pb_{3}O_{4} + 2H_{2}O \uparrow + 4CO_{2} \uparrow$$

Задача 9-5. (автор Ю. Н. Медведев)

- 1. Бериллий глиций (из-за сладковатого вкуса соединений бериллия). Алюминий – глиноземий (глиний) (из-за способа выделения алюминия из глинозема).
- 2. Например:
- гидроксиды Be(OH)₂ и Al(OH)₃ не растворимы в воде и амфотерны;
- близкие значения ионного потенциала ($\frac{q}{r} \approx 5.6$);
- одинаковое значение электроотрицательности (по Полингу 1,5).
 Диагональное сходство (диагональная аналогия).
- 3. Например, берилл (изумруд, воробьевит, аквамарин) $Be_3Al_2[Si_6O_{18}]$, эвклаз $BeAlSiO_4(OH)$. Один из способов разделения ионов Be^{2+} и Al^{3+} заключается во взаимодействии раствора этих солей с избытком раствора карбоната аммония. При этом происходят реакции:

$$2Al^{3+} + 3H_2O + 3CO_3^{2-} \rightarrow 2Al(OH)_3\downarrow + 3CO_2\uparrow$$

 $Be^{2+} + 2CO_3^{2-} \rightarrow [Be(CO_3)_2]^{2-}$

Гидроксид алюминия остается в осадке, а бериллий – в растворе в виде карбонатного комплекса.

4. Магний взаимодействует с ионами водорода, образующимися при протолизе ионов аммония: $NH_4^+ + H_2O \Longrightarrow NH_3 + H_3O^+, \ 2H_3O^+ + Mg \to Mg^{2+} + H_2\uparrow + 2H_2O$

В случае фторида аммония образуется нерастворимая пленка фторида магния. Растворению бериллия в растворе фторида аммония способствует образование прочных фторидных комплексов бериллия: Be + 2H₃O $^+$ + 4F $^ \rightarrow$ [BeF₄] $^{2-}$ + H₂↑ + 2H₂O

Задача 9-6. (автор А.И.Жиров)

1. HPO_3 - метафосфорная кислота (точнее $(HPO_3)_n$).

Н₃РО₄ -ортофосфорная кислота

Na₂HPO₄·12H₂O - гидрофосфат натрия додекагидрат

(Na₂HPO₄ - гидрофосфат натрия)

 $Na_4P_2O_7$ - пирофосфат натрия

Na₄P₂O₇·10H₂O - пирофосфат натрия декагидрат

 $Pb_{2}P_{2}O_{7}$ - пирофосфат свинца

 $H_4P_2O_7$ - пирофосфорная кислота

PbS - сульфид свинца

2.

$$Na_2HPO_4 \cdot 12H_2O = Na_2HPO_4 + 12H_2O \uparrow$$

 $2Na_2HPO_4 = Na_4P_2O_7 + H_2O \uparrow$
 $Na_4P_2O_7 + 2Pb(NO_3)_2 = Pb_2P_2O_7 \downarrow + 4NaNO_3$
 $Pb_2P_2O_7 + 2H_2S = 2PbS \downarrow + H_4P_2O_7$

3. По правилу Полинга ортофосфорная кислота по первой стадии является кислотой средней силы (один концевой атом кислорода $pK_a \approx 2$), слабой кислотой по второй стадии ($pK_a \approx 7$). Таким образом раствор дигидрофосфата натрия будет иметь щелочную (слабощелочную) реакцию.

$$HPO_4^{2-} + H_2O \Longrightarrow H_2PO_4^{-} + OH^-$$
 (преобладающая реакция)

Пирофосфорная кислота - средней силы кислота по первой и второй стадии (два фрагмента, но $pK_{a1} < pK_{a2}$) и слабая по третьей и четвертой (но $pK_{a3} < pK_{a4}$), следовательно, среда раствора пирофосфата натрия будет более щелочная:

$$P_2O_7^{4-} + H_2O \Longrightarrow HP_2O_7^{3-} + OH^{-}$$

4. Наиболее удобное различие этих анионов при осаждении серебряных солей:

$$2HPO_4^{2-} + 3Ag^+ = H_2PO_4^- + Ag_3PO_4 \downarrow$$
 (желтый осадок)

$$Na_4P_2O_7 + 4AgNO_3 = 4NaNO_3 + Ag_4P_2O_7 \downarrow$$
 (белый осадок)

Получаемые осадки легко растворимы в разбавленной азотной кислоте (в отличии от хлорида или иодида серебра).

5. Пусть было 100 г 10%-ного раствора пирофосфорной кислоты. При кипячении пирофосфорная кислота гидролизуется с образованием ортофосфорной кислоты (этот процесс катализируют протоны).

$$H_4P_2O_7 + H_2O = 2H_3PO_4$$

$$178 - 196$$
 $10 - x$
 $x = 11 \Gamma H_3 PO_4$

Получится 11%-ный раствор ортофосфорной кислоты.

6. Фильтр, воронка для фильтрования.

Задача 10-1 (автор О. К. Лебедева)

$$1 Zn + 2H^{+} = H_{2} + Zn^{2+}$$
 $2 (Pt) H_{2}/H^{+}//Fe^{2+}/Fe^{3+}(C)$
 $Pt -$ анод $C -$ катод

Примечание: в СИ принято записывать водородный электрод всегда справа, независимо от того, является ли он катодом или анодом.

3
$$2Fe^{3+} + H_2 = Fe^{2+} + 2H^+$$

4 (C) $Fe^{3+}/Fe^{2+}//Ag^+/Ag$
 $Fe^{2+} + Ag^+ = Ag + Fe^{3+}$
 $\varepsilon = 0.8 - 0.77 = 0.03B$

5. Чтобы $\varepsilon = 0.0$ В, нужно, чтобы потенциал серебра стал равен 0,77В.

По уравнению Нернста

$$0,77 = 0,8 + 0,059 lg C_{Ag}^{+}$$
 $lg C_{Ag}^{+} = -0,03/0/059 = -0,5$ $C_{Ag}^{+} = 0,31 \text{ (моль/л)}$ $6. Ag/AgCl// Fe^{2+}/ Fe^{3+}(C)$ $Ag + Fe^{3+} = Fe^{2+} + Ag^{+}$

7. До тех пор, пока в растворе присутствуют только акватированные ионы цинка, рН не влияет, но при более высоких значениях рН, когда образуются гидроксид и гидроксокомплексы цинка из-за уменьшения концентрации акватированных ионов, потенциал будет возрастать.

Задача 10-2(автор О. В. Архангельская)

Все вещества имеют одинаковую плотность, значит, они имеют одинаковую молекулярную массу

$$M = \frac{m \cdot R \cdot T}{P \cdot V} = \frac{0,00228 \cdot \Gamma \cdot 8,31 \cdot \Pi a \cdot m^{3}/K \cdot 298K}{101000 \Pi a \cdot 10^{-6} m^{3}} = 56c$$

Поскольку при сгорании одного и того же количества веществ А. Б. В, Г, Д и Е образуются одинаковые количества углекислого газа и воды, вещества являются изомерами, имеющими общую формулу: CxHyOz.

$$X: Y = \frac{1,6}{22,4}: \frac{1,286\cdot 2}{18} = 0,0714:0,143 = 1:2$$
 Формула веществ: (CH₂)n

Масса кислорода в 1 г веществ равно 1-0,143-0,0714*12=0. Т.е. кислорода в веществах нет. $(CH_2)n=(12+2)n=56$, Отсюда n=4 Истинная формула изомеров C_4H_8 .

2. Графические формулы изомеров:

$$H_{2}C$$
 CH
 CH_{3}
 $H_{2}C$
 CH_{2}
 $H_{3}C$
 CH_{3}
 $H_{3}C$
 CH_{4}
 CH_{5}
 CH_{5}
 CH_{5}
 CH_{6}
 CH_{7}
 CH_{1}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{3}
 CH_{3}
 CH_{4}
 CH_{5}
 CH_{5

3.
$$C_4H_8 + 6O_2 = 4CO_2 + 4H_2O + Q_{crop.}$$

Отсюда
$$Q_{\text{сгор.}} = 4[Q_{\text{обр.}}(CO_2) + . \ Q_{\text{обр.}}(H_2O)] - Q_{\text{обр}}(C_4H_8). = K - Q_{\text{обр}}(C_4H_8).$$

Вещество	A	Б	В	Γ	Д	Е
$Q_{ m oбp.}^{-1}$, кДж/моль	-26,6	7,0	16,9	-53,9	0,12	11,2
Q _{сгор} , кДж/моль	K + 26,6	K – 7,0	K – 16,9	K + 53,9	K – 0,12	К-11,2

Теплота сгорания вещества может при определенных допущениях служить мерой прочности связей в этом веществе. В этом случае, чем больше теплота сгорания, тем менее прочные связи в изомере, тем он более напряжен и менее устойчив к окислению. В предыдущем ряду изомеры расположены в порядке увеличения их устойчивости к сгоранию и, следовательно, в порядке убывания величины $Q_{\text{сгор.}}$.

4. Итак:

Формула газообразного	Q _{обр.} ,	Q _{сгор.} ,	Вещество	Название вещества
вещества	кДж/моль	кДж/моль		
CH—CH ₃	-53,9	K + 53,9	Γ	Метилциклопропан
$\begin{array}{c c} H_2C \longrightarrow CH_2 \\ & & \\ & & \\ H_2C \longrightarrow CH_2 \end{array}$	-26,6	K + 26,6	A	Циклобутан

 $[\]overline{}^1$ Д.Сталл, Э.Вестрам, Г.Зинке Химическая термодинамика органических соединений.

CH ₃ -CH ₂ -CH=CH ₂	0,12	K – 0,12	Д	Бутен-1
H_3C $C=C$ H	7,0	K – 7,0	Б	Цис- бутен-2
H_3C $C=C$ H	11,2	K – 11,2	Е	Транс –бутен 2
H_3C $C=CH_2$ H_3C	16,9	K – 16,9	В	Метилпропен

Задача 10-3 (автор В. В. Емельянов)

Нашатырь (хлорид аммония) при нагревании разлагается, образуя аммиак и хлороводород. HCl, действуя на известняк (карбонат кальция), дает хлорид кальция, углекислый газ и воду:

1.
$$CaCO_3 + 2 NH_4C1 \xrightarrow{t,^{\circ} C} CaCl_2 + 2NH_3 \uparrow + H_2O \uparrow + CO_2 \uparrow (\downarrow (NH_4)_2CO_3)$$
.

В сосуде-приемнике, в соответствии со стехиометрией реакции 1 образуется карбонат аммония (A), который уже при комнатной температуре теряет аммиак, давая гидрокарбонат аммония (B);

- 2. $(NH_4)_2CO_3 = NH_3 \uparrow + NH_4HCO_3$;
- 3. $(NH_4)_2CO_3 = H_2O^{\uparrow} + NH_2COONH_4$;

Состав соли B также можно выяснить из данных по плотности пара смеси сухих газов (очевидно, CO_2 и NH_3), а также, если представить себе амид, отвечающий соли B. Это действительно неизвестная в свободном состоянии карбаминовая кислота NH_2COOH (Γ):

4. $2NH_3 + CO_2 = NH_2COONH_4$;

«Симметрический» амид \mathcal{A} , отвечающий соли A и составляющий «для высших животных обычный продукт окисления и выделения азотистых веществ», безусловно, мочевина:

- 5. $NH_4COONH_2 \xrightarrow{140^{\circ}C} CO(NH_2)_2 + H_2O\uparrow;$
- 6. $COCl_2 + 4NH_3 = CO(NH_2)_2 + 2NH_4Cl_3$;
- 7. $CO(NH_2)_2 + 2H_2O = (NH_4)_2CO_3$;

В реакциях 7-9 мочевина ведет себя совершенно аналогично аммиаку:

- 8. $CO(NH_2)_2 + HNO_3 = NH_2CONH_3^+NO_3^-$;
- 9. $CO(NH_2)_2 + 4HgO = 2Hg_2NOH + CO_2\uparrow + H_2O$;
- 10. $CO(NH_2)_2 + 2NaNO_2 = 2N_2 \uparrow + 2H_2O + Na_2CO_3$;

Циануровая кислота (E) – плоский циклический тример циановой кислоты (\mathcal{X}) :

11.
$$3CO(NH_2)_2 \xrightarrow{t,^{\circ} C} 3NH_3 \uparrow + \{-N(H)C(O)-\}_3$$
.

Циановая кислота (Ж) существует в виде двух изомеров H-O-C≡N и H-N=C=O (изоциановая). Содержание изоциановой кислоты в равновесной смеси при 20 °C − 98 %.

«Весьма непрочная, при обыкновенной температуре жидкая циановая кислота легко и чисто дает циануровую», а при медленном нагревании — циамелид, который является ее линейным полимером $\{N(H)C(O)-\}_n$ (3). Строение циануровой кислоты и циамелида приведено на рисунке:

Задача 10-4 (автор Н. С. Копылов)

1. Все характеристики газа Z (резкий запах, выделение при термическом разложении солей, обесцвечивание раствора перманганата, а также, что водный раствор — двухосновная кислота) наводят на мысль, что это SO_2 . После пропускания в раствор NaOH среда становится слабокислой. Значит, раствор содержит либо NaHSO $_3$, либо смесь Na_2SO_3 и $NaHSO_3$. (образованием $Na_2S_2O_5$ в данных условиях можно пренебречь)

[NaHSO₃]=[NaOH]=(0,64*1000)/(40*650)=0,02462M;

$$HSO_3^- + aq \longrightarrow H^+ * aq + SO_3^{2-};$$

Т.к. среда водного раствора сульфита натрия должна быть щелочной вследствие гидролиза, а по условию pH=6,16, то в растворе смесь Na_2SO_3 и $NaHSO_3$. Напишем уравнения реакций и оценим соотношение ($[HSO_3^{-1}]/[SO_3^{-2}]$);

0,02462 0,01231 0,01231

$$2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O \qquad (1)$$

$$Na_2SO_3 + SO_2 + H_2O \rightarrow 2NaHSO_3$$
 (2)

$$K_{a2} = [H^{+}] * [SO_{3}^{2-}] / [HSO_{3}^{-}];$$

$$pK_{a2} = pH + lg([HSO_3^-]/[SO_3^2]);$$

$$[HSO_3^-]/[SO_3^{2-}] = 10^{pKa2-pH} = 10^{7,10-6,16} \approx 8,71.$$

С учетом уравнений (1) и (2) в конечном растворе $[SO_3^{2-}] = (0,1231-x)$, а $[HSO_3^{-}] = 2x$. Решая уравнение: 2x/(0,01231-x) = 8,71, находим, что x = 0,01000М.

Тогда в 1 л раствора $\nu(SO_2) = 0$, 1231 + 0,1000 = 0, 2231M, а в 650 мл $\nu(SO_2) = 0,02231*0,65 = 0,0145$ моль. Так как кроме Y и Z других продуктов разложения X не было, то $m(Y) = 4,31 - m(SO_2) = 4,31 - 0,0145*64 \approx 3,38$ г.

Если предположить, что X — сульфит, тогда Y — это оксид. Но все оксиды можно так или иначе растворить в какой—либо кислоте. По описанию для Y походит $BaSO_4$. Если это так, то: $\nu(BaSO_4)$ = $3,38/233 \approx 0,0145$ моль. Таким образом, $BaSO_4$ и SO_2 образовались в мольном отношении 1:1 в отсутствии других продуктов. Тогда видно, что исходная соль X — BaS_2O_6 (хорошо растворимая в воде).

 $X BaS_2O_6$; $Y BaSO_4$; $Z SO_2$.

- 2. $BaS_2O_6 \rightarrow BaSO_4 + SO_2 \uparrow$
- 3. Диссоциация соли: $BaS_2O_6 \rightarrow Ba^{2^+} + S_2O_6^{2^-}$; гидратация катиона: $Ba^{2^+} + 8H_2O \rightarrow [Ba(H_2O)_8]^{2^+}$; гидролиз по аниону: $S_2O_6^{2^-} + H_2O \Longrightarrow HS_2O_6^{-^+} + OH^-$ (pK_b = 10,60).

Задача 10-5. (автор В. И. Теренин)

1)CH₂=CH₂+H₂O
$$\xrightarrow{\text{Al}_2\text{O}_3}$$
 CH₃CH₂OH

2)2CH₃CH₂OH
$$\xrightarrow{\text{Al}_2\text{O}_3 + \text{ZnO}}$$
 CH₂=CH – CH=CH₂ + 2H₂O + H₂ (Реакция Лебедева)

3)
$$CH_2=CH-CH=CH_2 + CH_2=CH_2 \xrightarrow{600\,^0C}$$
 (Реакция Дильса-Альдера)

4)
$$\begin{array}{c} Pt \\ \hline 300 \text{ } ^{0}\text{C} \end{array} + 2 \text{ H}_{2} \text{ NO}_{2}$$

5)
$$\bigcirc$$
 + HNO₃ $\xrightarrow{\text{H}_2\text{SO}_4}$ + H₂O

$$6) \bigcirc + Fe + HCl \longrightarrow \bigcirc + FeCl_2 + H_2O$$

7)
$$+$$
 NaOH $+$ NaCl + H₂O

8)
$$+2 \text{ (KSO}_3)_2\text{NO} \longrightarrow 0$$
 $+ \text{ (KSO}_3)_2\text{NH} + \text{NH}_3 + \text{ (KSO}_3)_2\text{NOH}$

Соль Фреми – нитрозодисульфонат калия, представляет собой свободный радикал –одноэлектронный окислитель, окисляет анилин до бензохинона.

$$\begin{array}{c|c}
NH_2 & O \\
3 & + 2K_2Cr_2O_7 + 11H_2SO_4 \longrightarrow 3 & + 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3NH_4HSO_4
\end{array}$$

9)
$$+$$
 CH₂=CH-CH=CH₂ \longrightarrow (Реакция Дильса-Альдера)

10) Превращение **К** в **Л** представляет собой пример кето-енольной таутомерии, катализируемой кислотами и основаниями

$$\stackrel{\mathrm{O}}{-}\overset{\mathrm{O}}{\mathrm{C}}$$
 $\stackrel{\mathrm{O}}{-}\overset{\mathrm{O}}{\mathrm{C}}$ $\stackrel{\mathrm{I}}{-}\overset{\mathrm{C}}{\mathrm{C}}$

В данном случае равновесие смещается в сторону соединения \mathbf{JI} , т.к. это приводит к выигрышу энергии системы за счет образования ароматической системы.

В ИК спектре поглощение при 3500 см^{-1} говорит о наличии гидроксильной группы. В спектре ЯМР 1 Н сигнал при 6.7 м.д. соответствует двум протонам ароматического кольца.

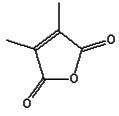
Задача 10-6 (автор Е. Г. Евтушенко).

Низкий рН исследуемого раствора указывает на кислую природу вещества А. Количество щелочи, пошедшей на титрование, $\nu(\text{NaOH}) = 26,38\cdot0,05823/1000 = 1,536\cdot10^{-3}$ моль. Рассчитаем массу вещества А в 20 мл аликвоте: $m(A) = 4,8394\cdot20/1000 = 9,679\cdot10^{-2}$ г.

Если предположить, что А представляет собой кислоту, то возможны два варианта:

- а) $O\partial$ ноосновная кислота. Тогда $M_A = m(A)/v(NaOH) = 63,01$ г/моль. Из неорганических кислот единственный возможный вариант азотная кислота. Однако, хотя дымящая азотная кислота и обесцвечивает бромную воду и имеет всего один тип атомов водорода в молекуле, она жидкая при н.у. При рассмотрении всевозможных органических кислот по молярной массе подходит лишь тридейтероуксусная кислота CD_3COOH . Но и она при нормальных условиях является жидкостью, а также не обесцвечивает бромную воду.
- б) Предположим тогда, что A двухосновная кислота. $M_A = 2m(A)/v(NaOH) = 126,03$ г/моль. Масса двух карбоксильных групп M(2COOH) = 90,03. Оставшаяся часть должна приходится либо на бирадикал, находящийся между этими двумя карбоксильными группами (HOOC-R-COOH), либо на молекулы растворителя (как в кристаллосольвате). M(-R-) = 126,03 90,03 = 36,0. Радикал, имеющий молярную массу 36 и не содержащий протонов, есть только один: C_2T_4 . Тогда вещество A представляет собой либо 2,2,3,3 тетратритийянтарную кислоту, либо 2-тритий-(тритритий-метил)-малоновую кислоту. Но вспоминая о невероятно высокой цене трития, эти варианты можно отбросить, как практически нереализуемые. Можно заметить, что две молекулы воды имеют молярную массу как раз 36. Тогда вещество A дигидрат щавелевой кислоты. Однако он имеет по крайней мере два типа протонов карбоксильные кислоты и гидроксильные воды.

И что же? Ни один из рассмотренных вариантов не удовлетворяет всем условиям задачи. Значит наше предположение о том, что А – это кислота, неверно.


Вещества, дающие кислоты при растворении в воде, могут быть ангидридами или галогенангидридами кислот. При растворении их в воде происходит химическая реакция и часть воды расходуется.

В общем виде реакцию ангидрида с водой можно записать в виде: $XOY + H_2O \rightarrow XOH + YOH$, а галогенангидрида: $XY + H_2O \rightarrow XOH + HY$. И в том, и в другом случае, на одну молекулу вещества А будет тратиться одна молекула воды.

Концентрация кислоты в растворе будет равна $2 \cdot \nu(A) \cdot 1000/(20-18 \cdot \nu(A))$, поскольку при реакции с водой из одной молекулы A образуется две кислотные группы. При титровании $C(\kappa ucn. \ rpynn) \cdot V(an) = C(NaOH) \cdot V(NaOH)$. Отсюда $C(\kappa ucn. \ rpynn) = 0,05823 \cdot 26,38/20 = 0,07681 \ моль/л$.

Решая уравнение $2 \cdot \nu(A) \cdot 1000/(20 - 18 \cdot \nu(A)) = 0,07681$ относительно $\nu(A)$, получаем $\nu(A) = 7,676 \cdot 10^{-4}$ моль. $M_A = m(A)/\nu(A) = 9,679 \cdot 10^{-2}/7,676 \cdot 10^{-4} = 126,10$ г/моль.

Пусть A — ангидрид кислоты. Общая формула ангидридов XOY; M(X+Y) = 126,10 - 16,00 = 110,10. Этой молярной массе удовлетворяет $X+Y = C_6H_6O_2$. Наличие только одного типа протонов и ненасыщенной группировки в молекуле приводит к структуре

Действительно, она содержит только один тип протонов – метильные. Итак, вещество A – ангидрид 2,3диметилмалеиновой кислоты.

Рассмотрение галогенангидридов не дает ни одного варианта, удовлетворяющего условиям задачи.

С-Н-кислотами также являются и органические нитросоединения, однако рассмотрение моно- и динитросоединений, подобное проведенному для кислот, также не дает ни одного приемлемого варианта.

2.

По виду графика титрования можно заключить, что диссоциация кислоты происходит не последовательно в две ступени (нет четких перегибов на кривой титрования), а оба протона диссоциируют независимо. Тогда

$$C_4H_4(COOH)_2 + 2NaOH = C_4H_4(COONa)_2 + 2H_2O$$

 $pK_a = -lgK_a$
 $K_a = [C_4H_4(COO^-)_2][H^+]^2/[C_4H_4(COOH)_2]$

$$C(H+) = 10^{-pH} = 10^{-2,46}$$
 моль/л.

$$C(C_4H_4(COONa)_2) = 0.5*10^{-2.46}$$
 моль/л.

$$C(C_4H_4(COOH)_2) = 0,07681$$
 моль/л.- $0,5*10^{-2,46}$ моль/л.= $0,04221$

$$K_a = 0.5*10^{-2.46} (10^{-2.46})^{2}/10^{-1.37} \approx 10^{-6}$$

$$pK_a$$
 ≈6

Задача 11-1 (автор В.А.Реутов)

1. Очевидно, что $\underline{\mathbf{A}}$ и $\underline{\mathbf{B}}$ — оксиды $\underline{\mathbf{X}}$ в различных степенях окисления. Оксид $\underline{\mathbf{A}}$ устойчив к окислению воздухом, однако элемент $\underline{\mathbf{X}}$ в этом соединении имеет не высшую возможную степень окисления, так как вступает в реакцию окисления с пероксидом натрия. При таких реакциях (реакциях окислительного щелочного плавления) обычно образуются соли кислот, содержащих кислотообразующий элемент в высшей степени окисления. Цвета соединений $\underline{\mathbf{A}}$, $\underline{\mathbf{B}}$ и $\underline{\mathbf{C}}$ позволяют предположить, что $\underline{\mathbf{X}}$ — \mathbf{Cr} — хром.

Тогда, $\underline{\mathbf{A}} - \mathrm{Cr}_2\mathrm{O}_3$ – оксид хрома(III), $\underline{\mathbf{B}} - \mathrm{Cr}\mathrm{O}$ – оксид хрома(II), $\underline{\mathbf{C}} - \mathrm{Na}_2\mathrm{Cr}\mathrm{O}_4$ – хромат натрия.

При действии концентрированной серной кислоты на хромат натрия может быть выделен оксид хрома(VI). Тогда, $\underline{\mathbf{D}}$ – CrO₃ – оксид хрома(VI), $\underline{\mathbf{E}}$ – CrO₂Cl₂ – оксохлорид хрома(VI) или хлористый хромил (хромилхлорид), H – хромовая кислота H_2 CrO₄.

 $\underline{\mathbf{F}}$ – это оксид хрома в степени окисления, промежуточной между +6 и +3 (в условии приведена реакция диспропорционирования $\underline{\mathbf{F}}$ до $\underline{\mathbf{A}}$ и $\underline{\mathbf{D}}$). При температуре 360-540°C разложение CrO₃ идет до оксида хрома(IV) (относительно правильным ответом может считаться получение и других оксидов хрома, например, Cr₅O₁₂, Cr₂O₅, Cr₃O₈, образующихся в близких температурных интервалах). Итак, \mathbf{F} – CrO₂ – оксид хрома(IV).

Действие перекиси водорода на соединения хрома(VI) Na_2CrO_4 (C) (в кислой среде) или CrO_3 (D) приводит к образованию пероксида хрома Y, который может быть выделен в виде аддукта с пиридином $CrO_5.nC_5H_5N$ (G).

Содержание углерода и азота в этом аддукте соответственно равны:

$$\omega(C) = 5.12 \cdot n/(132 + 79 \cdot n), \ \omega(N) = 14 \cdot n/(132 + 79 \cdot n).$$

Учитывая, что $\omega(C)$ – $\omega(N) = 0.218$, получаем: $60 \cdot n - 14 \cdot n = 0.218 \cdot (132 + 79 \cdot n)$.

Решение этого равенства приводит к n = 1. Следовательно, $\underline{\mathbf{G}} - \mathrm{CrO}_5 \cdot \mathrm{C}_5 \mathrm{H}_5 \mathrm{N}$.

Уравнения описанных реакций:

- 1. $\operatorname{Cr} + \frac{1}{2} \operatorname{O}_2 \rightarrow \operatorname{CrO}$
- 2. $2Cr + \frac{3}{2}O_2 \rightarrow Cr_2O_3$
- 3. $2\text{CrO} + \frac{1}{2}\text{O}_2 \rightarrow \text{Cr}_2\text{O}_3$
- $4. \ 2Cr_2O_3 + 3Na_2O_2 \ \rightarrow \ 2Na_2CrO_4 + 2NaCrO_2$
- $5. \text{ Na}_2\text{CrO}_4 + \text{H}_2\text{SO}_4 \rightarrow \text{CrO}_3 + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}$ или $\text{Na}_2\text{CrO}_4 + 2\text{H}_2\text{SO}_4 \rightarrow \text{CrO}_3 + 2\text{NaHSO}_4 + \text{H}_2\text{O}$

Вода в обоих случаях сразу поглощается серной кислотой.

6. Na₂CrO₄ + 2H₂SO₄ + 2NaCl
$$\rightarrow$$
 CrO₂Cl₂ + 2Na₂SO₄ + 2H₂O или Na₂CrO₄ + 4H₂SO₄ + 2NaCl \rightarrow CrO₂Cl₂ + 4NaHSO₄ + 2H₂O

7.
$$CrO_3 + PCl_5 \rightarrow CrO_2Cl_2 + POCl_3$$

8.
$$CrO_3$$
 — $t^{\circ} \rightarrow CrO_2 + \frac{1}{2}O_2$

9.
$$CrO_3 + H_2O \rightarrow H_2CrO_4$$

2. Оксиды хрома парамагнитны. CrO_2 устойчив на воздухе, его применяют в качестве рабочего вещества магнитных записей.

Как гидрат оксида хрома(IV) можно рассматривать аморфное вещество, выпадающее в осадок из растворов, содержащих Cr(III) и Cr(VI), при pH = 3÷4. Это вещество имеет формулу $[Cr(OH)_2]_2CrO_4\cdot 5H_2O$ и применяется в качестве полупродукта при получении некоторых соединений хрома.

В кислой среде Cr(IV) – окислитель, поэтому:

$$2CrO_2 + 8HCl \rightarrow 2CrCl_3 + Cl_2 + 4H_2O$$

Задача 11-2 (автор С. А. Круподер)

1,2. 12 мл 2М раствора КОН содержит 0.024 моль КОН. Тогда 1.896 г кислоты D соответствуют ее 0.024 моль (одноосновная), 0.012 моль (двухосновная) или 0.008 моль (трехосновная), что отвечает молярным массам 79, 158 и 237 соответственно.

Четыре элемента в молекуле D - очевидно, C, H, O и X: резонно предположить, что молекула D должна содержать хотя бы одну фенильную группу из исходного ректива Гриньяра и одну или несколько ОНгрупп, обуславливающих кислотность. $M_{\phi \text{енил}}$ =77, тогда M_D =79 отпадает сразу. M_D =237 тоже нереальна: тогда при атоме элемента X должны быть фенильная группа и три ОН-группы – невозможная комбинация.

Тогда имеем M_D=158, причем в молекуле одна фенильная (M=77) и две ОН-группы (M=17·2=34). Остаток составляет 158-77-34=47. Кроме того, мы знаем, что элемент X может быть трехвалентным и должен быть р-элементом: солеобразные хлориды d- и f-элементов в рекцию Гриньяра не вступают. В этом случае единственная реальная комбинация на 47 – P=O – фрагмент! (B, Al, N, как легко убедиться, не проходят). Отсюда элемент X – фосфор, а вещество D – фенилфосфоновая кислота C₆H₅P(O)(OH)₂. Очевидно, что вещество C, получающееся по аналогичной цепочке превращений из того же исходного соединения PCl₃, но нерастворимое в воде и щелочах, ОН-групп не содержит – им может быть только трифенилфосфиноксид (C₆H₅)₃P(O). Соответственно, продуктами реакции Гриньяра между трихлоридом фосфора и фенилмагнийбромидом, могут быть или трифенилфосфин (C₆H₅)₃P (вещество A), или фенилдихлорфосфин С₆H₅PCl₂ (вещество B) – из них жидкостью, очевидно, является дихлорпроизводное. Таким образом, в сверхкислоте идет процесс превращения трехкоординированного атома фосфора в четырехкоординированный.

$$Ph_2POH \longrightarrow Ph_2P \bigvee_{H}^{O}$$

- 3. Трифенилфосфин продукт т.н. «прямой» реакции Гриньяра, когда трихлорид фосфора по каплям добавляется к фенилмагнийбромиду: реактив Гриньяра все время в избытке, поэтому идет тризамещение. Фенилдихлорфосфин продукт «обратной» реакции Гриньяра с обратным порядком смешения реагентов: магнийорганическое производное по каплям добавляется к находящемуся все время в избытке трихлориду фосфора.
- 4. Механизм повышения координации атома фосфора в сверхкислоте SbF_5 HSO_3F состоит из двух основных стадий. На первой протекает протонирование атома фосфора в фосфине с образованием фосфониевого иона, на второй атака анионом фторсульфоновой кислоты по протонированному атому фосфора, приводящая к неустойчивому фосфорану производному пентакоординированного фосфора. При гидролизе фосфоран распадается с образованием P=O связи (и с замещением атомов хлора на гидроксильные группы в случае галогенфосфоранов):

$$(C_6H_5)_3P$$
 — $(C_6H_5)_3P^+H$ — $(C_6H_5)_3PH(OSO_2F)$ — $(C_6H_5)_3P=O$ — $(C_$

P.S. Рассмотренный механизм был подтвержден исследователями, впервые осуществившими этот синтез (см. G.G.Furin, S.A.Krupoder e.a. Journal of Fluorine Chemistry, Vol.22, N.4, P.345-376 (1983)) на основании данных спектров ЯМР 31 Р.

Задача 11-3 (автор В.И.Теренин)

Превращение тропидена в тропилиден (циклогептатриен) представляет собой гофмановскую деструкцию мостиковой группы NCH₃ в бигетероцикле, содержащем изоциклический скелет из семи атомов углерода. Для удаления азота требуется двукратное метилирование иодистым метилом и двукратный пиролиз гидроксида четвертичного аммониевого основания под действием оксида серебра, при этом отщепляется триметиламин и остается тропилиден. Такое элиминирование называется термическим разложением четвертичных аммониевых оснований по Гофману.

Тропилиден (циклогептатриен) присоединяет молекулу брома (1,6-присоединение). Полученный аддукт под действием щелочи отщепляет молекулу НВг. Второй атом брома уходит в виде аниона, образуя катион тропилия. Тропилий-катион является ароматическим. В нем 6 π -электронов делокализованы между семью углеродными атомами.

Задача 11-4 (авторы М.Д.Решетова, С.С.Чуранов)

Из массовой доли хлора в соединении А находим минимальное значение молекулярной (эквивалентной) массы органического галогенида 35.5*100/47.65 = 74.5. Формулу **A** в общем виде можно записать $C_xH_vCl_z$. При z=1 (A содержит 1 атом хлора) на долю C_xH_v приходится 39, т.е. простейшая формула A С₃H₃Cl, однако непредельные хлориды, соответствующие такой формуле (три изомера), не обладают свойствами, указанными в условии задачи. При z=2 имеем формулу A $C_6H_6Cl_2$. Этой формуле удовлетворяют дихлорциклогексадиены (ряд C_nH_{2n-4}). Одной из возможных структур может быть 3,6-дихлорциклогекса-1,4-диен, который должен реагировать как с перманганатом калия, так и с бромом, поскольку является непредельным соединением. А - галогенид аллильного типа и при гидролизе может образовывать катион В, который фактически является бензолониевым ионом В (или о-комплексом в реакциях электрофильного замещения в ароматическом ряду). Такой ион стабилизируется выбросом протона у С₆ с образованием хлорбензола (соединения X), который тяжелее воды (нижний слой) и устойчив к действию окислителей (перманганата и брома). Его состав подтверждается масс-спектром: образование молекулярных ионов $C_6H_5^{35}Cl$ (M^+ 112) и $C_6H_5^{37}Cl$ $(M^{+} 114)$ (природное соотношение изотопов хлора 3:1); третий ион C_6H_5 $(M^{+} 77)$ образуется за счет выброса атома хлора.

Второй путь превращения **A** - бимолекулярное нуклеофильное замещение хлора на гидрокси-группу (первая стадия превращения). Вторая стадия превращения аналогична предыдущему процессу - образование бензолониевого иона, содержащего гидрокси-группу. Конечный продукт этого направления - фенолят-ион, который легко реагирует с перманганатом и бромом (окисление ароматической структуры), а при действии метилиодида превращается в анизол **Y**. Последний устойчив к окислению (к раствору перманганата), но бромируется в орто- и пара-положения.

CI — CI + NaOH — CI + NaCI +
$$H_2O$$

X

CI — CI + 3NaOH — ONa + 2NaCI + $3H_2O$

ONa + CH_3I — OCH₃ + NaI

Таким образом, структура 3,6-дихлорциклогекса-1,4-диена отвечает условию задачи. Вторым соединением, также отвечающим всем условиям задачи, является 5,6-дихлорциклогекса-1,3-диен. Выбор между обоими соединениями может быть сделан на основании анализа их способности вступать в реакцию диенового синтеза с диенофилом - малеиновым ангидридом. В эту реакцию могут вступать только сопряженные диены. Поэтому с малеиновым ангидридом может реагировать только 5,6-дихлорциклогекса-1,3-диен, а 3,6-дихлорциклогекса-1,4-диен в эту реакцию не вступает. Таким образом, соединение А может иметь структуру как 5,6-дихлорциклогекса-1,3-диена, так и 3,6-дихлорциклогекса-1,4-диена (условию задачи отвечают обе структуры).

Циклогексадиены с атомами хлора при двойной связи (галогениды винильного типа) не смогут образовывать фенол и хлорбензол, а диен, содержащий одновременно атомы хлора аллильного и винильного типа, а также гемдигалогенид не смогут образовывать одновременно и фенол, и хлорбензол.

Задача 11-5 (автор О.К.Лебедева)

$$1 \text{ Zn} + 2\text{H}^+ = \text{H}_2 + \text{Zn}^{2+}$$
 $2 \text{ (Pt) H}_2/\text{ H}^+//\text{ Fe}^{2+}/\text{ Fe}^{3+}\text{(C)}$
 $\text{Pt} - \text{анод} \qquad \text{C} - \text{катод}$

Примечание: в СИ принято записывать водородный электрод всегда справа, независимо от того, является ли он катодом или анодом.

3
$$2Fe^{3+} + H_2 = Fe^{2+} + 2H^+$$

4 (C) $Fe^{3+}/Fe^{2+}//Ag^+/Ag$
 $Fe^{2+} + Ag^+ = Ag + Fe^{3+}$
 $\epsilon = 0.8 - 0.77 = 0.03B$

5. Чтобы $\varepsilon = 0.0$ В, нужно, чтобы потенциал серебра стал равен 0,77В.

По уравнению Нернста

$$0,77 = 0,8 + 0,059 lg C_{Ag}^{+}$$
 $lg C_{Ag}^{+} = -0,03/0/059 = -0,5$ $C_{Ag}^{+} = 0,31 \text{ (моль/л)}$ $6. Ag/AgCl// Fe^{2+}/ Fe^{3+}(C)$ $Ag + Fe^{3+} = Fe^{2+} + Ag^{+}$

7. До тех пор, пока в растворе присутствуют только акватированные ионы цинка, рН не влияет, но при более высоких значениях рН, когда образуются гидроксид и гидроксокомплексы цинка из-за уменьшения концентрации акватированных ионов, потенциал будет возрастать.

8. ДМСО ≈ ДМФА≈ вода > ацетонитрил

Вследствие уменьшения полярности растворителя, сольватирующая способность дихлорметана будет меньше, чем у перечисленных растворителей, и учитывая общую тенденцию потенциал будет иметь большее значение, чем у ацетонитрила

Задача 11-6 (автор В.В.Еремин)

1. Этанол окисляется до ацетальдегида, а затем до уксусной кислоты:

$$CH_3CH_2OH + [O] \rightarrow CH_3CHO + H_2O$$

 $CH_3CHO + [O] \rightarrow CH_3COOH$

2. Константа скорости реакции первого порядка связана с периодом полураспада соотношением:

$$k_1 = \ln 2 / t_{1/2} = \ln 2 / 5 = 0,14 \text{ muh}^{-1} = 8,3 \text{ y}^{-1}$$

3. Этанол в крови появляется из желудка и расходуется в печени:

$$\frac{d[\mathbf{B}]}{dt} = k_1[\mathbf{A}] - k_2$$

4. Если [В] = 0, то

Соотношение констант k_1 и k_2 показывает, что этанол гораздо быстрее всасывается в кровь, чем окисляется в печени.

5. Максимум [В] находится из условия d[В] / dt = 0. Из кинетического уравнения (п. 2) следует, что это условие эквивалентно следующему:

$$0 = k_1[\mathbf{A}] - k_2$$

Концентрация [А] определяется кинетикой первого порядка:

$$[\mathbf{A}] = [\mathbf{A}]_0 \cdot e^{-k_1 t},$$

откуда

$$t_{\text{max}} = \frac{1}{k_1} \ln \left(\frac{k_1 [A]_0}{k_2} \right) = \frac{1}{8,3} \ln \left(\frac{8,3 \cdot 3,8}{0,19} \right) = 0,62 \text{ q} = 37 \text{ мин}$$

Максимальная концентрация этанола в крови:

$$[B]_{\text{max}} = 3.8 \cdot (1 - e^{-8.3 \cdot 0.62}) - 0.19 \cdot 0.62 = 3.7 \text{ } \text{г} \cdot \text{л}^{-1}.$$

6. Время достижения предельно допустимой концентрации находится из уравнения:

$$1,0 = 3.8 \cdot (1 - e^{-8.3t}) - 0.19t \approx 3.8 - 0.19t$$

$$t = 2.8 / 0.19 = 15 \text{ y}.$$

Ответы.

2.
$$k_1 = 0.14 \text{ MUH}^{-1} = 8.3 \text{ H}^{-1}$$

4.
$$k_2 = 0,19 \ \Gamma \cdot \pi^{-1} \cdot \mathbf{q}^{-1}$$

- 5. $t_{\text{max}} = 37$ мин; [В]_{max} = 3,7 г·л⁻¹.
- 6. t = 15 ч.