| 1                        |                          |                         |                          |                          |                          |                          |                 |                   |                          |                          |                   |                          |                          |                          |                         |                          | 18                       |
|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------|-------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|
| 1<br>H<br>1.008          | 2                        |                         |                          |                          |                          |                          |                 |                   |                          |                          |                   | 13                       | 14                       | 15                       | 16                      | 17                       | He 4.003                 |
| 3<br><b>Li</b><br>6.94   | 8e<br>9.01               |                         |                          |                          |                          |                          |                 |                   |                          |                          |                   | 5<br>B<br>10.81          | 6<br>C<br>12.01          | 7<br><b>N</b><br>14.01   | 8<br>0<br>16.00         | 9<br><b>F</b><br>19.00   | Ne<br>20.18              |
| Na<br>22.99              | Mg<br>24.31              | 3                       | 4                        | 5                        | 6                        | 7                        | 8               | 9                 | 10                       | 11                       | 12                | 13<br><b>Al</b><br>26.98 | Si<br>28.09              | 15<br><b>P</b><br>30.97  | 16<br><b>S</b><br>32.06 | 17<br>Cl<br>35.45        | 18<br><b>Ar</b><br>39.95 |
| 19<br><b>K</b><br>39.10  | Ca<br>40.08              | Sc<br>44.96             | Ti<br>47.87              | 23<br><b>V</b><br>50.94  | Cr<br>52.00              | 25<br><b>Mn</b><br>54.94 | Fe<br>55.85     | Co<br>58.93       | 28<br><b>Ni</b><br>58.69 | Cu<br>63.55              | Zn<br>65.38       | Ga<br>69.72              | Ge<br>72.63              | 33<br><b>As</b><br>74.92 | 34<br>Se<br>78.97       | 35<br><b>Br</b><br>79.90 | 36<br>Kr<br>83.80        |
| 37<br><b>Rb</b><br>85.47 | 38<br><b>Sr</b><br>87.62 | 39<br><b>Y</b><br>88.91 | Zr<br>91.22              | 41<br><b>Nb</b><br>92.91 | Mo<br>95.95              | Tc                       | Ru<br>101.1     | Rh<br>102.9       | Pd<br>106.4              | 47<br><b>Ag</b><br>107.9 | Cd<br>112.4       | 49<br><b>In</b><br>114.8 | 50<br><b>Sn</b><br>118.7 | 51<br><b>Sb</b><br>121.8 | Te<br>127.6             | 53<br> <br> <br>  126.9  | Xe<br>131.3              |
| CS<br>132.9              | Ba<br>137.3              | 57-<br>71               | 72<br><b>Hf</b><br>178.5 | Ta<br>180.9              | 74<br><b>W</b><br>183.8  | 75<br><b>Re</b><br>186.2 | OS<br>190.2     | 77<br> r<br>192.2 | 78<br><b>Pt</b><br>195.1 | 79<br><b>Au</b><br>197.0 | 80<br>Hg<br>200.6 | 81<br>Tl<br>204.4        | Pb<br>207.2              | 83<br><b>Bi</b><br>209.0 | Po                      | 85<br><b>At</b>          | Rn                       |
| Fr                       | R <sub>a</sub>           | 89-<br>103              | Rf                       | Db                       | Sg                       | Bh                       | Hs              | 109<br>Mt         | Ds                       | Rg                       | Cn                | Nh                       | FL                       | <sup>115</sup><br>Mc     | 116<br><b>Lv</b>        | TS                       | Og                       |
|                          |                          |                         |                          |                          |                          |                          |                 |                   |                          |                          |                   |                          |                          |                          |                         |                          |                          |
|                          |                          |                         | La<br>138.9              | Ce<br>140.1              | 59<br><b>Pr</b><br>140.9 | Nd<br>144.2              | Pm              | 5m<br>150.4       | 63<br>Eu<br>152.0        | 64<br>Gd<br>157.3        | Tb 158.9          | Dy<br>162.5              | 67<br><b>Ho</b><br>164.9 | 68<br>Er<br>167.3        | Tm<br>168.9             | 70<br><b>Yb</b><br>173.0 | 71<br><b>Lu</b><br>175.0 |
|                          |                          |                         | 89<br><b>Ac</b>          | 90<br><b>Th</b>          | 91<br><b>Pa</b><br>231.0 | 92<br><b>U</b><br>238.0  | 93<br><b>Np</b> | 94<br>Pu          | 95<br><b>Am</b>          | Cm                       | 97<br>Bk          | Cf                       | es<br>Es                 | Fm                       | Md                      | No                       | Lr                       |



# Заключительный этап (2022-2023). Официальный комплект решений.

# Задача №1. Окислительно-восстановительные реакции

#### **1.1** (4 балла)

За правильно составленные уравнения по 1 баллу. По 0.5 баллов, если реакции не уравнены.

- 1)  ${\rm ClO_3}^-$  сильный окислитель, восстанавливается до  ${\rm Cl}^-$ ;  ${\rm Fe^{2+}}$  восстановитель, окисляется до  ${\rm Fe^{3+}}$ :
- $6 \text{ FeSO}_4 + \text{KClO}_3 + 3 \text{ H}_2 \text{SO}_4 = 3 \text{ Fe}_2 (\text{SO}_4)_3 + \text{KCl} + 3 \text{ H}_2 \text{O}$
- 2)  ${\rm ClO_3}^-$  сильный окислитель, восстанавливается до  ${\rm Cl}^-$ ;  ${\rm Fe}^{2+}$  восстановитель, окисляется до  ${\rm Fe}^{3+}$ :
- $6 \text{ FeSO}_4 + \text{KClO}_3 + 12 \text{ KOH} + 3 \text{ H}_2\text{O} = 3 \text{ Fe}(\text{OH})_3 \downarrow + \text{KCl} + 6 \text{ K}_2\text{SO}_4$
- 3) Как и все галогены (кроме фтора), иод в щелочной среде диспропорционирует:
- $6 I_2 + 6 Ba(OH)_2 = 5 BaI_2 + Ba(IO_3)_2 + 6 H_2O$
- 4) Бромид-ион восстановитель и окисляется бромат-ионом в кислой среде до брома (реакция сопропорционирования):
- $5 \, \text{KBr} + \text{KBrO}_3 + 3 \, \text{H}_2 \text{SO}_4 = 3 \, \text{Br}_2 + 3 \, \text{K}_2 \text{SO}_4 + 3 \, \text{H}_2 \text{O}$

### Задача №2. Один на всех

#### 2.1 (7 баллов)

Удобный реактив для распознавания различных солей – нитрат серебра (1 балла), который с различными ионами образует осадки разного цвета. За каждую реакцию по 1 баллу, в случае плавиковой кислоты допускается ответ "реакция не происходит".

$$AlCl_3 + 3 AgNO_3 = 3 AgCl \downarrow + Al(NO_3)_3$$
$$2 KOH + 2 AgNO_3 = Ag_2O \downarrow + 2 KNO_3 + H_2O$$
$$NaBr + AgNO_3 = AgBr \downarrow + NaNO_3$$
$$HF + AgNO_3 \longrightarrow AgF + HNO_3$$

AgCl- белый осадок,  $Ag_2O-$  черно-бурый, AgBr- желтоватый. В ходе реакции с фтороводородом видимых изменений не наблюдается, поскольку фторид серебра растворим в воде. За описание наблюдений в каждой реакции **по 0.25 балла.** 

## Задача №3. Электролиз

#### **3.1** (1 балл)

Сперва, найдем объем после смешивания:

$$V = V_{
m NaCl} + V_{
m CuSO_4} = 500 \, 
m M\pi = 0.5 \, 
m \pi$$

Рассчитаем величину количества вещества для каждого из ионов:

$$\nu({\rm CuSO_4}) = 0.1 \cdot 0.2 = 0.02$$
 моль

$$\nu(\mathrm{Cu^{2+}}) = \nu(\mathrm{SO_4^{2-}}) = \nu(\mathrm{CuSO_4}) = 0.02$$
 моль

$$u(NaCl) = 0.2 \cdot 0.3 = 0.06$$
 моль  $u(Na^+) = 
u(Cl^-) = 
u(NaCl) = 0.06$  моль

Теперь, найдем их молярные концентрации:

$$c_M(\mathrm{Cu}^{2+}) = c_M(\mathrm{SO_4}^{2-}) = \frac{0.02}{0.5} = 0.04$$
 моль  $\pi^{-1}$   $c_M(\mathrm{Na}^+) = c_M(\mathrm{Cl}^-) = \frac{0.06}{0.5} = 0.12$  моль  $\pi^{-1}$ 

$$c_M(\mathrm{Na^+}) = c_M(\mathrm{Cl^-}) = rac{0.06}{0.5} = 0.12$$
 моль л $^{-1}$ 

По **0.25 баллов** за верное нахождение концентраций для каждого из ионов Всего – 1 балл за пункт

#### **3.2** (2 балла)

Электролиз шел до тех пор, пока в растворе не остался всего один тип катионов. Очевидно, что электролизу подвергались ионы меди.  $I \cdot t = n \cdot F \cdot e$ 

$$t = \frac{n \cdot F \cdot e}{I} = \frac{0.02 \cdot 96500 \cdot 2}{1} = 3860 \,\mathrm{c} \tag{1}$$

2 балла за верное нахождение времени. Принимаются и альтернативные пути решения

#### **3.3** (2 балла)

На катоде газов не выделялось, так как образовывалсь медь. На аноде в этод момент приоритетно происходило окисление хлорид ионов с образованием газообразного хлора. Посчитаем, какое количество хлорид ионов было затрачено:

$$2 \operatorname{Cl}^- - 2 \operatorname{e}^- \longrightarrow \operatorname{Cl}_2$$

$$\nu(\text{Cl}_2) = \frac{It}{eF} = \frac{1 \cdot 3860}{2 \cdot 96500} = 0.02 \,\text{моль}$$
 (2)

$$u({\rm Cl}^-)_{\rm затрачено} = 0.02 \cdot 2 = 0.04$$
 моль

Как мы видим, хлорид ионы не успели полностью расходоваться, соответсвенно – других газов не выделялось. Объем равен:

 $V(\text{Cl}_2) = 0.02 \cdot 22.4 = 0.448\,\pi$  **1 балл** за нахождение количества вещества хлора. 1 балл за нахождение объема хлора

# Заключительный этап президентской олимпиады по химии 2022-2023. Комплект решений.

#### **3.4** (2 балла)

Для начала рассчитаем массу раствора после смешивания:

 $m_{ ext{начальная}} = 300 \cdot 1.1 + 200 \cdot 1.3 = 590 \, ext{г}$ 

Масса уменьшилась в ходе электролиза, так как выделилась медь и газообразный хлор:

 $m_{\text{конечная}} = m_{\text{начальная}} - m(\text{Cl}_2) - m(\text{Cu})$  $m_{\text{конечная}} = 590 - 0.02 \cdot 71 - 0.02 \cdot 64 = 587.3 \,\text{г}$ 

Мы знаем, что не осталось ионов меди совсем, тогда справедливо утверждать, что:  $\omega(\mathrm{Cu}^{2+})=0\%$ 

Хлорид ионов после электролиза осталось:

 $u_{\text{конечное}}(\mathrm{Cl}^-) = 0.06 - 0.04 = 0.02$  моль

 $m_{\text{конечное}}(Cl^{-}) = 0.02 \cdot 35.5 = 0.71 \,\mathrm{r}$ 

Количество сульфат анионов и катионов натрия не изменилось:

$$\omega(Cl^{-}) = \frac{0.71}{587.3} \cdot 100\% = 0.121\%$$

$$\omega(Na^{+}) = \frac{23 \cdot 0.06}{587.3} \cdot 100\% = 0.235\%$$

$$\omega(SO_4^{2-}) = \frac{96 \cdot 0.04}{587.3} \cdot 100\% = 0.654\%$$

По 0.5 баллов за верное нахождение массовой доли для каждого иона

### Задача №4. Забавное соединение

#### 4.1 (1.5 балла)

Если при сгорании образуется хлороводород, в соединении **A** есть атомы хлора. Наиболее вероятным кандидатом в качестве третьего элемента является водород. В общем виде уравнение горения можно записать так:

$$C_x H_y Cl_z + (x + \frac{y-z}{4}) O_2 \longrightarrow xCO_2 + \frac{y-z}{2} H_2O + zHCl_2$$

Рассчитаем количество вещества хлороводорода:

$$u = \frac{0.3047}{22.4} = 0.0136 \, \text{моль}$$

. Тогда, молярную массу вещества А можно записать как:

$$M = \frac{1}{\frac{1}{z} \cdot 0.0136} = 73.53z$$

Также известна средняя степень окисления атомов углерода. Поскольку молекула должна быть нейтральной, а степень окисления хлора и водорода будут -1 и +1 соответственно, можно составить следующее уравнение:

$$-\frac{1}{3}x + y - z = 0$$

Воспользуемся информацией о массовой доле и составим уравнения:

$$\frac{12x}{M} = \frac{12x}{73\,53z} = 0.4897$$

Отсюда, получим что: x=3z. Используя это и уравнение о нейтральности молекулы, получим:

$$-\frac{1}{3} \cdot 3z + y - z = 0$$
$$-2z + y = 0$$
$$y = 2z$$

Соотношение количества атомов в соединении:

 $C\colon H\colon Cl=x\colon y\colon z=3z\colon 2z\colon z=3\colon 2\colon 1.$  Тогда простейшая формула вещества:  $\mathrm{C_3H_2Cl}$  Под условие о молярной массе подходит всего два варианта с такой простейшей формулой:  $\mathrm{C_3H_2Cl}$  и  $\mathrm{C_6H_4Cl_2}$ . Нейтральным может быть только второе соединение – дихлорбензол.

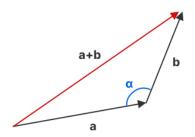
1.5 балла за нахождение формулы А

#### Заключительный этап президентской олимпиады по химии 2022-2023. Комплект решений.

#### **4.2** (1.5 балла)

По 0.5 балла за каждый изомер. Всего – 1.5 балла за пункт

#### **4.3** (1 балл)




$$H \xrightarrow{\delta^+} C$$

По 0.5 балла за каждый дипольный момент. Всего – 1 балл за пункт

#### **4.4** (3 балла)

Для сложения векторов будем использовать теорему косинусов.



По теореме косинусов:

$$\left| \vec{a} + \vec{b} \right| = \sqrt{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 2 \cdot \left| \vec{a} \right| \cdot \left| \vec{b} \right| \cdot \cos \alpha}$$

Для 1,2-дихлорбензола дипольные моменты связей C-H на атомах 3 и 6 расположены под углом в  $180^{\circ}$ , а значит суммируются в  $\vec{0}$ . Связи C-Cl на атомах 1 и 2 создают дипольный момент с общей величиной, равной:

$$|\vec{v}_{12}| = \sqrt{|\vec{v}_{Cl}|^2 + |\vec{v}_{Cl}|^2 - 2 \cdot |\vec{v}_{Cl}|^2 \cdot |\vec{v}_{Cl}|^2 \cdot \cos 120^{\circ}}$$

$$= \sqrt{2 \cdot |\vec{v}_{Cl}|^2 (1 - \cos 120^{\circ})} = \sqrt{3} |\vec{v}_{Cl}| \approx 1.732 |\vec{v}_{Cl}|$$

Связи С-Н на атомах 4 и 5 создают дипольный момент с общей величной:

$$|\vec{v}_{45}| = \sqrt{|\vec{v}_H|^2 + |\vec{v}_H|^2 - 2 \cdot |\vec{v}_H|^2 \cdot |\vec{v}_H|^2 \cdot \cos 120^\circ}$$
$$= \sqrt{2 \cdot |\vec{v}_H|^2 (1 - \cos 120^\circ)} = \sqrt{3} |\vec{v}_H| \approx 1.732 |\vec{v}_H|$$

Эти дипольные моменты направлены в одну сторону, поэтому их можно просто сложить:

$$|\vec{v}_{\text{1,2 usomep}}| = |\vec{v}_{12}| + |\vec{v}_{45}| \approx 1.732 (|\vec{v}_{Cl}| + |\vec{v}_{H}|)$$

Для 1,3-дихлорбензола дипольный моменты связей  $\mathrm{C-H}$  на атомах 2 и 5 взаимонейтрализуют друг друга. Связи  $\mathrm{C-Cl}$  на атомах 1 и 3 создают дипольный момент с общей величиной, равной:

$$|\vec{v}_{13}| = \sqrt{2 \cdot |\vec{v}_{Cl}|^2 (1 - \cos 60^\circ)} = |\vec{v}_{Cl}|$$

Связи С-Н на атомах 4 и 6 создают дипольный момент с общей величной:

$$|\vec{v}_{46}| = \sqrt{2 \cdot |\vec{v}_H|^2 (1 - \cos 60^\circ)} = |\vec{v}_H|$$

Эти дипольные моменты направлены в одну сторону, поэтому их можно просто сложить:

# Заключительный этап президентской олимпиады по химии 2022-2023. Комплект решений.

#### **4.4** (продолжение)

$$|\vec{v}_{\text{1,3 M30Mep}}| = |\vec{v}_{13}| + |\vec{v}_{46}| = |\vec{v}_{Cl}| + |\vec{v}_{H}|$$

В 1,4-дихлорбензоле дипольные моменты связей в парах 1 и 4, 2 и 5, 3 и 6 взаимонейтрализуют друг друга (равные величины направленные в противоположные стороны). Значит общий дипольный момент молекулы 1,4-дихлорбензола равен нулю.

$$|\vec{v}_{1,4 \text{ изомер}}| = 0$$

**По 1 баллу** за правильное выражение каждого из дипольных моментов Всего – **2 балла** за пункт