Республиканская олимпиада по химии 2021

Заключительный этап

Решения практического тура 10 класс

Задание №1

Пункт	1.1	1.2	1.3	1.4	Всего	Bec
Макс.	4	4	18	6	32	

В пронумерованных пробирках находятся неорганические соли, основания и кислоты. С помощью данного сайта вы можете узнать результаты экспериментов, которые вы могли бы проводить для расшифровки веществ.

Считайте, что любая реакция протекает так: к веществу, выбранному вами как "1", прибавляется вещество "2" и сообщаются наблюдения при добавлении равных объемов веществ. Если отмечена галочка «избыток вещества "2"», второе вещество добавляется в значительном избытке.

Цвет растворов отражен на кнопках, соответствующих вашим пробиркам. Белые кнопки соответствуют прозрачным растворам.

В качестве катионов в растворе могут присутствовать ионы водорода, аммония, калия, натрия, кальция, магния, бария, свинца, цинка, марганца, железа (II), железа (III), хрома (III) и алюминия. В качестве анионов могут присутствовать — сульфат-, хлорид-, гидрофосфат-, дихромат-, карбонат-, гидроксид-, нитрат- ионы.

1. <u>Нарисуйте</u> практическую матрицу (используя следующие обозначения: образование осадка $\downarrow_{\text{цвет}}$, растворение осадка и образование растворимых комплексов $_{\text{раст}} \downarrow$, выделение газов \uparrow)

№ Пробирки	1	2	3	4	5	6	7	8	9	10
11рооирки 1										
1										
2										
3										
3										
4										
5										
3										
6										
7										
/										
8										
9										
10										
10										
	İ	l	l		l		l		l	

2. Нарисуйте теоретическую матрицу (используя те же обозначения, что и для практической матрицы)

	FeSO ₄	FeCl ₃	CaCl ₂	Al(NO ₃) ₃	H ₂ SO ₄	NH4OH	Na ₂ CO ₃	ZnCl ₂	ZnSO ₄	BaCl ₂	Σ
FeSO ₄		-	CaSO ₄ ↓ ₆	-	-	Fe (OH) ₂ ↓ _{зел} ↓ Fe (OH) ₃ ↓ _{бур}	(FeOH) ₂ CO ₃ ↓ _{зел,} CO ₂ ↑ ↓ Fe (OH) ₃ ↓ _{бур}	-	-	BaSO ₄ ↓ ₆	4↓(1↑, 2↓ _{6yp})
FeCl ₃	-		-	-	-	FеОН)₃↓ _{бур}	FeOH) ₃ ↓ _{бур} CO ₂ ↑	-	-	-	$2\downarrow_{\text{6yp}}(1\uparrow)$
CaCl ₂	CaSO ₄ ↓ ₆	-		-	CaSO ₄ ↓ ₆	Ca(OH) ₂ ↓ ₆	CaCO₃↓ ₆	-	CaSO ₄ ↓ ₆	-	5↓
Al(NO ₃) ₃	-	-	-		-	Al(OH)₃↓ ₆	Al(OH)₃↓ ₆ CO₂↑	-	-	-	2↓(1↑)
H ₂ SO ₄	-	-	CaSO ₄ ↓ ₆	-			CO ₂ ↑	-	-	BaSO ₄ ↓ ₆	2↓ 1↑
NH4OH	FeOH)2↓зел ↓ FeOH)3↓бур	FeOH)₃↓ бурый	Ca(OH) ₂ ↓ ₆	Al(OH)₃↓ ₆				$Zn(OH)_2 \downarrow_6$ \downarrow_{pact} $[Zn(NH_3)_4]^{2+}$	$Zn(OH)_2 \downarrow_6$ \downarrow_{pact} $[Zn(NH_3)_4]^{2+}$	-	6↓ (1↓ _{бур} 2↓ _{раст})
Na ₂ CO ₃	(FeOH) ₂ CO ₃ ↓ _{3∈Л} , CO ₂ ↑ ↓ Fe (OH) ₃ ↓ _{бур}	FеОН)₃↓ бурый	CaCO₃↓ ₆	Al(OH) ₃ ↓ ₆ CO ₂ ↑	CO ₂ ↑	-		$(ZnOH)_2CO_3$ \downarrow_6 $CO_2\uparrow$	(ZnOH) ₂ CO ₃ ↓ ₆ CO ₂ ↑	BaCO₃↓ ₆	7↓1↑ (4↑1↓ _{бур})
ZnCl ₂	-	-		-	-	$Zn(OH)_2 \downarrow_{\delta}$ \downarrow_{pacr} $[Zn(NH_3)_4]^{2+}$	(ZnOH) ₂ CO ₃ ↓ ₆ CO ₂ ↑		-	-	2↓ (1↑1↓ _{pact})
ZnSO ₄	-	-	CaSO ₄ ↓ ₆	-	-	$Zn(OH)_2\downarrow_6$ \downarrow_{pact} $[Zn(NH_3)_4]^2$	(ZnOH) ₂ CO ₃ ↓ ₆ CO ₂ ↑	-	-	BaSO ₄ ↓ ₆	4↓ (1↑1↓ _{раст})
BaCl ₂	BaSO₄↓ ₆	-	-	-	BaSO ₄ ↓ ₆	[(- :5)+]	BaCO₃↓ ₆	-	BaSO₄↓ ₆	-	4↓

3. Запишите формулы соединений, находящихся в каждой пробирке

Вариант №1	Вещество
Пробирка №1	ZnCl2
Пробирка №2	Na2CO3
Пробирка №3	NH4OH
Пробирка №4	CaCl2
Пробирка №5	H2SO4
Пробирка №6	ZnSO4
Пробирка №7	AI(NO3)3
Пробирка №8	FeCl3
Пробирка №9	BaCl2
Пробирка №10	FeSO4

Вариант №2	Вещество
Пробирка №1	CaCl2
Пробирка №2	AI(NO3)3
Пробирка №3	Na2CO3
Пробирка №4	NH4OH
Пробирка №5	BaCl2
Пробирка №6	ZnSO4
Пробирка №7	FeSO4
Пробирка №8	H2SO4
Пробирка №9	ZnCl2
Пробирка №10	FeCl3

Вариант №3	Вещество
Пробирка №1	FeCl3
Пробирка №2	H2SO4
Пробирка №3	AI(NO3)3
Пробирка №4	Na2CO3
Пробирка №5	ZnCl2
Пробирка №6	ZnSO4
Пробирка №7	NH4OH
Пробирка №8	CaCl2
Пробирка №9	BaCl2
Пробирка №10	FeSO4

Вариант №4	Вещество
Пробирка №1	NH4OH
Пробирка №2	ZnSO4
Пробирка №3	CaCl2
Пробирка №4	H2SO4
Пробирка №5	FeSO4
Пробирка №6	AI(NO3)3
Пробирка №7	ZnCl2
Пробирка №8	BaCl2
Пробирка №9	FeCl3
Пробирка №10	Na2CO3

Вариант №5	Вещество
Пробирка №1	CaCl2
Пробирка №2	BaCl2
Пробирка №3	NH4OH
Пробирка №4	FeSO4
Пробирка №5	AI(NO3)3
Пробирка №6	H2SO4
Пробирка №7	ZnSO4
Пробирка №8	ZnCl2
Пробирка №9	Na2CO3
Пробирка №10	FeCl3

Вариант №6	Вещество
Пробирка №1	FeSO4
Пробирка №2	ZnCl2
Пробирка №3	BaCl2
Пробирка №4	ZnSO4
Пробирка №5	AI(NO3)3
Пробирка №6	FeCl3
Пробирка №7	CaCl2
Пробирка №8	Na2CO3
Пробирка №9	H2SO4
Пробирка №10	NH4OH

Вариант №7	Вещество
Пробирка №1	BaCl2
Пробирка №2	ZnCl2
Пробирка №3	H2SO4
Пробирка №4	FeCl3
Пробирка №5	NH4OH
Пробирка №6	Na2CO3
Пробирка №7	FeSO4
Пробирка №8	AI(NO3)3
Пробирка №9	ZnSO4
Пробирка №10	CaCl2

Вариант №8	Вещество
Пробирка №1	BaCl2
Пробирка №2	CaCl2
Пробирка №3	AI(NO3)3
Пробирка №4	FeCl3
Пробирка №5	ZnCl2
Пробирка №6	NH4OH
Пробирка №7	FeSO4
Пробирка №8	Na2CO3
Пробирка №9	H2SO4
Пробирка №10	ZnSO4

Вариант №9	Вещество
Пробирка №1	FeSO4
Пробирка №2	H2SO4
Пробирка №3	ZnCl2
Пробирка №4	ZnSO4
Пробирка №5	NH4OH
Пробирка №6	FeCl3
Пробирка №7	Na2CO3
Пробирка №8	AI(NO3)3
Пробирка №9	CaCl2
Пробирка №10	BaCl2

Вариант №10	Вещество
Пробирка №1	AI(NO3)3
Пробирка №2	BaCl2
Пробирка №3	Na2CO3
Пробирка №4	ZnSO4
Пробирка №5	CaCl2
Пробирка №6	NH4OH
Пробирка №7	H2SO4
Пробирка №8	FeCl3
Пробирка №9	FeSO4
Пробирка №10	ZnCl2

Вариант №11	Вещество
Пробирка №1	NH4OH
Пробирка №2	ZnCl2
Пробирка №3	Na2CO3
Пробирка №4	AI(NO3)3
Пробирка №5	ZnSO4
Пробирка №6	BaCl2
Пробирка №7	CaCl2
Пробирка №8	FeCl3
Пробирка №9	H2SO4
Пробирка №10	FeSO4

Вариант №12	Вещество
Пробирка №1	Na2CO3
Пробирка №2	ZnCl2
Пробирка №3	FeCl3
Пробирка №4	CaCl2
Пробирка №5	AI(NO3)3
Пробирка №6	FeSO4
Пробирка №7	ZnSO4
Пробирка №8	H2SO4
Пробирка №9	BaCl2
Пробирка №10	NH4OH

Вариант №13	Вещество
Пробирка №1	BaCl2
Пробирка №2	ZnSO4
Пробирка №3	AI(NO3)3
Пробирка №4	FeSO4
Пробирка №5	FeCl3
Пробирка №6	NH4OH
Пробирка №7	H2SO4
Пробирка №8	ZnCl2
Пробирка №9	Na2CO3
Пробирка №10	CaCl2

Вариант №14	Вещество
Пробирка №1	NH4OH
Пробирка №2	BaCl2
Пробирка №3	ZnSO4
Пробирка №4	FeSO4
Пробирка №5	CaCl2
Пробирка №6	AI(NO3)3
Пробирка №7	ZnCl2
Пробирка №8	FeCl3
Пробирка №9	H2SO4
Пробирка №10	Na2CO3

Вариант №15	Вещество
Пробирка №1	CaCl2
Пробирка №2	H2SO4
Пробирка №3	Na2CO3
Пробирка №4	AI(NO3)3
Пробирка №5	FeCl3
Пробирка №6	ZnSO4
Пробирка №7	ZnCl2
Пробирка №8	NH4OH
Пробирка №9	BaCl2
Пробирка №10	FeSO4

Вариант №16	Вещество
Пробирка №1	Na2CO3
Пробирка №2	FeCl3
Пробирка №3	H2SO4
Пробирка №4	BaCl2
Пробирка №5	ZnSO4
Пробирка №6	AI(NO3)3
Пробирка №7	NH4OH
Пробирка №8	ZnCl2
Пробирка №9	CaCl2
Пробирка №10	FeSO4

Вариант №17	Вещество
Пробирка №1	Na2CO3
Пробирка №2	FeSO4
Пробирка №3	ZnCl2
Пробирка №4	H2SO4
Пробирка №5	AI(NO3)3
Пробирка №6	ZnSO4
Пробирка №7	NH4OH
Пробирка №8	CaCl2
Пробирка №9	FeCl3
Пробирка №10	BaCl2

4. Запишите уравнения всех возможных реакций, протекающих при смешении различных пробирок

1.
$$FeSO_4 + CaCl_2 = CaSO_4 \downarrow + FeCl_2$$

 $Ca^{2+} + SO_4^{2-} = CaSO_4 \downarrow$

2.
$$FeSO_4 + 2NH_4OH = Fe(OH)_2 \downarrow + (NH_4)_2SO_4$$

 $Fe^{2+} + 2OH^- = Fe(OH)_2 \downarrow$

$$4Fe(OH)_2\downarrow + O_2 + 2H_2O = 4Fe(OH)_3\downarrow$$

4.
$$2\text{FeSO}_4 + 2\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} = (\text{FeOH})_2\text{CO}_3 + 2\text{Na}_2\text{SO}_4 + \text{CO}_2\uparrow$$

 $2\text{Fe}^{2^+} + 2\text{CO}_3^{2^-} + \text{H}_2\text{O} = (\text{FeOH})_2\text{CO}_3\downarrow + \text{CO}_2\uparrow$

$$(FeOH)_2CO_3\downarrow + O_2 + 2H_2O = 4Fe(OH)_3\downarrow + CO_2\uparrow$$

14.
$$H_2SO_4 + Na_2CO_3 = Na_2SO_4 + CO_2\uparrow + H_2O$$

 $2H^+ + CO_3^{2-} = CO_2\uparrow + H_2O$

15.
$$H_2SO_4 + BaCl_2 = CaSO_4 \downarrow + 2HCl$$

 $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$

16.
$$H_2SO_4 + NH_4OH = (NH_4)_2SO_4 + H_2O$$

 $H^+ + OH^- = H_2O$

17.
$$2NH_4OH + ZnCl_2 = Zn(OH)_2 \downarrow + 2NH_4Cl$$

 $Zn^{2+} + 2OH^- = Zn(OH)_2 \downarrow$

5.
$$FeSO_4 + BaCl_2 = BaSO_4 \downarrow + FeCl_2$$

 $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$

6.
$$FeCl_3 + 3NH_4OH = Fe(OH)_3 \downarrow + 3NH_4Cl$$

 $Fe^{3+} + 3OH^- = Fe(OH)_3 \downarrow$

7.
$$2\text{FeCl}_3 + 3\text{Na}_2\text{CO}_3 + 3\text{H}_2\text{O} = 2\text{Fe}(\text{OH})_3 \downarrow + 6\text{NaCl} + 3\text{CO}_2 \uparrow 2\text{Fe}^{3+} + 3\text{CO}_3^{2-} + 3\text{H}_2\text{O} = 2\text{Fe}(\text{OH})_3 \downarrow + 3\text{CO}_2 \uparrow$$

8.
$$CaCl_2 + H_2SO_4 = CaSO_4 \downarrow + FeCl_2$$

 $Ca^{2+} + SO_4^{2-} = CaSO_4 \downarrow$

9.
$$CaCl_2 + 2NH_4OH = Ca(OH)_2 \downarrow + 2NH_4Cl$$

 $Ca^{2+} + 2OH^{-} = Ca(OH)_2 \downarrow$

10.
$$CaCl_2 + Na_2CO_3 = CaCO_3 \downarrow + 2NaCl$$

 $Ca^{2+} + CO_3^{2-} = CaCO_3 \downarrow$

11.
$$CaCl_2 + ZnSO_4 = CaSO_4 \downarrow + ZnCl_2$$

 $Ca^{2+} + SO_4^{2-} = CaSO_4 \downarrow$

12.
$$Al(NO_3)_3 + 3NH_4OH = Al(OH)_3 \downarrow + 2NH_4NO_3$$

 $Al^{3+} + 3OH^- = Al(OH)_3 \downarrow$

13.
$$2AI(NO_3)_3 + 3Na_2CO_3 + 3H_2O = 2AI(OH)_3\downarrow + 6NaNO_3 + 3CO_2\uparrow 2AI^{3+} + 3CO_3^{2-} + 3H_2O = 2AI(OH)_3\downarrow + 3CO_2\uparrow$$

18.
$$Zn(OH)_2\downarrow + 4NH_4OH = [Zn(NH_3)_4](OH)_2 + 4H_2O$$

 $Zn^{2+} + 4NH_3 = [Zn(NH_3)_4]^{2+}$

19.
$$2NH_4OH + ZnSO_4 = Zn(OH)_2 \downarrow + (NH_4)_2SO_4$$

 $Zn^{2+} + 2OH^- = Zn(OH)_2 \downarrow$

20.
$$Zn(OH)_2\downarrow + 4NH_4OH = [Zn(NH_3)_4](OH)_2 + 4H_2O$$

 $Zn^{2+} + 4NH_3 = [Zn(NH_3)_4]^{2+}$

21.
$$2Na_2CO_3 + 2ZnCl_2 + H_2O = (ZnOH)_2CO_3 + 4NaCl + CO_2\uparrow 2CO_3^{2-} + 2Zn^{2+} + H_2O = (ZnOH)_2CO_3\downarrow + CO_2\uparrow$$

22.
$$2Na_2CO_3 + 2ZnSO_4 + H_2O = (ZnOH)_2CO_3 + 2Na_2SO_4 + CO_2\uparrow 2CO_3^{2-} + 2Zn^{2+} + H_2O = (ZnOH)_2CO_3 \downarrow + CO_2\uparrow$$

23.
$$Na_2CO_3 + BaCl_2 = BaCO_3 \downarrow + 2NaCl$$

 $Ba^{2+} + CO_3^{2-} = BaCO_3 \downarrow$

24.
$$ZnSO_4 + BaCl_2 = BaSO_4 \downarrow + ZnCl_2$$

 $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$

Реакции 44.0,25=66

Задание №2. Выбор индикатора для кислотно-основного титрования.

Пункт	2.1	2.2	2.3	2.4	2.5	2.6	Всего	Bec
Макс.	1	1	1	3	1	2	9	

! В задачах по аналитической химии необходимо строгое соблюдение значащих цифр в вычислениях. За несоблюдение значащих цифр предусмотрен штраф.

Юный химик Владислав решил познакомиться поближе с кислотно-основным титрованием. Перед ним стояла задача — определить концентрацию некоторой слабой одноосновной кислоты в склянке с пометкой **A**. Для этого Владислав решил использовать 0.5М раствор сильного основания NaOH, который был приготовлен за неделю до проведения самого эксперимента.

1. Учитель Владислава сказал, что перед началом эксперимента необходимо установить новую концентрацию гидроксида натрия. Объясните, почему значение в 0.5М может быть неверным. Дополните своё объяснение уравнением химической реакции. [1]

Так как NaOH находился в контакте с углекислым газом воздуха, имели место быть следующие реакции:

$$NaOH + CO_2 \rightarrow NaHCO_3$$

 $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$

1 балл

* Балл дается за любую из реакций

Для стандартизации раствора гидроксида натрия Владислав взял 10.00 мл аликвоты NaOH, на титрование которой ушло 15.55 мл 0.25М стандартного раствора HCl.

2. Рассчитайте истинную концентрацию NaOH. [1]

$$C_1 * V_1 = C_2 * V_2$$
 $C(NaOH) = \frac{15.55 \text{ мл} * 0.25\text{M}}{10.00 \text{ мл}} = 0.39\text{M}$

1 балл

* Балл выдается только в случае верного вычисления. Если ученик записывает ответ с неверным количеством значащих цифр, то вместо одного балла ставится 0.5 баллов

На титрование 10.00мл аликвоты слабой кислоты A у Владислава ушло 7.85мл NaOH.

3. Определите концентрацию кислоты в склянке А. [1]

Так как кислота одноосновная, вычисления аналогичны таковым в пункте (2):

$$C_1 * V_1 = C_2 * V_2$$

$$C(A) = \frac{7.85 \text{ M} \pi * 0.39 \text{M}}{10.00 \text{ M} \pi} = 0.31 \text{M}$$

1 балл

- * Балл выдается только в случае верного вычисления. Если ученик записывает ответ с неверным количеством значащих цифр, то вместо одного балла ставится 0.5 баллов
- * Если ученик верно использует неверное значение, полученное в пункте (2), то получает полный балл
- 4. Рассчитайте рН в точке эквивалентности, если известно, что pK_a кислоты в склянке **A** равна 4.75, а титрование происходит сильным основанием. [3]

Для того, чтобы рассчитать pH в точке эквивалентности, надо установить, что из себя представляет раствор в этот момент. В точке эквивалентности уже нет протонов HAn (кислоты), но еще нет OH⁻. Таким образом, в ТЭ присутствует только натриевая соль слабой кислоты A – Han [1 балл]

$$An^- + H_2O \leftrightarrow HAn + OH^ K_{\text{гидр}} = \frac{[HAn][OH^-]}{[An^-]} = \frac{K_{H_2O}}{K_{HA}}$$
 $K_{\text{гидр}} = 5.62 * 10^{-10}$ [1 балл]

Согласно ионному уравнению на каждый гидроксид-ион приходится одна молекула кислоты. Из-за того, что ионизация происходит слабо, $[An^-] \approx C_{An^-}$ (предварительно пересчитаем концентрацию кислоты из-за разбавления в результате добавления основания)

Отсюда:

$$\frac{[OH^-]^2}{0.174} = 5.62 * 10^{-10}$$
$$[OH^-] = 9.88 * 10^{-6}M$$
$$pOH = 5.00$$
$$pH = 9.00 \quad [1 \text{ балл}]$$

Владислав решил продемонстрировать эксперимент всему классу, но обнаружил, что индикатор, который он использовал до этого закончился. Ему необходимо подобрать другой.

5. Основываясь на своём ответе в пункте (4), выберите подходящий индикатор для титрования из приведенной ниже таблицы [1]

Название индикатора	рН	Изменение цвета
Тропеолин 00	1.4–3.2	Зеленый в фиолетовый
Бромофеноловый синий	3.0-4.6	Желтый в голубой
Метилоранж	3.0-4.4	Розовый в желтый
Метиловый красный	4.4–6.2	Красный в желтый
Бромтимоловый синий	6.0–7.6	Желтый в голубой

^{*} Если ученик верно использует неверное значение, полученное в пункте (3), то получает полный балл.

Фенолфталеин	8.2-10.0	Бесцветный в малиновый
Ализарин желтый R	10.1–12.1	Желтый в красный

Точка перехода фенолфталеина соответствует ТЭ. [1 балл]

Массовые доли углерода, кислорода и водорода в кислоте А равны 40.0%, 53.3% и 6.7%, соответственно.

6. Установите формулу и название кислоты. [2]

Устанавливаем соотношение:

C:O:H = 3.33:3.33:6.7 = 1:1:2 [1 балл]

Таким образом, общая формула кислоты – СН₂О

Первый подходящий вариант – уксусная кислота СН₃СООН [1 балл]

^{*} Если ученик делает верное утверждение, используя неверное значение, полученное в пункте (4), то получает полный балл.