Республиканская олимпиада по химии 2019 Заключительный этап

Практический тур 10 класс Решения

chem-10-2-

Таблица оценивания:

Эта страница предназначена для членов жюри. Пожалуйста, не пишите ничего на этой странице.

Задача	Изначальный балл	Апелляция	Конечный балл	Вес Задачи	Финальный балл
№1 (Определение фосфорной и серной кислоты)				30	
Суммарно				30	

Заключительный этап республиканской олимпиады по химии 2019 Решения. Практический тур. 10 класс.	chem-10-2-
(эта страница намеренно оставлена пустой	ă)

Задача №1. Определение содержания фосфорной и серной кислоты при их совместном присутствии в растворе методом кислотно-основного титрования

V ¹	V ²	2	3	4	5	6	7	8	Всего	% от общего
5	5	1	1	5	5	6	1	1	30	30
										30

1. Введите числовые данные

Общие данни	ые	V ¹ титранта		V^1_{cp}	V ² титранта		V^2_{cp}
C(NaOH)	V	\mathcal{I}_1			V_1		
V _{аликвоты}	V	I_2			V_2		
V _{мерной колбы}	V	73			V_3		

2. Напишите уравнения (молекулярные, ионные) химических реакций, протекающих при титровании серной и фосфорной кислоты в присутствии индикаторов метилоранжа и фенолфталеина по данной методике.

м.о
$$H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O$$
 $H_3PO_4 + NaOH = NaH_2PO_4 + H_2O$ (1 балл)

ф-ф $H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O$ $H_3PO_4 + 2NaOH = Na_2HPO_4 + 2H_2O$
 $V(H_3PO_4) = V^2 - V^1$; $f(H_3PO_4) = 1$ или $2(V^2 - V^1)$; $f(H_3PO_4) = 1/2$ $V(H_2SO_4) = (2V^1 - V^2)$

3. Укажите факторы эквивалентности веществ в данных реакциях.

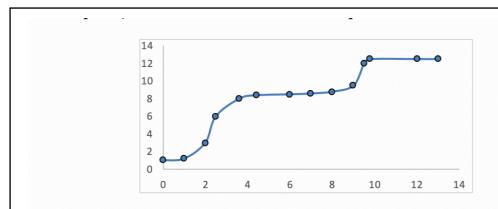
м.о
$$f(H_2SO_4) = 1/2;$$
 $f(H_3PO_4) = 1$ $(1 балл)$

- 4. Найдите массу серной кислоты в задаче (в граммах)
- а) Масса серной кислоты:

$$m(H_2SO_4) = C_T \cdot (2V^1 - V^2) \cdot M_{\text{экв}}(H_2SO_4) \cdot V_{\text{м.к}} / V_{\text{al}} \cdot 1000$$
 (5 баллов)

5. Найдите массу фосфорной кислоты в задаче (в граммах)

$$m(H_3PO_4) = C_{\text{\tiny T}} \cdot (V^2 - V^1) \cdot M_{\text{экв}}(H_3PO_4) \cdot V_{\text{м.к}} / V_{\text{al}} \cdot 1000$$
 (5 баллов)


6. Рассчитайте pH растворов 0,1М H_2SO_4 и 0,1М H_3PO_4 при титровании 0,1М NaOH: а) в начальной точке титрования (до титрования); б) в эквивалентной точке титрования (для H_3PO_4 K_{a1} = 7,6·10⁻³ (p K_{a1} =2.12); K_{a2} = 6,2·10⁻⁸ (p K_{a2} =7.21); K_{a3} = 4,4·10⁻¹³ (p K_{a3} =12.36)).

```
a) H_2SO_4 + H_3PO_4
                                                                                                                                                                                                                                                                                                                                                          б) H_2SO_4 + H_3PO_4
                                                                                                                                                                                                                                                                                                                                                          I т. экв 
H<sub>2</sub>SO<sub>4</sub> полностью оттитрована
  H_2SO_4 = 2H^+ + SO_4^{2-}
  [H^+]= 2 \cdot C(H_2SO_4) = 0.2M
                                                                                                                                                                                                                                                                                                                                                          H_3PO_4 + NaOH = NaH_2PO_4 + H_2O
                                                                                                                                                                                                                                                                                                                                                          H_2PO_4^- + H_2O = HPO_4^{2-} + H_3O^+ K_2

H_2PO_4^- + H_3O^+ = H_3PO_4 + H_2O K_1
  H_3PO_4 = H^+ + H_2PO_4^-
                                                                                                                                        K_1 = [H^+] \cdot [H_2PO_4^-] / [H_3PO_4]
                                                 0
                                                                                                                                                                                                                                                                                                                                                          [H_{3}O^{+}] = [HPO_{4}^{2-}] - [H_{3}PO_{4}] = K_{2} \cdot [H_{2}PO_{4^{-}}] / [H_{3}O^{+}] - [H_{2}PO_{4^{-}}] \cdot [H_{3}O^{+}] / K_{1}
                                                                                                                                                                                                                                                                                                                                                         \begin{array}{l} K_1 \cdot [H_3O^+]^2 = K_1 \cdot K_2 \cdot [H_2PO_4^-] - [H_2PO_4^-] \cdot [H_3O^+]^2 \\ [H_3O^+]^2 (K_1 + [H_2PO_4^-]) = K_1 \cdot K_2 \cdot [H_2PO_4^-] \\ [H_3O^+]^2 = K_1 \cdot K_2 \cdot [H_2PO_4^-] / (K_1 + [H_2PO_4^-]) \end{array}
0.1-z
                                                                                                                                         [H^+]=z+0.2
        K_1 = (z+0.2) \cdot z / (0.1-z) = 7.6 \cdot 10^{-3}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 K_1 <<< [H_2PO_4^-]
          Z = 0.00373
                                                                                                                                                                                                                                                                                                                                                          [H_3O^+] = \sqrt{K_1 \cdot K_2 \cdot [H_2PO_4^-] / [H_2PO_4^-]} = \sqrt{K_1 * K_2} =
  [H^+]_{\text{общ}} = [H^+]H_2SO_4 \ + \ [H^+]H_3PO_4 \ = 0.2 + 0.00373 = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} \cdot 6, 2 \cdot 10^{\cdot 8} = 2, 2 \cdot 10^{\cdot 5} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3} = 0.20373 \ \sqrt[4]{7}, 6 \cdot 10^{\cdot 3}
                                                                                                                                                                                                                                                                                                                                                          pH = -1g2, 2 \cdot 10^{-5} = 4.66
  pH = - lg \ 0.20373 = 0.69
                                                                                                                                                                                                                                                                                                                                                          II т. экв
                                                                                                                                                                                                                                                                                                                                                          H_3PO_4 + NaOH = Na_2HPO_4 + H_2O
                                                                                    (3 балла)
                                                                                                                                                                                                                                                                                                                                                         HPO_4^{2-} + H_2O = PO_4^{3-} + H_3O^+ K_3

HPO_4^{2-} + H_3O^+ = H_2PO_4^{-} + H_2O K_2
                                                                                                                                                                                                                                                                                                                                                          [H_3O^+] = [PO_4{}^{3\cdot}] - [HPO_4{}^{2\cdot}] = K_3 \cdot [HPO_4{}^{2\cdot}] \ / [H_3O^+] - [HPO_4{}^{2\cdot}] \cdot [H_3O^+] \ / \ K_2
                                                                                                                                                                                                                                                                                                                                                          K_2 \cdot [H_3O^+]^2 = K_2 \cdot K_3 \cdot [HPO_4^2] - [HPO_4^2] \cdot [H_3O^+]^2
                                                                                                                                                                                                                                                                                                                                                         \begin{split} &[H_3O^+]^2 \left( K_2 + [HPO_4{}^2 \cdot] \right) = K_2 \cdot K_3 \cdot [\ HPO_4{}^2 \cdot] \\ &[H_3O^+]^2 = K_2 \cdot K_3 \cdot [\ HPO_4{}^2 \cdot] / K_2 + [HPO_4{}^2 \cdot] \end{split}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  K_2 <<< [HPO_4^{2-}]
                                                                                                                                                                                                                                                                                                                                                         [H_3O^+] = \sqrt{K_1 \cdot K_2 \cdot [HPO_4^{2-}]} / [HPO_4^{2-}] = \sqrt{K_2 \cdot K_3} = 1,64 \cdot 10^{-10}
                                                                                                                                                                                                                                                                                                                                                         pH = - lg 1,64 \cdot 10^{-10} = 9,79
                                                                                                                                                                                                                                                                                                                                                                                                                                                 (3 балла)
```

7. Схематически представьте кривую титрования смеси (серной и фосфорной) кислот. Обоснуйте выбор индикаторов (фенолфталеин и метилоранж) для выполнения данного титрования.

Для определения H_2SO_4 м.о и ф-ф \rightarrow входят рТ в скачок титрования; Для определения H_3PO_4 м.о \rightarrow NaH_2PO_4 ; ф-ф \rightarrow Na_2HPO_4 (1 балл)

8. При каком условии возможно раздельное титрование смеси кислот (или многоосновных кислот по ступеням)?

Если K_1 / K_2 не менее 10^4

Например: Н₃РО₄

I. $K_1 / K_2 = 7.6 \cdot 10^{-3} / 6.2 \cdot 10^{-8} = 1.2 \cdot 10^{5}$

II. $K_2 / K_3 = 6.2 \cdot 10^{-8} / 4.4 \cdot 10^{-13} = 1.4 \cdot 10^5$

III. $K_3 = 4,4 \cdot 10^{-13}$ мала, по 3-й ступени H_3PO_4 в водном растворе оттитровать невозможно (1 балл)