Задания теоретического тура РХО -2002 для 10 класса

№10-1-2002респ.

1. Расчет эдс.

Рассчитайте э.д.с. суммарной реакции, происходящей в следующем гальваническом элементе

2. Расчет констант равновесия.

Вычислите константу равновесия реакции следующей реакции, используя таблицу стандартных окислительно-восстановительных потенциалов:

$$HAsO_2 + I_3^- + 2H_2O \Leftrightarrow H_3AsO_4 + 2H^+ + 3I^-$$

- 3. По значениям стандартных потенциалов рассчитайте произведение растворимости хлорида серебра.
- 4. Вычислите стандартный потенциал полуреакции $Cu^+ + e^- \Leftrightarrow Cu$, который отсутствует в таблице.

Таблица (фрагнмент) стандартных окислительно-восстановительных потенциалов

E ⁰	Полуреакции
0,7995	AgCl ⇔ Ag+ + e-
0,771	$Fe^{3+} + e^{-} \Leftrightarrow Fe^{2+}$
0,70	$Fe^{3+} + e^{-} \Leftrightarrow Fe^{2+} (1M \text{ HCl})$
0,68	$Fe^{3+} + e^{-} \Leftrightarrow Fe^{2+}(1M H_2SO_4)$
0,559	$H_3AsO_4 + 2H^+ + 2e^- \Leftrightarrow HAsO_2 + 2H_2O$
0,5355	I_3 + $2e$ $\Leftrightarrow 3I$
0,337	Cu ²⁺ + 2e ⁻ ⇔ Cu
0,2222	AgCl + e⁻ ⇔ Ag + Cl⁻
0,153	Cu²+⇔ Cu+ + e-
0,0000	$2H^+ + 2e^- = H_2$

№10-2-2002респ. Смесь двух газов, один из которых легче воздуха, пропустили последовательно через трубки, заполненные оксидом меди (II) (при 400 °C), оксидом фосфора (V) и твердым гидроксидом калия, нанесенными на инертный носитель и взятыми в избытке. Масса первой трубки уменьшилась на 0,192 г, а массы второй и третьей трубок увеличились соответственно на 0,144 г и 0,088 г. После пропускания газов через трубки было получено 22,4 мл (н.у.) газообразного вещества. Установите объем исходной газовой смеси (при н.у.) и массовые доли газов в ней, если известно, что масса смеси составляла 0,068 г.

№10-3-2002 респ.

- 1. Определите возможность протекания процесса комплексообразования: $Ag^+ + 2NH_3 \rightarrow [Ag(NH_3)_2]^+$. Константа нестойкости комплексного иона $[Ag(NH_3)_2]^+$ равна принять равным $9.31*10^{-8}$.
- 2. Вычислите растворимость хлорида серебра в 1 л 0,1 М раствора аммиака в моль/л и г/л.
- 3. Можно ли разрушить комплекс [Ag(NH_3)2]⁺, концентрация которого в растворе составляет 0,1 моль/л, добавлением раствора KCl равного объема и равной концентрации? Увеличением объема раствора при сливании исходных можно не учитывать.

- 4.Возможно ли разрушение того же комплекса при тех же условиях, что и в предыдущем примере, но при наличии избытка NH_3 , концентрация которого в растворе составляет 10 моль/л.
- 5. Будет ли разрушаться комплекс в тех же условиях при замене КСІ на КІ

№10-4-2002 респ.

- 1. Напишите альдегидную форму глюкозы с помощью проекционных формул Э.Фишера и его α и β -циклические формы с помощью формул Хеуорса указанием нумераций углеродных атомов.
- 2. Составьте уравнения реакций, с помощью которых можно доказать наличие в молекуле глюкозы: а) альдегидной группы; б) пяти гидроксильных групп. Приведите названия полученных продуктов реакций.
- 3. Напишите суммарное уравнение процесса фотосинтеза. Что является катализатором этого процесса? (Укажите его над стрелкой)
- 4. Напишите схему реакций получения фенилгидразона и фенилозазона глюкозы.
- 5. В чем заключается основное отличие крахмала от целлюлозы? Дайте обоснованный ответ.

№10-5-2002респ.

- 1. В результате спиртового брожения глюкозы получен этанол, который окислили до кислоты. При действии избытка гидрокарбоната калия на всю полученную кислоту выделился газ объемом 8,96 л (н.у.). Определите массу глюкозы, подвергшуюся брожению, если выход спирта в этом процессе 80%.
- 2. При брожении глюкозы образовались 0,1792 л газообразных продуктов и смесь кислот, для нейтрализации которой было затрачено 135 мл раствора гидрокстда калия с молярной концентрацией 1,5 моль/л. Рассчитайте, какая часть (в %) исходной массы глюкозы подверглась молочнокислому брожению, а какая маслянокислому?

№10-6-2002респ.

- 1. Различными экспериментальными методами найдено среднее значение для радиуса атома алюминия: r=1,43 A^0 (ангстрем). Плотность металлического алюминия $\rho=2,7$ г/см³, относительная атомная масса $A_r=27,0$. Найдите численное значение постоянной Авогадро.
- 2. Экспериментально установлено, что при 100° С среднее расстояние между молекулами насыщающего водяного пара $l=4*10^{-7}$ см. В этих условиях давление насыщающих паров воды P=1 атм. На основании этих данных найдите постоянную Авогадро.
- 3. Измерено, что за секунду 1 г радия испускает 3,7 $^*10^{10}$ α -частиц. В откачанной до глубокого вакуума сосуд объемом V= 30 мл поместили навеску радия 0,5 г и держали там в течение года. К концу этого срока в сосуде установилось давление P = 7,95 $^*10^{-4}$ атм при 27 0 C. Найдите значение постоянной Авогадро; изменением массы радия в течение года можно пренебречь

№10-7-2002респ. Заполните таблицу. В графе обозначения приведите краткие русские и латинские и латинские буквенные обозначения. Напрмер, Гли, Gly и G.

	Название	Заменимая или Незаменимая	Структурная формула	Обозначения
1	Глицин			
2	Аланин			

3	Валин	
4	Лейцин	
5	Изолейцин	
6	Серин	
7	Треонин	
8	Аспаргиновая	
	Кислота	
9	Глутаминовая кислота	
10	Аспарагин	
11	Глутамин	
12	Лизин	
13	Аргинин	
14	Цистеин	
15	Метионин	
16	Фенилаланин	
17	Тирозин	
18	Пролин	
19	Гистидин	
20	Триптофан	

№10-8-2002 респ. Напишите уравнения химических реакций, соответствующие следующей цепочке химических превращений. Укажите условия (температура, катализатор, среда и т.д.), при которой они протекают.

Биоза — Углерод — Метан — Хлорметан — Метанол — Метилэтаноат — Этановая кислота — Метилат натрия