РАЗДЕЛ І. ОРГАНИЧЕСКАЯ ХИМИЯ

Задача 1

Кофеин — алкалоид ряда пурина, оказывающий возбуждающее действие на нервную и сердечнососудистую системы. Его выделяют из кофе и чая, а также производят из мочевой кислоты \mathbf{U} , для получения которой было предложено несколько методов. Наиболее популярным из них стал метод Траубе, в котором \mathbf{U} получают из циануксусного эфира через образование моноциклических соединений $\mathbf{B} - \mathbf{D}$, причем из \mathbf{D} получают как мочевую кислоту (гидроксиксантин), так и другие производные пурина — ксантин \mathbf{X} и 8-метилксантин \mathbf{Y} .

NC OEt + A
$$\xrightarrow{\text{EtONa}}$$
 B $\xrightarrow{\text{NaNO}_2}$ C $\xrightarrow{\text{CH}_3\text{COOEt}}$ D $\xrightarrow{\text{H}^+}$ A $\xrightarrow{\text{HN}_1 \text{ 6}}$ $\xrightarrow{\text{NN}_2 \text{ N}_3 \text{ NOOEt}}$ $\xrightarrow{\text{NaNO}_2 \text{ NA}_4 \text{ NOOEt}}$

Соединение **A** имеет особое значение в истории органической химии, является крупнотоннажным продуктом химической промышленности, используется в качестве пищевой добавки. **A** имеет лишь один сигнал как в спектре ЯМР ¹H, так и в спектре ЯМР ¹³С. Массовая доля углерода в **A** равна 20.0%.

1. Напишите структуры соединений A - D, X, Y.

В промышленности синтез кофеина ${\bf Z}$ из мочевой кислоты ${\bf U}$ осуществляют в соответствии со следующей синтетической последовательностью:

$$U \xrightarrow{Ac_2O} Y \xrightarrow{NaOH} E \xrightarrow{Cl_2} F \xrightarrow{OH} Z$$

Массовые доли углерода в \mathbf{E} , \mathbf{F} и \mathbf{Z} равны, соответственно, 51.9, 34.7 и 49.5 %. Спектр ЯМР 1 Н соединения \mathbf{F} содержит три сигнала равной интенсивности.

2. Напишите структуры соединений Е, F и Z.

Другой промышленный синтез кофеина ${\bf Z}$ заключается в метилировании ксантина ${\bf X}$, протекающем через промежуточное образование теобромина ${\bf T}$:

$$X \xrightarrow{CH_3I} T \xrightarrow{CH_3I} Z$$

Теобромин является одним из трех основных метаболитов кофеина наряду с изомерными ему теофиллином ($\mathbf{T'}$) и параксантином (\mathbf{P}). В спектре ЯМР ¹Н соединений \mathbf{P} , \mathbf{T} и $\mathbf{T'}$ наблюдаются следующие наборы сигналов: \mathbf{P} 3.15 (c), 3.84 (д), 7.90 (к), 11.82 (c) м.д.; \mathbf{T} 3.34 (c), 3.83 (д), 7.97 (к), 11.10 (с) м.д.; $\mathbf{T'}$ 3.25 (с), 3.44 (с), 8.01 (д), 13.50 (д) м.д. При обработке триметилхлорсиланом в присутствии основания

теобромин даёт два, параксантин – одно, а теофиллин не даёт *О*-триметилсилильных производных.

3. Напишите структурные формулы соединений Р, Т и Т'.

Среди других методов получения кофеина можно выделить способ, основанный на использовании метил 1-метил-4-нитро-имидазол-5-карбоксилата:

$$\begin{array}{c|c}
N & O_2 \\
N & O \\
N & O
\end{array}$$

$$\begin{array}{c|c}
O & (NH_4)_2S \\
O & H^+
\end{array}$$

$$\begin{array}{c|c}
H^+, t \\
H^+, t
\end{array}$$

$$\begin{array}{c|c}
CH_3I \\
Z
\end{array}$$

4. Напишите структурные формулы соединений **G**, **H** и **I**.

Задача 2

История парфюмерии насчитывает более 3500 лет: это возраст рецептов благовоний, описанных на папирусах древнего Египта. Но то, что "виновниками" приятных запахов являются в основном терпены – вещества формулы $(C_5H_8)_n$ – и их производные (терпеноиды) химики узнали лишь в 20 веке. Структура терпенов подчиняется общему правилу, сформулированному лауреатом Нобелевской премии Л. Ружичкой: терпены можно рассматривать как олигомеры изопрена, образующиеся при взаимодействии по типу "голова к хвосту". Терпены, образованные двумя фрагментами изопрена, называют монотерпенами, тремя – сесквитерпенами, четырьмя – дитерпенами. Терпены бывают ациклическими и циклическими. Так, во многих душистых маслах содержится ациклический монотерпен мирцен. При нагревании мирцена с подкисленным раствором перманганата калия образуются янтарная (бутандиовая) кислота, ацетон и CO_2 , а при озонировании с последующей обработкой озонида трифенилфосфином выделяются формальдегид, ацетон и малоустойчивое соединение A, содержащее 52.63% C и 5.26% H (по массе).

1. Определите структуру соединения А и мирцена М.

Терпеноиды гераниол и нерол, являющиеся геометрическими изомерами, можно рассматривать как продукты гидратации мирцена. Эти спирты являются интермедиатами в биосинтезе большинства терпенов и терпеноидов. Например, нерол выступает в качестве ближайшего предшественника в синтезе циклического монотерпена лимонена, который также можно получить в качестве одного из продуктов при димеризации изопрена по реакции Дильса-Альдера.

2. Напишите структурные формулы гераниола, нерола, лимонена.

Важными бициклическими терпенами являются пинены, выделяемые из хвойных деревьев. Пинены, содержащие четырехчленный цикл, можно получить из лимонена в результате кислотно-катализируемой изомеризации, протекающей по схеме «протонирование – электрофильная атака – депротонирование». В природе из оптически активного лимонена образуется два оптически активных пинена (α и β).

3. Напишите структурные формулы α-пинена и β-пинена, если известно, что при озонировании β-пинена с последующей обработкой цинком и уксусной кислотой образуются оптически активный кетон и формальдегид.

В качестве основного продукта при гидрировании лимонена образуется н-ментан. В природе весьма распространено его гидроксипроизводное: (–)-ментол. Это соединение вносит основной вклад в запах и вкус мяты. В промышленности рацемический ментол получают по схеме.

OH
$$(CH_3)_2CHOH$$

$$H^+$$
B
$$H_2$$
Pt
ментол

Наряду с ментолом в этом процессе с небольшим выходом образуются другие, менее стабильные, диастереомеры, которые легко удаляются при очистке ментола.

- 4. Укажите, сколько диастереомерных продуктов образуется при гидрировании В.
- **5.** Приведите структурные формулы соединения **В** и ментола.

(–)-Ментол можно получить восстановлением соответствующего кетона с помощью хирального реагента ${f D}$, синтезируемого из хирального ${f lpha}$ -пинена:

$$\alpha$$
-пинен $\xrightarrow{BH_3 \cdot SMe_2} \mathbf{C} \xrightarrow{HCl} \mathbf{D}$ $C_{20}H_{34}BCl$

6. Напишите структурные формулы **С** и **D,** указав их относительную конфигурацию.

Ментол используют не только из-за его приятного аромата и холодящего вкуса, но и как сосудорасширяющее средство. Препарат валидол – раствор ментола в сложном эфире \mathbf{Y} с мольной долей ментола $\chi_{\mathrm{M}} = 33.9\%$. Известно, что $\mathbf{M}(\mathbf{Y})$: $\mathbf{M}(\mathrm{ментолa}) = 1.54$. После полного гидролиза аликвоты валидола и удаления непрореагировавшей воды $\chi'_{\mathrm{M}} = 60.2\%$. ЯМР 1 Н спектр образовавшейся при гидролизе кислоты содержит 4 сигнала: синглет, два дублета и мультиплет.

7. Определите молекулярную и структурную формулы Y. Ответ подтвердите расчетами.

Задача 3

Один из инсектицидов – дихлофос Х получают по так называемой реакции Перкова взаимодействием триметилфосфита и трихлоруксусного альдегида. Данные элементного анализа показывают, что молекула дихлофоса содержит 21.7% С, 3.2% Н, 32.1% СІ, 14.0% Р. При кислотном гидролизе в мягких условиях дихлофос превращается в смесь фосфорной кислоты, метанола и соединения Y, содержащего 62.8% хлора.

Напишите структурные формулы дихлофоса и соединения Y. Другой инсектицид – карбофос получают следующим образом:

$$P_2S_5 \xrightarrow{CH_3OH} \mathbf{Z} \xrightarrow{EtO_2C} \xrightarrow{CO_2Et}$$
 карбофос

 $P_2S_5 \xrightarrow{CH_3OH} \mathbf{z} \xrightarrow{EtO_2C} \xrightarrow{CO_2Et}$ карбофос Напишите структурные формулы карбофоса (9.4% P) и соединения \mathbf{Z} , учитывая, 2. что **Z** содержит 15.2% C, 4.5% H, 19.6% P и 40.5% S.

Однако было найдено, что метаболиты фосфорорганических инсектицидов могут быть токсичны для теплокровных животных. Поэтому в последнее время они вытесняются производными хризантемовой кислоты - пиретроидами. Схема синтеза и строение одного из таких соединений приведены ниже.

Расшифруйте приведенную схему и напишите структурные формулы соединений I – III и A – K, учитывая, что последняя стадия представляет собой реакцию переэтерификации, а для соединений I - III известны следующие характеристики:

Соед-е	ω _C , %	ω _H , %	ω _O , %	ω _N , %	ЯМР 1 Н: δ (мультиплетность, интенсивность)
I	92.3	7.7			один синглет
II	62.1	10.3	27.6		один синглет
III	82.1	6.0		11.9	3.6 (синглет, 2H), 7.2–7.4 (сложный мультиплет, 5H)

Известно, что инсектицидную активность проявляют только (1R)-производные хризантемовой кислоты.

4. Нарисуйте проявляющий инсектицидную активность ресметрин с трансрасположением заместителей.