

48^{-я} Международная химическая олимпиада

Теоретический тур

28 июля 2016 Тбилиси, Грузия

Общие указания

- Начинайте работу только после подачи команды START. На решение всех задач вам отводится 5 часов.
- Используйте только выданные вам ручку и калькулятор.
- Задание теоретического тура содержит 23 страниц, а листы ответов 30 страниц.
- Проверьте, чтобы ваш личный код был напечатан в правом верхнем углу каждого листа ответов.
- Формулировки всех вопросов одинаковы в тексте заданий и в листах ответов
- Ваши ответы должны приводиться только в соответствующих местах (рамках) на листах ответов. Записи вне рамок на листах ответов оцениваться не будут. Используйте оборотную сторону листов с заданиями в качестве черновиков.
- В случае необходимости приведите расчёты в соответствующих местах (рамках) на листах ответов. Вы получите ноль баллов, если дадите только ответ, даже правильный, на сложный вопрос не приводя расчетов.
- Если вам нужно в туалет, поднимите руку.
- После выполнения заданий теоретического тура поместите листы ответов в выданный вам конверт. Не заклеивайте его.
- Вы обязаны немедленно прекратить работу после подачи команды STOP. Задержка в выполнении этого требования может привести к аннулированию результатов вашей работы.
- Не покидайте своего места до тех пор, пока не получите на это разрешение ассистента.
- Вы можете попросить официальную версию заданий на английском языке только для уточнения некоторых вопросов в тексте.

Физические постоянные, единицы измерения, формулы и уравнения

Постоянная Авогадро:	$N_{\rm A}$ = 6,022·10 ²³ моль ⁻¹	Ноль по шкале Цельсия:	273,15 K			
Универсальная газовая постоян- ная:	R = 8,314 Дж·К ⁻¹ ·моль ⁻¹	Постоянная Фарадея:	F = 96485 Кл·моль-1			
Уравнение со- стояния идеаль- ного газа:	pV = nRT	1	G = H - TS			
$\Delta_r G^o = -RT lnK = -$	nFE°	Ионное произведение воды при 298,15 К :	$K_w = 10^{-14}$			
IDEDUCTA:	$\mathcal{H}\Gamma = \mathcal{C}_{\mathbf{p},j}$ $\mathcal{H} = \mathcal{C}_{\mathbf{p},j}$					
Закон Бугера — Ламберта — Бера:	$A = \lg \frac{I_0}{I} = \varepsilon cl$					

При расчётах считайте все газы идеальными.

Таблица Менделеева

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be _{9.01}											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.30	3	4	5	6	7	8	9	10	11	12	13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	Tc	Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57-71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 r 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	Po -	85 At	Rn
87 Fr	Ra -	89- 103	104 Rf	105 Db	Sg	107 Bh	108 Hs	109 Mt -	110 Ds	111 Rg	112 Cn	113 Nh -	114 FI -	115 Mc	116 LV -	117 Ts	118 Og
			57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	Pm -	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
			89 Ac	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np -	Pu -	95 Am -	96 Cm	97 Bk -	98 Cf	99 Es	100 Fm	101 Md -	102 No -	103 Lr

Задача 1

5 баллов

Трифторид азота – устойчивое вещество, которое впервые было получено электролизом раствора фторида аммония в жидком фтороводороде.

1.1. <u>На каком электроде</u> образуется трифторид азота? <u>Напишите</u> уравнение полуреакции образования NF₃.

Интересно, что родственные соединения – фторамин (NH_2F) и дифторамин (NHF_2) – очень неустойчивы; разложение каждого из них может происходить даже со взрывом.

1.2. Предположите, <u>какое из веществ</u> – NF₃, NHF₂ или NH₂F – имеет самую низкую температуру кипения.

Длины связи N–F в этих молекулах равны 136, 140 и 142 пм. Различие в длинах связи легко объяснимо с точки зрения простой электростатической модели, учитывающей частичные заряды на атомах.

1.3. <u>Установите соответствие</u> между длинами связи N–F (136, 140, 142 пм) и указанными выше молекулами.

При пропускании газообразного NHF₂ через раствор KF в HF образуется бинарное соединение азота и фтора, которое получается в виде смеси двух геометрических изомеров.

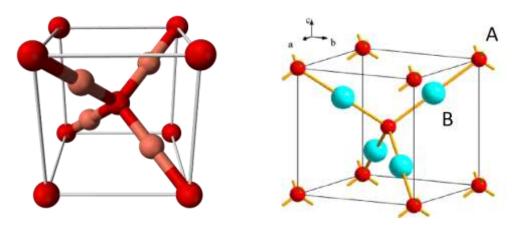
1.4. <u>Запишите</u> уравнение реакции образования бинарного соединения азота и фтора.

Ион тетрафтораммония (NF_4^+) и его соли можно получить взаимодействием NF_3 со фтором в присутствии некоторого реагента.

1.5. <u>Предложите</u> подходящий реагент для образования NF_4 ⁺ и <u>напишите</u> уравнение реакции.

Ион NF₄⁺ образует устойчивые соли с рядом анионов. Эти соли очень чувствительны к влаге, поскольку NF₄⁺ гидролизуется с образованием NF₃ и O₂. Интересно, что трифторид азота всегда образуется количественно, тогда как количество кислорода обычно меньше теоретического из-за побочных реакций.

1.6. <u>Запишите</u> уравнение реакции гидролиза NF_4 ⁺. <u>Запишите</u> уравнение возможной побочной реакции, которая приводит к уменьшению мольного соотношения O_2 : NF_3 по сравнению с теоретически ожидаемым.


Изучалась возможность использования солей тетрафтораммония в ракетных топливах, поскольку эти соли разлагаются при нагревании с выделением NF₃ и F₂. Одна из этих солей содержит 65.6% фтора по массе, причем при разложении все атомы фтора переходят в NF₃ и F₂, которые образуются в мольном соотношении 1:2.5.

1.7. <u>Определите</u> формулу соли.

Задача 2

8 баллов

Одним из первых материалов, использованных в твердотельной электронике, был оксид меди(I). В наши дни интерес к нему появился снова, потому что он может быть дешевым и нетоксичным компонентом солнечных батарей.

На двух картинках, приведенных выше, изображена кубическая элементарная ячейка Cu₂O . Длина ребра ячейки составляет 427.0 пм.

2.1.1. Какой из типов атомов (А или В) соответствует меди?

<u>Какой тип решетки</u> (простая кубическая, гранецентрированная кубическая, объемноцентрированная кубическая или алмазоподобная) образован атомами A, а <u>какой</u> – атомами B?

Каковы координационные числа атомов?

2.1.2. Рассчитайте наименьшие расстояния 0–0, Cu–0 и Cu–Cu в структуре.

2.1.3. Рассчитайте плотность чистого оксида меди(I).

Иногда в структуре присутствуют дефекты – некоторые атомы меди отсутствуют при неизменной решетке кислорода. При исследовании дефектного кристалла было установлено, что 0.2% атомов меди имеют степень окисления +2.

2.2. Сколько процентов позиций для атомов меди не заполнено? <u>Найдите</u> значение x в формуле $Cu_{2-x}O$ для этого кристалла.

Оксид меди(I) нерастворим в воде. Он устойчив в сухом воздухе, но влага, находящаяся в воздухе, катализирует его превращение (Реакция 1).

При растворении оксида меди(I) в разбавленной серной кислоте образуются синий раствор и осадок, при этом газ не выделяется (Реакция 2). При взаимодействии с горячей концентрированной серной кислотой не образуется осадка, но выделяется газ с запахом (Реакция 3). Этот же газ образуется при растворении осадка из реакции 2 в горячей концентрированной серной кислоте.

2.3. Запишите уравнения реакций (1-3).

Оксид меди (I) можно получить разными способами. Нагревание меди на воздухе – обычный метод синтеза полупроводникового Cu_2O . В атмосфере чистого кислорода потенциально могут существовать и переходить друг в друга три вещества, содержащие медь (Cu(тв.), $Cu_2O(тв.)$ и CuO(тв.)).

В таблице приведены значения $\Delta_f H^0$ и S^0 при давлении 10^5 Па, которые можно считать не зависящими от температуры:

	$\Delta_{\mathrm{f}}H^{\mathrm{o}}$ / кДж моль $^{-1}$	S⁰/Дж моль-1 K-1
Си(тв)	0	65
О2(г)	0	244
СиО(тв)	-156	103
Си ₂ О(тв)	-170	180

2.4. Определите температурные интервалы термодинамической устойчивости (если они есть) для меди и ее оксидов в диапазоне от 500 до 1500 К в атмосфере чистого кислорода при давлении 10⁵ Па.

Следующие справочные данные приведены для 298 К. Для всех последующих вычислений в задаче используйте эту температуру:

$$K_{\rm sp}({\rm Cu(OH)_2}) = 2 \cdot 10^{-19}$$

 ${\rm Cu_2O(TB)} + {\rm H_2O(K)} + 2{\rm e^-} \rightarrow 2{\rm Cu(TB)} + 20{\rm H^-(p-p)}$ $E^{\rm o} = -0.360~{\rm B}$
 ${\rm Cu^{2+}(p-p)} + {\rm e^-} \rightarrow {\rm Cu^+(p-p)}$ $E^{\rm o} = +0.159~{\rm B}$
 ${\rm Cu^{2+}(p-p)} + 2{\rm e^-} \rightarrow {\rm Cu(TB)}$ $E^{\rm o} = +0.337~{\rm B}$

Другой способ получения Cu_2O – анодное окисление меди. При электролизе раствора щелочи (например NaOH) с медным анодом и платиновым катодом на аноде может образоваться оксид меди(I).

2.5. <u>Запишите</u> уравнения полуреакций, протекающих на электродах при электролизе раствора NaOH с платиновым катодом и медным анодом.

Еще один метод синтеза Cu_2O – электролитическое восстановление раствора соли меди (II).

2.6.1. Запишите уравнение полуреакции образования Cu₂O на катоде в кислой среде.

Раствор 0.100 моль дм $^{-3}$ Cu^{2+} подвергли электролизу с платиновыми электродами.

2.6.2. <u>Рассчитайте</u> максимальное значение рН раствора, при котором концентрация меди(II) может быть равна 0.100 моль дм⁻³.

При слишком низком pH вместо образования оксида меди (I) идет восстановление до металлической меди.

2.6.3. Рассчитайте минимальное значение pH, при котором на катоде вместо меди будет образовываться Cu_2O при электролизе 0.100 моль дм $^{-3}$ раствора Cu^{2+} .

Задача З

9 баллов

Недостаток иода - довольно распространенная проблема в Грузии, потому что почва и вода бедны иодом. Дефицит иода может быть легко восполнен с помощью иодированной соли, поэтому методы определения иода в соли довольно актуальны. По санитарным нормам Грузии иодированная соль должна содержать 25-55 ppm иода (1 ppm = 1 мг иода/кг соли).

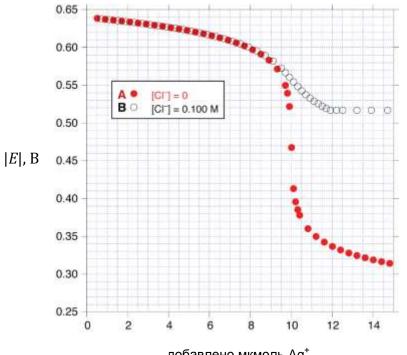
Большая часть соли иодирована с помощью добавки иодата калия (KIO₃). Содержание иодата в образце соли может быть определено с помощью иодометрического титрования. В типовой методике 10.000 г иодированной соли растворяют в 100 см³ 1.0 моль/дм³ водного раствора HCl, содержащего 1.0 г КІ. Полученный раствор титруют 0.00235 моль/дм³ водного раствора тиосульфата натрия, конечную точку титрования определяют с помощью крахмала. На титрование было потрачено 7.50 см³ титранта.

- **3.1.1.** <u>Запишите</u> сокращенное ионное уравнение иодата с избытком иодида в кислой среде.
- **3.1.2.** <u>Запишите</u> сокращенное ионное уравнение реакции, протекающей при титровании тиосульфатом.
- **3.1.3.** Рассчитайте содержание иода в образце в ppm.

Менее распространенной иодирующей добавкой является иодид калия, содержание которого трудно определить с помощью иодометрического титрования.

Одним из возможных методов определения иодида в присутствии хлорида является потенциометрическое титрование. Однако, этот метод становится не очень точным в присутствии большого количества хлорида.

В этом методе серебряный электрод погружают в анализируемый раствор (который содержит иодид и хлорид) и постепенно добавляют раствор, содержащий ионы серебра. Потенциал серебряного электрода определяют относительно стандартного электрода, состоящего из серебряной проволоки, погруженной в 1.000 моль/дм³ раствор AgNO₃. Измеренные потенциалы отрицательны, а записывают их абсолютное значение. Объем анализируемого раствора составляет 1.000 дм³ (можете считать, что он не изменяется в ходе титрования), температура $T=25.0^{\circ}$ С.


На результаты титрования влияют три равновесия: растворение AgI(тв) [K_{spI}] и AgCl(тв) [K_{spCl}] и образование AgCl₂-(p-p) [K_f]. (Иодид также образует комплекс с серебром, но его образованием можно пренебречь, т.к. концентрация иодида в растворе мала).

$$AgI(TB) \Longrightarrow Ag^{+}(p-p) + I^{-}(p-p)$$
 K_{spI}

$$AgCl(TB) \rightleftharpoons Ag^{+}(p-p) + Cl^{-}(p-p)$$
 K_{spCl}

$$Ag^{+}(p-p) + 2 Cl^{-}(p-p) \Longrightarrow AgCl_{2}^{-}(p-p) \quad K_{f}$$

Ниже приведены результаты двух экспериментов – зависимости абсолютного значения измеренного потенциала от количества молей добавленных ионов серебра. Эксперимент $\bf A$ (сплошные кружочки) проводился с $1.000~{\rm д}{\rm M}^3$ раствора, содержащего $1.00\cdot 10^{-5}$ моль/дм³ иодида и не содержащего хлорида. Эксперимент $\bf B$ (белые кружочки) проводился с $1.000~{\rm д}{\rm M}^3$ раствора, содержащего $1.00\cdot 10^{-5}$ моль/дм³ иодида и $1.00\cdot 10^{-1}$ моль/дм³ хлорида.

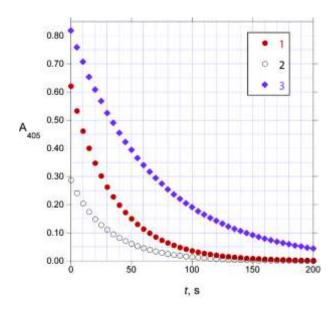
добавлено мкмоль Ag+	<i>E</i> , В опыт A	<i>E</i> , В опыт В
1.00	0.637	0.637
3.00	0.631	0.631
5.00	0.622	0.622
7.00	0.609	0.610
9.00	0.581	0.584
10.0	0.468	0.558
11.0	0.355	0.531
12.0	0.337	0.517
13.0	0.327	0.517
15.0	0.313	0.517

добавлено мкмоль Ag+

- **3.2.1.** Выберите подходящую точку из приведенных данных и <u>рассчитайте</u> по ней произведение растворимости AgI (K_{spl}).
- **3.2.2.** Выберите подходящую точку из приведенных данных и <u>рассчитайте</u> по ней произведение растворимости AgCl ($K_{\rm spCl}$).
- **3.2.3.** Выберите подходящую точку из приведенных данных и <u>рассчитайте</u> по ней <u>константу</u> $K_{\rm f}$.

Возможно, для этого вам понадобятся значения $K_{\rm spl}$ или $K_{\rm spCl}$. Но даже если вы не смогли их рассчитать в пп. **3.2.1** и **3.2.2**, можете использовать значения для особо одаренных: $K_{\rm spl} = 1.00 \cdot 10^{-15}$ и $K_{\rm spCl} = 1.00 \cdot 10^{-9}$ без потери баллов.

Более практичный аналитический метод, который не чувствителен к присутствию хлорида, основан на реакции Санделла-Кольтгоффа. Это – реакция H_3AsO_3 с Ce(IV) в кислой среде с образованием Ce(III), где иодид играет роль катализатора.


3.3.1. <u>Запишите</u> сокращенное ионное уравнение реакции церия(IV) с H_3AsO_3 в кислой среде, а также реакции церия(IV) с веществом, содержащим иод, и

реакции H₃AsO₃ с веществом, содержащим иод, которые объясняют каталитические свойства иодида в целевой реакции.

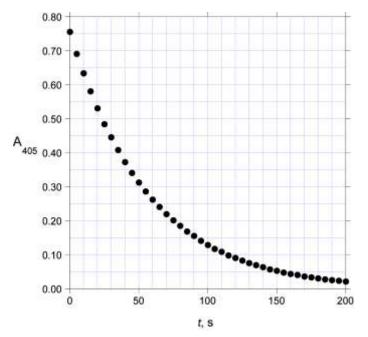
За протеканием реакции Ce(IV) с H_3AsO_3 можно следить по поглощению света на длине волны 405 нм, т.к. Ce(IV) – оранжевый и сильно поглощает при 405 нм, в то время как остальные вещества бесцветны и не поглощают в заметных количествах. Было проведено три эксперимента при $25.0^{\circ}C$ в растворах, содержащих 0.50 моль/дм 3 H_2SO_4 и вещества в следующих начальных концентрациях:

Nº	$[H_3AsO_3]_0$,	[Ce(IV)] ₀ ,	[I-] ₀ ,
опыта	моль дм ⁻³	моль дм ⁻³	моль дм ⁻³
1	0.01250	0.00120	1.43·10-6
2	0.00625	0.00060	1.43·10-6
3	0.01250	0.00120	7.16·10-7

Экспериментатор начинал реакции, смешивая вещества в кювете. После небольшой задержки (в каждом опыте разной) он начинал отсчет времени, первая точка всегда была t=0 с. Полученные данные приведены ниже в таблице и на рисунке:

t 0	A_{405}	A_{405}	A_{405}
t, c	опыт 1	опыт 2	опыт 3
0	0.621	0.287	0.818
20	0.348	0.149	0.608
40	0.198	0.083	0.455
60	0.113	0.046	0.340
80	0.064	0.025	0.254
100	0.037	0.014	0.191

В этих условиях (0.5 моль/дм 3 H $_2$ SO $_4$, 25.0 $^\circ$ C), кинетическое уравнение может быть записано следующим образом:


$$r = k [H_3AsO_3]^m [Ce(IV)]^n [I^-]^p$$

где *m*, *n*, и *p* – целые числа.

3.3.2. Определите целые значения m, n и p и рассчитайте значение k (не забудьте указать размерность).

Навеску 1.000 г иодированной соли растворили в воде и получили 10.00 см³ раствора. Аликвоту 0.0500 см³ прилили к раствору, полученному смешением

 $1.000~\rm cm^3$ раствора $0.025~\rm mоль/дm^3~H_3AsO_3~B~0.5~moль/дm^3~H_2SO_4~u~0.800~cm^3$ раствора $0.5~\rm mоль/дm^3~H_2SO_4$. К смеси добавили $0.200~\rm cm^3$ раствора $0.0120~\rm moль/дm^3$ Се(NH₄)₂(NO₃)₆ в $0.5~\rm moль/дm^3~H_2SO_4$ и начали измерения поглощения при длине волны $405~\rm hm$ как функции времени при 25.0° С:

t, c	A_{405}
0	0.756
20	0.531
40	0.373
60	0.262
80	0.185
100	0.129

3.3.3. <u>Рассчитайте</u> содержание иода в образце соли в ppm.

Задача 4

8 баллов

Кинетические исследования при водоподготовке

Промышленные отходы – одна из основных причин загрязнения воды. Для разработки методов борьбы с ними широко используют кинетические исследования. 1,4-диоксан, также называемый просто диоксаном, – широко используемый в промышленности растворитель и один из типичных загрязнителей. Он может быть окислен до безвредных продуктов такими окислителями как пероксодисульфат, озон и перекись водорода.

Ниже приведены данные о кинетике окисления диоксана пероксодисульфатом калия ($K_2S_2O_8$) в присутствии AgNO₃ как катализатора при T=303.15 К. За ходом реакции следят, измеряя концентрацию пероксодисульфата. Концентрация AgNO₃ равна $1.00\cdot10^{-3}$ ммоль·дм⁻³.

Nº	Диоксан,	$K_2S_2O_8$,	Начальная скорость,
опыта	ммоль•дм ⁻³	ммоль•дм ⁻³	ммоль·дм ⁻³ ·мин ⁻¹
1	0.0100	2.50	1.661·10-2
2	0.0100	5.10	3.380·10-2
3	0.00500	13.8	9.200·10-2
4	0.0110	13.8	9.201·10-2

Во многих странах предельно допустимой концентрацией диоксана в питьевой воде считается $0.35~{\rm mkr}\cdot{\rm gm}^{-3}$.

В образце воды изначально содержится $40.00 \text{ мкг} \cdot \text{дм}^{-3}$ диоксана. Примем, что на окисление 1 моля диоксана требуется 1 моль пероксодисульфата. Концентрация AgNO₃, использованная в опыте, равна $1.00 \cdot 10^{-3} \text{ ммоль} \cdot \text{дм}^{-3}$.

4.1.1. Рассчитайте время в минутах, затрачиваемое на снижение концентрации диоксана до допустимого уровня при 303.15 К и начальной концентрации $K_2S_2O_8$, равной $5.0\cdot10^{-6}$ моль дм⁻³. Примите, что в данном случае справедливо кинетическое уравнение, полученное из приведенных выше данных.

Для окисления диоксана пероксодисульфатом было предложено несколько механизмов. Мизра и Гош (1963) предложили следующий:

$$S_2O_8^{2-} + Ag^+ \stackrel{k_1}{\rightleftharpoons} Ag^{3+} + 2SO_4^{2-}$$
 k_2

$$k_3$$
 Ag $^{3+}$ + D (диоксан) \Rightarrow D' (окисленный диоксан) + 2H $^+$ + Ag $^+$

4.1.2. Используя квазистационарное приближение для Ag(III), <u>выведите</u> кинетическое уравнение для скорости окисления диоксана.

4.1.3. Выберите верное(верные) утверждение(утверждения):

- А) Кинетическое уравнение, полученное в **4.1.2**, согласуется с экспериментальными данными из **4.1.1** при очень высоких концентрациях диоксана
- В) Кинетическое уравнение, полученное в **4.1.2**, согласуется с экспериментальными данными из **4.1.1** при очень низких концентрациях диоксана.
- С) Размерность эффективной константы скорости при очень высоких концентрациях диоксана $дм^3$ ·моль $^{-1}$ ·с $^{-1}$.
- D) Размерность эффективной константы скорости при очень низких концентрациях диоксана $дм^3$ -моль⁻¹·с⁻¹.

Деградация фармацевтических препаратов - кинетические закономерности

Кинетические исследования используются для определения времени хранения лекарств. На время хранения препаратов могут оказывать влияние сразу несколько реакций, скорости которых зависят от рН, температуры и влажности.

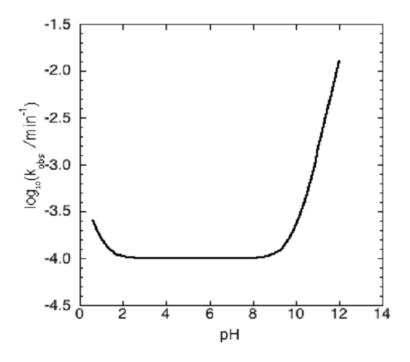
Лизина ацетилсалицилат (LAS) – болеутоляющее и противовоспалительное средство, продаваемое под названием Аспегик. При гидролизе LAS образует лизина салицилат и уксусную кислоту.

$$\bigcap_{O^{-} NH_{3}^{+}} \bigcap_{LAS} \bigcap_{O^{+} NH_{2}^{+}} \bigcap_{O^{-} NH_{3}^{+}} \bigcap_{CH_{3}CO_{2}H} \bigcap_{O^{+} NH_{3}^{+}} \bigcap_{CH_{3}CO_{2}H} \bigcap_{CH_{3$$

Гидролиз LAS может проходить тремя путями: (a) кислотный катализ, (b) без катализа, (c) основный катализ.

Если обозначить концентрацию LAS в момент времени t как [LAS], то суммарную скорость гидролиза можно записать как

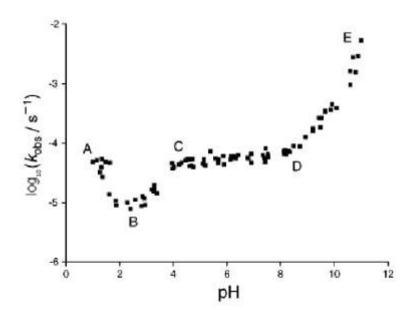
$$-\frac{d[LAS]}{dt} = k_{H}[LAS][H^{+}] + k_{0}[LAS] + k_{OH}[LAS][OH^{-}]$$


где $k_{\rm H}$, k_0 и $k_{\rm OH}$ - константы скорости гидролиза соответственно при кислотном катализе, без катализа и при основном катализе. Суммарная константа скорости определяется выражением:

$$-\frac{d[LAS]}{dt} = k_{obs}[LAS]$$

4.2.1. Выразите k_{obs} через k_{H} , k_0 , k_{OH} и [H⁺].

Гидролиз LAS проводили при 298.15 К при разных значениях рН (от 0.50 до 13.0). В опытах использовали очень низкую начальную концентрацию LAS, чтобы рН не менялся в ходе реакции.


На графике приведена зависимость суммарной константы скорости $k_{obs}\,$ гидролиза LAS от pH:

- 4.2.2. Какой/какие из нижеприведенных пунктов верен/верны?
 - A) $k_{obs} \cong k_0$ при pH = 12
 - В) $k_{obs} \cong k_0$ при pH = 5.0
 - С) Скорость реакции увеличивается при изменении рН от 0.50 до 1.0.
 - D) Скорость реакции увеличивается при изменении pH от 10 до 12.
- **4.2.3.** Используя график и нижеприведенные данные, рассчитайте k_H , k_0 и k_{OH} . Не забудьте указать размерность.

рН	1.300	5.300	12.180
log ₁₀ (k _{obs} /мин ⁻¹)	-3.886	-4.000	-1.726

Ацетилсалициловая кислота, также известная как аспирин, - жаропонижающий, болеутоляющий и противовоспалительный препарат. Как и в случае с LAS, гидролиз аспирина может происходить по-разному при разных рН. Зависимость суммарной константы скорости реакции $k_{\rm obs}$ от рН при **333.15 К** приведена на графике:

Ниже приведены реакции, по которым может происходить гидролиз аспирина. В зависимости от рН одна или несколько реакций из списка будут преобладать.

- I. $CH_3COOC_6H_4COOH + H_3O^+ HOC_6H_4COOH + CH_3COOH + H^+$
- II. $CH_3COOC_6H_4COOH + H_2O \longrightarrow HOC_6H_4COOH + CH_3COOH$
- III. $CH_3COOC_6H_4COOH + OH^- \longrightarrow HOC_6H_4COO^- + CH_3COOH$
- IV. $CH_3COOC_6H_4COO^- + H_3O^+ HOC_6H_4COOH + CH_3COOH$
- V. $CH_3COOC_6H_4COO^- + H_2O HOC_6H_4COO^- + CH_3COOH$
- VI. $CH_3COOC_6H_4COO^- + OH^- \longrightarrow HOC_6H_4COO^- + CH_3COO^-$
- **4.3.1.** Используя вышеприведенный график для зависимости константы скорости k_{obs} от pH и уравнения реакций, <u>укажите</u> верное/верные утверждение/утверждения. (р K_a аспирина = 3.57 при 333.15 K)
- а) В области C-D преобладает реакция IV
- b) В области C-D преобладает реакция V
- с) В области D-Е преобладает реакция VI
- d) В области А-В преобладает реакция II

График зависимости $k_{\rm obs}$ от рН для реакции гидролиза аспирина имеет минимум при определенном рН. При **290.15 К** для реакций I, II и III были найдены следующие значения констант скорости:

kн (реакция I)	k ₀ (реакция II)	k _{0H} (реакция III)		
1.99 дм ³ ·моль- ¹ ·сутки- ¹	2.29·10 ⁻⁴ сутки ⁻¹	3.18·10 ⁹ дм ³ ·моль ⁻¹ ·сутки ⁻¹		

Ионное произведение воды при 290.15 K равно 1.0·10⁻¹⁴.

4.3.2. Приняв, что протекают только реакции I, II и III, рассчитайте значение рН в минимуме $k_{\rm obs}$.

Задача 5

8 баллов

5500 лет назад в древнем Египте впервые был получен синий краситель, который сейчас известен как **Египетский синий**. Примерно 2000 лет спустя в древнем Китае широко использовался другой краситель, известный ныне как **Китайский синий**. Оба красителя схожи по структуре, но имеют разный элементный состав.

Древние методы синтеза этих красителей легко воспроизвести в современной лаборатории.

В этой задаче принимается, что все вещества являются чистыми, а выходы - количественными.

Для синтеза **Египетского синего** нагревали 10.0 г минерала **A** с 21.7 г SiO_2 и 9.05 г минерала **B** при 800–900°C в течение продолжительного времени. В результате выделилось 16.7 дм³ смеси двух газов (измерено при температуре 850°C и давлении 101.3 кПа) и образовалось 34.0 г красителя, других веществ обнаружено не было. При охлаждении газовой смеси один из компонентов сконденсировался. Оставшийся газ дальше охладили до 0°C, его объем при этой температуре составил 3.04 дм³.

- **5.1.1.** <u>Найдите</u> массу газовой смеси, образующейся при нагревании **A** с **B** и SiO_2 .
- **5.1.2.** <u>Определите</u> количественный состав газовой смеси.

При нагревании 10.0 г минерала **A** с 21.7 г SiO_2 в отсутствие **B** образуется 8.34 дм³ смеси газов (измерено при температуре 850° С и давлении 101.3 кПа). Минерал **A** содержит только один металл.

5.1.3. <u>Рассчитайте</u> молярную массу и установите формулу минерала **В**. Подсказка: это – твердое вещество с ионной структурой, не растворимое в воде и не содержащее кристаллизационной воды.

Для синтеза **Китайского синего** надо взять 17.8 г минерала **С** вместо минерала **В** (количества **A** и SiO_2 – такие же, как и для Египетского синего) и нагреть смесь до более высоких температур. Кроме красителя образуются те же газообразные продукты и в тех же количествах, что и для Египетского синего.

- **5.1.4.** <u>Определите</u> формулу минерала **С**.
- **5.1.5.** <u>Определите</u> формулы красителей Египетского синего и Китайского синего.
- **5.1.6.** <u>Определите</u> формулу минерала **A**.

Элементный анализ некоторых образцов Китайского синего показал наличие следов серы. Это позволило предположить, что при синтезе этих образцов использовали другой известный минерал вместо **C**.

5.2.1. <u>Предложите</u> формулу минерала, который могли использовать вместо **С**.

5.2.2. <u>Можно ли</u> было проводить синтез Китайского синего при пониженной температуре в случае использования этого минерала вместо **C**?

Если для синтеза Китайского синего взять меньшие количества диоксида кремния, то в описанном выше процессе образуется краситель другого цвета: Китайский фиолетовый. Его использовали, в частности, для окрашивания знаменитых терракотовых статуй китайских воинов.

5.3. <u>Запишите</u> формулу бинарного соединения, которое образуется при синтезе Китайского фиолетового и отвечает за отличие его цвета от цвета Китайского синего.

Задача 6

7 баллов

Хотя до сих пор не существует лечения от болезни Альцгеймера, некоторые лекарственные средства позволяют контролировать это нейродегенеративное заболевание. Примером такого лекарства является галантамин **1**, относящийся к ингибиторам ацетилхолинэстеразы. Это соединение можно выделить из подснежника кавказского, произрастающего в Грузии, однако для терапии требуются большие количества галантамина, доступные лишь синтетически. Ниже приведена схема, по которой галантамин получают в промышленности.

Примечания к синтезу:

- Спектр ¹Н ЯМР вещества **A** свидетельствует о наличии двух ароматических протонов в *пара*-положении друг относительно друга.
- Вещество **C** неустойчиво в водной среде, поэтому его не выделяют, а немедленно вводят в реакцию с NaBH₄, получая **D**.

- **6.1.1.** <u>Запишите</u> структурные формулы соединений **A**, **B**, **C**, **D**, **F** и **G**. Ни одна из указанных реакций, кроме последней с L-селектридом, не является стереоселективной, поэтому стереохимию соединений в ответах указывать не нужно.
- **6.1.2.** <u>Предложите</u> формулу реагента **X**, с помощью которого можно превратить соединение **D** в соединение **E**.

Удельное оптическое вращение продукта, полученного при разделении энантиомеров, составило $-400^{\circ}\cdot\text{cm}^{2}\cdot\text{r}^{-1}$, тогда как удельное оптическое вращение чистого энантиомера составляет $-415^{\circ}\cdot\text{cm}^{2}\cdot\text{r}^{-1}$ (измерения ведутся в одинаковых условиях). Считайте, что единственной оптически активной примесью является другой энантиомер.

Одним из способов выражения оптической чистоты является величина энантиомерного избытка (ee). Она определяется как разница в процентных содержаниях энантиомеров в смеси. Например, для смеси 70 % R-энантиомера и 30 % S- энантиомера ee составляет 40 %.

6.2.1. <u>Каков</u> энантиомерный избыток в образце, полученном промышленным способом?

L-Селектрид представляет собой продажный реагент, под действием которого последняя стадия протекает стереоселективно.

6.2.2. Определите абсолютную конфигурацию обозначенных стереоцентров (α, β, γ) в соединении (–)-**1** по *R/S*-номенклатуре.

6.2.3. <u>Приведите</u> формулу реагента, который осуществляет ту же самую реакцию, что и L-селектрид, превращая **H** в **1**. Стереоселективность в данном случае не важна.

Альтернативный подход к синтезу галантамина основан на том, что в ходе синтеза последним из всех формируется семичленный цикл.

- **6.3.1.** <u>Приведите</u> формулу соединения **Y**, под действием которого протекает первое превращение в данной схеме.
- **6.3.2.** <u>Предложите</u> структурные формулы для соединений **J** и **K**.

Задача 7

8 баллов

В этой задаче описан синтез мезилата доласетрона **Z** (изображен справа), лекарственного препарата, продаваемого под торговым названием *Анземет* и используемого для подавления симптомов послеоперационной тошноты и рвоты.

$$H_3C-SO_3$$
 H
 Z

Первая часть синтеза препарата показана ниже.

Соединение $\bf A$ содержит цикл и состоит только из атомов C, H и O. Соединение $\bf G$ – ахиральное и может быть получено напрямую из соединения $\bf D$ с использованием восстановительного озонирования, или через промежуточное образование стереоизомеров $\bf E1$ и $\bf E2$ с помощью OsO_4 , или через промежуточное образование стереоизомеров $\bf F1$ и $\bf F2$ с помощью пероксокислоты, изображенной на рисунке.

- **7.1.** Определите эмпирическую (простейшую) формулу **G** по массовым долям элементов.
- 7.2. <u>Запишите</u> структурные формулы **A**, **B**, **C**, **D**, **E1**, **E2**, **F1**, **F2** и **G**.

На следующей стадии соединение **G** в буферном растворе превращается в соединение **H** (в виде смеси двух ахиральных диастереомеров). Восстановление соединения **H** с использованием NaBH₄ позволяет получить спирт **I** (в виде смеси четырех ахиральных диастереомеров). Соединение **I** реагирует в кислой среде с дигидропираном с образованием соединения **J** (в виде смеси еще большего количества диастереомеров). Далее, сначала соединение **J** обрабатывают основанием — *трет*-бутилатом калия. После этого подкисляют раствор и кипятят. И наконец, доводят рН раствора до слабощелочного и экстрагируют продукт – соединение **K** в виде смеси двух диастереомеров, **K1** (основной продукт) и **K2** (побочный продукт). Эти соединения были разделены и **K1** был использован в последующих превращениях.

- **7.3.1.** <u>Запишите</u> структурные формулы для соединений **H**, **I**, и **J**. Не нужно изображать различные диастереомеры.
- **7.3.2.** <u>Запишите</u> структурные формулы для диастереомеров **К1** и **К2**.

На завершающих стадиях синтеза соединение $\bf L$ реагирует с соединением $\bf M$ с образованием промежуточного соединения $\bf N$. Далее, $\bf N$ реагирует с соединением $\bf K1$ с образованием, после экстракции, амина в форме основания. Этот амин далее превращается в целевой продукт путем протонирования с помощью CH_3SO_3H .

$$+$$
 F_3C
 O
 CF_3
 N
 $K1$
 $1.$
 N
 Z
 CH_2SO_2H
 Z

7.4. <u>Запишите</u> структурную формулу соединения **N**.

Задача 8

7 баллов

D-глюкоза может быть использована в синтезе различных сахаров необычного строения. Так, нагревание смеси глюкозы и ацетона с несколькими каплями концентрированной кислоты приводит к образованию диацетонида **A**. Затем **A** может быть селективно гидролизован в соединение **B**.

$$CHO$$
 — $CHOH-CH_2-OH$ — $CHOH-CH_2-OH$

8.1. Выберите правильные ответы на тестовые вопросы в листах ответов.

При взаимодействии $\bf B$ с метапериодатом натрия образуется соединение $\bf C$. Реакция $\bf C$ с водным раствором NaCN с последующим нагреванием в 10%-ном растворе NaOH ведет к образованию смеси двух диастереомеров $\bf D_1$ и $\bf D_2$. Эти соединения могут быть разделены методом колоночной хроматографии.

$$1. \text{ NaCN}$$

$$10_4^- \qquad \qquad 2. \text{ NaOH/H}_2\text{O}$$

$$\mathbf{B} \qquad \longrightarrow \qquad \mathbf{C} \qquad \longrightarrow \qquad \mathbf{D}_1 + \mathbf{D}_2$$

$$188,2 \text{ г/моль}$$

При взаимодействии \mathbf{D}_1 с LiAlH₄ с последующим нагреванием с 1 M раствором HCl образуется сахар \mathbf{F} , который является продуктом гидролиза самого распространенного в природе полисахарида.

8.2.1. <u>Нарисуйте</u> структурные формулы соединений C, D_1 , D_2 , E и F, указав правильную стереохимию.

<u>Изобразите</u> **F** в форме шестичленной циклической структуры (дорисуйте необходимое, указав стереохимию). <u>Отметьте</u> волнистой линией связь, абсолютная конфигурация которой не определена.

8.2.2. <u>Выберите</u> правильные ответы на тестовые вопросы в листах ответов.

Обработка соединения \mathbf{D}_2 соляной кислотой с последующим нагреванием в толуоле приводит к дегидратации с образованием соединения \mathbf{G} , имеющего трициклическую структуру в неводных растворителях. Кипячение \mathbf{G} в 1М растворе HCl дает соединение \mathbf{H} ($C_6H_{10}O_7$), которое является производным природного сахара и содержит 6-членный цикл. Вещество \mathbf{H} является строительным блоком гепарина – полисахарида-антикоагулянта, который вырабатывается в нашем организме.

- Эквимолярное количество HCl
 1M HCl/H₂O
 Нагревание в толуоле
 G
 H
- **8.3.1.** Нарисуйте структурную формулу **G** учитывая стереохимию. Изобразите **H** в форме 6-членной циклической структуры (дорисуйте необходимое, указав стереохимию). Отметьте волнистой линией связь, абсолютная конфигурация которой не определена.
- **8.3.2.** <u>Выберите</u> правильный ответ на тестовый вопрос в листах ответов.
- **8.3.3.** <u>Ответьте</u> на тестовый вопрос в листах ответов.

48^{-я} Международная химическая олимпиада

Теоретический тур

Листы ответов

28 июля 2016 Тбилиси, Грузия

Задача 1

5 баллов

1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	Сумма
3	1	2	2	2	4	3	17

1.1.	На каком электроде образуется трифторид азота?								
	□ Катод □ Анод								
	Напишите	уравнение і	іолуреакции	і образо	вания 1	NF ₃ .			
1.2.	-	ките, <u>какое з</u> ратуру кипе		- NF ₃ , NI	∃F₂ или	NH ₂ F -	- имеет самую низ-		
	\square NF ₃	$\ \square \ NHF_2$	\square NH ₂ F						
1.3.		е соответст ии выше мол		ц линами	і связи	N-F (1	36, 140, 142 пм) и		
		Моле	екула	NH ₂ F	NHF ₂	NF ₃			
		Длина свя	зи N-F, пм				-		
1.4.	<u>Запишите</u> фтора.	уравнение р	реакции обра	азовани	і я бинар	оного с	оединения азота и		
1.5.	<u>Предложи</u> нение реаг		ций реагент	для обр	азован	ия NF ₄ +	и <u>напишите</u> урав-		

1.6.	Запишите уравнение реакции гидролиза NF ₄ +.
	Запишите уравнение возможной побочной реакции, которая приводит к уменьшению мольного соотношения O_2 :NF $_3$ по сравнению с теоретически ожидаемым.
1.7.	<u>Определите</u> формулу соли.
Расчет	:
Форму	ла:

Задача 2

8 баллов

2.1.1	2.1.2	2.1.3	2.2	2.3	2.4	2.5	2.6.1	2.6.2	2.6.3	Сумма
5	3	2	2	3	6	2	1	3	6	33

2.1.1.	<u>Какой</u> из типов атомов	(A или B)) соответствует меди?
--------	------------------------------	-----------	-----------------------

Cu:			

<u>Какой тип решетки</u> (простая кубическая, гранецентрированная кубическая, объемноцентрированная кубическая или алмазоподобная) образован атомами A, а <u>какой</u> – атомами B?

	простая ку- бическая	ГЦК	оцк	алмазо- подобная
A				
В				

Каковы координационные числа атомов?

|--|

2.1.2. Рассчитайте наименьшие расстояния 0–0, Cu–0 и Cu–Cu в структуре.

Расчеты:		
0-0:		
Cu-0:		
du oi		
Cu-Cu:		

2.1.3. Рассчитайте плотность чистого оксида меди(I).
Расчет:
плотность:
2.2. <u>Сколько</u> процентов позиций для атомов меди не заполнено?
Расчет:
%:
<u>Найдите</u> значение x в формуле $Cu_{2-x}O$ для этого кристалла
Расчет:
<i>X</i> :
2.3. Запишите уравнения реакций (1-3).
Уравнение реакции 1:
Уравнение реакции 2:
v publicime peutigni 2.

Уравне	ение реакции 3:	
2.4.		лы термодинамической устойчивости ов в диапазоне от 500 до 1500 К в ат- пении 10 ⁵ Па.
Расчет		
	Температурный интервал в диапазоне 500-1500К	Наиболее устойчивая форма (Cu, Cu ₂ O или CuO)

2.5.	Запишите уравнения полуреакций, протекающих на электродах при электролизе раствора NaOH с платиновым катодом и медным анодом.
Катод:	
Анод:	
2.6.1.	Запишите уравнение полуреакции образования Cu ₂ O на катоде в кислой среде.
2.6.2.	<u>Рассчитайте</u> максимальное значение pH раствора, в котором концентрация меди(II) может быть равна 0.100 моль дм $^{-3}$.
Расчет:	
Максим	иальное pH:

	меди будет образовываться Cu_2O при электролизе 0.100 моль дм $^{-3}$ раствора Cu^{2+} .
Расчет	
Миним	альное рН:

2.6.3. Рассчитайте минимальное значение рН, при котором на катоде вместо

Задача 3

9 баллов

3.1.1	3.1.2	3.1.3	3.2.1	3.2.2	3.2.3	3.3.1	3.3.2	3.3.3	сумма
2	2	6	5	4	7	6	11	5	48

3.1.1.	Запишите сокращенное ионное уравнение иодата с избытком иодида в кислой среде.
3.1.2.	Запишите сокращенное ионное уравнение реакции, протекающей при титровании тиосульфатом.
3.1.3.	<u>Рассчитайте</u> содержание иода в образце в ppm.
Расчет	:

ррт иода =

	ней произведение растворимости AgI ($K_{\rm spl}$).
Расчет	:
K _{spI} :	
3.2.2.	Выберите подходящую точку из приведенных данных и <u>рассчитайте</u> по ней произведение растворимости AgCl ($K_{\rm spCl}$).
Расчет	:
$K_{\rm spCl}$:	

Выберите подходящую точку из приведенных данных и рассчитайте по

3.2.1.

	чения для особо одаренных: $K_{\rm spl} = 1.00 \cdot 10^{-15}$ и $K_{\rm spCl} = 1.00 \cdot 10^{-9}$ без потери баллов.
Расчет	:
K_{f} :	

Выберите подходящую точку из приведенных данных и рассчитайте по

Возможно для этого вам понадобятся значения $K_{\rm spl}$ или $K_{\rm spCl}$. Но даже если вы не смогли их рассчитать в пп. **3.2.1** и **3.2.2**, можете использовать зна-

3.2.3.

ней константу $K_{\rm f}$.

H ₃ AsO ₃ с веществом, содержащим иод, которые объясняют каталитич ские свойства иодида в целевой реакции.
Ионное уравнение реакции церия(IV) с H ₃ AsO ₃ в кислой среде:
Ионное уравнение реакции церия(IV) с веществом, содержащим иод:
Ионное уравнение реакции H ₃ AsO ₃ с веществом, содержащим иод:
3.3.2. <u>Определите</u> целые значения m , n и p и <u>рассчитайте</u> значение k (не забудате указать единицы измерения).
Расчеты:

3.3.1. Запишите сокращенное ионное уравнение реакции церия(IV) с H₃AsO₃ в

кислой среде, а также реакции церия(IV) с веществом, содержащим иод, и

<i>m</i> =	n =	<i>p</i> =	k =		
***	**	Ρ	N		
222 D					
3.3.3. <u>P</u>	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ррт.	
3.3.3. <u>Р</u>	<u>ассчитайте</u> с	содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ррт.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> с	содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> с	содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ррт.	
	<u>ассчитайте</u> с	содержание и	лода в образце (соли в ppm.	
	<u>ассчитайте</u> с	содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	иода в образце (соли в ppm.	
	<u>ассчитайте</u> (содержание и	лода в образце (соли в ррт.	
	ассчитайте с	содержание и	лода в образце (соли в ppm.	
	<u>ассчитайте</u> с	содержание и	иода в образце	соли в ppm.	

ppm I =

Задача 4

8 баллов

4.1.1	4.1.2	4.1.3	4.2.1	4.2.2	4.2.3	4.3.1	4.3.2	Сумма
5	3	2	1	2	6	2	4	25

4.1.1. Рассчитайте время в минутах, затрачиваемое на снижение концентрации диоксана до допустимого уровня при 303.15 K и начальной концентрации $K_2S_2O_8$, равной $5.0\cdot10^{-6}$ моль дм $^{-3}$. Примите, что в данном случае справедливо кинетическое уравнение, полученное из приведенных выше данных.

Расчет:	
D.	
Время, затрачиваемое на окисление:	

	Используя квазистационарное приближение для Ag(III), <u>выведите</u> кинетиуравнение для скорости окисления диоксана.
Выкла	дки:
4.1.3.	
4.2.1.	Выразите k_{obs} через k_{H} , k_0 , $k_{0\text{H}}$ и [H+].
Выкла	дки:
4.2.2.	
T.L.L.	

4.2.3.	$\underline{\text{Рассчитайте}}\ k_{\text{H}}, k_0\ \text{и}\ k_0$	ы. Не забудь	те указать разі	мерность.	
Расчет	:				
k_0 :		$k_{ m OH}$:		$k_{ m H}$:	
πυ.		Non:		νη.	
4.3.1.					
4.3.2.	Приняв, что протекак	от только реа	акции I, II и III,	рассчитайте з	значение рН
	в минимуме $k_{\rm obs}$.	•	, , ,	•	1
Расчет	:				

	Код участника: RUS-??
рН в минимуме:	

Задача 5

8 баллов

5.1.1.	5.1.2.	5.1.3.	5.1.4.	5.1.5.	5.1.6.	5.2.1.	5.2.2.	5.3.	Сумма
1	3	2	2	5	2	1	1	2	19

5.1.1. <u>Найдите</u> массу газовой смеси, образующейся при нагревании <i>A</i>	. c B v	4 SiO2	2.
--	----------------	--------	----

Расчет:			

5.1.2.	Определите количественный состав газовой смеси.
Расчет	:
Газова	я смесь при 850°C содержит
	моль вещества и моль вещества
L	

ка: это – твердое вещество с ионной структурой, не растворимое в воде и не содержащее кристаллизационной воды.
Расчет:
Формула B :
5.1.4. <u>Определите</u> формулу минерала С .
Расчет:
Формула С:

5.1.3. <u>Рассчитайте</u> молярную массу и установите формулу минерала **В**. Подсказ-

5.1.5.	<u>Определите</u> формулы Египетского синего и Китаиского синего.
Расчет	:
Форму.	ла Египетского синего:
Форму.	ла Китайского синего:

5.1.6.	<u>Определите</u> формулу минерала A .
Расчет	
Форму	та А ·
T Opiny	
5.2.1.	<u>Предложите</u> формулу минерала, который могли использовать вместо С .
5.2.2.	Можно ли было проводить синтез китайского синего при пониженной температуре в случае использования этого минерала вместо С ?
	□ Да □ Нет
5.3.	Запишите формулу бинарного соединения, которое образуется при синтезе Китайского фиолетового и отвечает за отличие его цвета от цвета Ки-
	тайского синего.

Задача 6

7 баллов

6.1.1.	6.1.2	6.2.1.	6.2.2.	6.2.3.	6.3.1	6.3.2.	Сумма
24	4	3	6	2	2	8	49

6.1.1. <u>Запишите</u> структурные формулы соединений **A**, **B**, **C**, **D**, **F** и **G**. Ни одна из указанных реакций, кроме последней с L-селектридом, не является стереоселективной, поэтому стереохимию соединений в ответах указывать не нужно.

A	В	
С	D	
F	G	

6.1.2.	<u>Предложите</u> формулу реагента X , с помощью которого можно превратить соединение D в соединение E .		
X			
6.2.1.	<u>Каков</u> энантиомер способом?	ный избыток в образце, і	полученном промышленным
Расчёт	ы:		
ee:			
6.2.2.	_	иютную конфигурацию об ии (–)- 1 по <i>R/S</i> -номенклату	бозначенных стереоцентров ре.
α		β	Υ
6.2.3.			дествляет ту же самую реак- ереоселективность в данном
6.3.1.	<u>Приведите</u> форму. первое превращен		ствием которого протекает
Y			

6.3.2.	Предложите структурные	формулы для соединений]	и К.
--------	------------------------	--------------------------	------

J	K
	ļ

Задача 7

8 Баллов

7.1.	7.2.	7.3.1.	7.3.2.	7.4.	Сумма
2	36	16	8	4	66

7.1. <u>Определите</u> эмпирическую (простейшую) формулу **G** по массовым долям элементов.

Расчет:			

7.2. <u>Запишите</u> структурные формулы **A**, **B**, **C**, **D**, **E1**, **E2**, **F1**, **F2** и **G**.

A	В
С	D
Е1 и Е2	

F1 и F2	
G	
	_
_	
7.3.1. <u>Запишите</u> структурные формул	ы для соединений Н, І, и Ј. Не нужно изо
бражать различные диастереом	еры.
Н	
1	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	

Ţ	
,	
7.3.2	Запишите структурные формулы для диастереомеров К1 и К2 .
K1	
К2	
7.4	2. N
7.4 .	Запишите структурную формулу соединения N .
N	

Задача 8

7 баллов

8.1.	8.2.1.	8.2.2.	8.3.1.	8.3.2.	8.3.3.	Сумма
4	10	1	4	1	2	22

8.1.1. Какое из следующих утверждений справедливо?

□ A – это α-аномер.

🗆 **A** – это не α- и не β-.

□ A – это β-аномер.

 \Box **A** – это смесь α- и β-аномеров.

8.1.2. Какое из следующих утверждений справедливо?

 \square Мы можем получить **A** только исходя из α -D-глюкозы.

 \square Мы можем получить **A** только исходя из β -D-глюкозы.

 \square Мы можем получить **A** исходя как из α -D-глюкозы, так и из β -D-глюкозы.

8.1.3. Какой из реагентов (**X** в схеме) может быть использован для селективного гидролиза соединения **A**?

□ 50% раствор уксусной кислоты

□ концентрированная H₂SO₄

□ 6M раствор HCl в воде

□ 1М раствор NaOH в воде

□ 6M раствор HCl в уксусной кислоте

8.1.4. Какая структура вещества **В** имеет правильную стереохимию?

8.2.1. Нарисуйте структурные формулы соединений C, D_1 , D_2 , E и F, указав правильную стереохимию.

<u>Изобразите</u> **F** в форме шестичленной циклической структуры (дорисуйте необходимое, указав стереохимию). <u>Отметьте</u> волнистой линией связь, если ее абсолютная конфигурация не определена.

С	\mathbf{D}_1
D_2	E
F	
	I
8.2.2. В целом синтетический путь от гл	юкозы к соединению F не выглядит очень
	лучаях такой путь превращений является
наиболее удобным методом получ	нения F . В каком случае?
\square Получение F с 13 С меткой по 6-	
\square Получение F с 13 С меткой по 5-	
\square Получение F с 13 С меткой по 1-	-му атому углерода.

 \square Получение **F** с 15 О меткой по гликозидной ОН-группе.

 \square Получение необычного изомера **F.**

8.3.1.	<u>Нарисуйте</u> структурную формулу G учитывая стереохимию. <u>Изобразите</u> H в форме 6-членной циклической структуры (дорисуйте не обходимое, указав стереохимию). <u>Отметьте</u> волнистой линией связь, если ее абсолютная конфигурация не определена.	
G	H	
8.3.2.	Какова стереохимия в местах сочленения циклов в соединении G ?	
	□ оба сочленения имеют цис-конфигурации. □ одно имеет цис-, а другое – транс-конфигурации. □ оба имеют транс-конфигурацию.	
8.3.3.	Какие из следующих утверждений справедливы для соединения H ? (Выможете отметить более одного утверждения)	
	 □ H – восстанавливающий сахар (реагирует с рег □ H – альдаровая кислота (дикарбоксильное про □ H – альдоновая кислота (α-карбоксильное про □ H – уроновая кислота (ω-карбоксильное произ □ H – кетоза. 	ризводное альдозы). изводное альдозы).

 \square **H** – ахиральное соединение.

□ **H** – мезо соединение.

☐ **H** – лактон.☐ **H** – D-сахар.