

48th International Chemistry Olympiad

Theoretical Problems Answer sheets

28 July 2016 Tbilisi, Georgia

Problem 1 5% of the total

1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	Sum
3	1	2	2	2	4	3	17

1.1. <u>On which electrode</u> does nitrogen trifluoride form?

Cathode Anode

<u>Write a balanced chemical equation for the electrode half reaction for the formation of NF3.</u>

 $NH_{4^+} + 3 F^- \rightarrow NF_3 + 4 H^+ + 6 e^- \text{ or } NH_4F + 2 HF \rightarrow NF_3 + 6 H^+ + 6 e^- \text{ or } equ.$ 3p (1p choosing anode, 1p species, 1p coefficients)

1.2. Which of NF₃, NHF₂ or NH₂F compound is expected to condense at the lowest temperature?

NF3

NHF2

NF₃

1.3. <u>Assign</u> the N-F bond lengths (136, 140, 142 pm) to the molecules.

NH₂**F**

Molecule	NH ₂ F	NHF ₂	NF ₃
N-F bond			
length, pm			

The partial positive charge on N increases in this order, so the attraction also increases between the N and F.

1.4. <u>Write</u> a balanced chemical equation for the formation of the binary nitrogen – fluorine compound.

2 NHF₂ + 2 KF \rightarrow N₂F₂ + 2 KHF₂ or 2 NHF₂ \rightarrow N₂F₂ + 2 HF 2p (1p N₂F₂, 1p equation)

1.5. <u>Propose</u> a suitable reagent for the formation of NF₄⁺ and <u>write</u> a balanced chemical equation for the reaction.

 $NF_3 + F_2 + SbF_5 \rightarrow NF_{4^+} + SbF_{6^-}$ any strong fluoride acceptor (AsF₅, BF₃) 2p (1p species, 1p coefficients) **1.6.** <u>Write</u> a balanced chemical equation for the hydrolysis of NF₄⁺.

 $2 \operatorname{NF}_{4^+} + 2 \operatorname{H}_2O \longrightarrow 2 \operatorname{NF}_3 + O_2 + 2 \operatorname{HF} + 2 \operatorname{H}^+ \Rightarrow n(O_2):n(\operatorname{NF}_3) = 1:2$

```
2p (1p species, 1p coefficients)
```

<u>Write</u> a balanced chemical equation for a possible side reaction that can decrease the theoretically expected O_2 :NF₃ mole ratio.

e.g.: $NF_{4^+} + 2 H_2O \rightarrow NF_3 + H_2O_2 + HF + H^+$ HOF, O₃, OF₂ also accepted. 2p (1p species, 1p coefficients)

1.7. <u>Determine</u> the formula of the salt in question.

Your work: From the NF₃:F₂ ratio it is clear that the anion also contains fluorine. Moreover, the starting NF₄⁺: liberated F₂ ratio is 1:2, and all fluorine content is released. With a (NF₄)_x**A**F_y composition, x:y = 1:4. $\frac{8xM(F)}{8xM(F)+xM(N)+M(A)} = 0.656 \Rightarrow \frac{M(A)}{x} = 65.7 \text{ g/mol}$ With x=1, the atomic mass of **A** is close to zinc, but not all fluorine would be released with Zn. If x=2, then the element is xenon, and the formula is (NF₄)₂XeF₈ **3p** (1.5p for Zn) Formula:

Problem 2 8%

8%	of	the	tota	1
----	----	-----	------	---

2.1.1	2.1.2	2.1.3	2.2	2.3	2.4	2.5	2.6.1	2.6.2	2.6.3	Sum
5	3	2	2	3	6	2	1	3	6	33

2.1.1. <u>Which</u> of the atoms (A or B) is copper?

Cu: There are 2 A atoms and 4 B atoms in the cell. Cu: B

<u>Which basic structure</u> (primitive cubic, face centered cubic, body centered cubic, diamond) is formed by the A atoms and <u>which structure</u> is formed by the B atoms?

	pr. cubic	fcc	bcc	diamond
А				
В				

B: fcc A: bcc

What are the coordination numbers of the atoms?

2.1.2. <u>Calculate</u> the smallest O-O, Cu-O and Cu-Cu distances in the structure.

Your wo	Your work:			
0-0:	0-0: half of the cell body diagonal $1/2.427.0 \text{ pm} \cdot \sqrt{3} = 369.8 \text{ pm}$.			
	Cu-O: $1/4^{\text{th}}$ of the cell body diagonal $1/4.427.0 \text{ pm} \cdot \sqrt{3} = 184.9 \text{ pm}$.			
Cu-O:	Cu-Cu: half of the face diagonal: $1/2.427.0 \text{ pm} \cdot \sqrt{2} = 301.9 \text{ pm}$.			
	1p each, no penalty for Cu and O switched.			
Cu-Cu:				

2.1.3. <u>What</u> is the density of pure copper(I) oxide?

Your work:

The volume of the unit cell is $(427.0 \text{ pm})^3$. The mass of a unit cell is $(4M_{Cu} + 2 M_0) / N_A$. The density is 6.106 g/cm³. 2p density:

2.2. <u>What percentage</u> of normal copper sites are empty in the crystal sample?

Your work:

From 1000 coppers 998 atoms are Cu(I) and 2 are Cu(II). To balance the charge of the anions, there has to be 2 vacant Cu sites. The percentage of empty sites is: $2/1002 \approx 0.2\%$
1 p

percentage:

<u>What</u> is *x* in the empirical formula $Cu_{2-x}O$ of the crystal?

Your work:

0.2% of 2 coppers is missing. That is 0.004.	-
1 p	

x:

2.3. <u>Write</u> balanced chemical equations for reactions (1-3).

Reaction 1:

	(1) 2 Cu ₂ O + O ₂ \rightarrow 4 CuO (copper(II)-hydroxides and carbonates accepted)
Reactior	(2) $Cu_2O + 2 H^+ \rightarrow Cu + Cu^{2+} + H_2O$
	(3) $Cu_2O + H_2SO_4 + 4 H^+ \rightarrow 2 Cu^{2+} + SO_2 + 3 H_2O$
Reactior	3p (non-ionic equations also accepted)

2.4. Determine the temperature ranges, if any, of thermodynamic stability of copper and its oxides between 500 and 1500 K in a 10⁵ Pa oxygen atmosphere.

Your wo	rk:
	$\Delta_{\rm f}G({\rm Cu}_{\rm O}) = -156000 {\rm J}{\rm mol}^{-1} + 84 {\rm J}{\rm mol}^{-1}{\rm K}^{-1}T$
	$\Delta io(Cu_{2}O) = -170000 \text{ j} \text{ inor } + 72 \text{ j} \text{ inor } - \text{K} - 1$
	Both Gibbs energies of formation are negative in the range 500-1500 K, so the oxides are more stable than the elements. Cu is not stable.
	Looking at the conversion process: $2 \text{ CuO} = \text{Cu}_2\text{O} + 0.5 \text{ O}_2$ $\Delta_r G = 142000 \text{ J} \text{ mol}^{-1} - 96 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} T$ The Gibbs energy of the reaction is negative above 1480 K. CuO is stable below 1480 K, Cu ₂ O above 1480 K.
	6 p (1 for each ΔG or equivalent calculation, 1 for each conclusion)

Temperature range between 500-	The most stable form (Cu, Cu ₂ O or
1500K	CuO)

2.5. <u>Write</u> the half reaction equations for the electrode processes during the anodic production of Cu₂O in NaOH solution with a platinum cathode and copper anode.

Cathode	$C: 2 H_2O + 2 e^- \longrightarrow H_2 + 2 OH^-$
	A: 2 Cu + 2 OH ⁻ \rightarrow Cu ₂ O + H ₂ O + 2e ⁻
Anode:	2p

2.6.1. Write the half reaction equation of the cathode process giving Cu₂O in acidic medium.

$$2 \operatorname{Cu}^{2+} + \operatorname{H}_2O + 2 \operatorname{e}^- \longrightarrow \operatorname{Cu}_2O + 2 \operatorname{H}^+$$

$$1p$$

2.6.2. What is the maximum pH at which the concentration of copper(II) can be maintained at 0.100 mol dm⁻³?

Your work:

If the pH is too high, Cu(OH)₂ precipitates.

$$K_{sp} \geq 0.1 [OH^{-}]^{2} \qquad \Rightarrow \qquad pH \leq 5.15$$

3 p (1p realizing that precipitation occurs, 1p equation, 1p result)

maximul... pr

2.6.3. What is the minimum pH at which the cathodic production of Cu₂O in a 0.100 mol dm⁻³ Cu²⁺ solution is still possible?

The potential of the cathodic process $(2 \text{ Cu}^{2+} + \text{H}_2\text{O} + 2 \text{ e}^- = \text{Cu}_2\text{O} + 2 \text{ H}^+)$ depends on the pH. The standard potential of the cathodic process can be calculated from: $Cu_2O(s) + H_2O(l) + 2e^- \rightarrow 2 Cu(s) + 2 OH^- (aq) \Delta G^{o_1} = -2F(-0.36 V)$ $Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$ $\Delta G^{\circ_2} = -2F(+0.337 \text{ V})$ $\Delta G^{\rm o_3} = -RT \ln K_{\rm w}$ $H_2O(l) \rightarrow H^+(aq) + OH^-(aq)$ For 2 Cu²⁺(aq) + H₂O(l) + 2 $e^{-} \rightarrow$ Cu₂O(s) + 2 H⁺(aq): $\Delta G^{\rm o} = -\Delta G^{\rm o}_1 + 2\Delta G^{\rm o}_2 + 2\Delta G^{\rm o}_3$ $E^{\circ} = -\Delta G^{\circ} / 2F = 0.36 \text{ V} + 2 \cdot 0.337 \text{ V} - (RT/F) \cdot \ln K_{w} = 0.208 \text{ V}$ The concentration dependence of the cathodic Cu₂O production potential: $E = 0.208 \text{ V} + 0.059/2 \log ([Cu^{2+}]^2/[H^+]^2)$ This potential has to be higher than the potential of the reduction of Cu²⁺. $0.337 + 0.059/2 \log [Cu^{2+}] = 0.208 + 0.059/2 \log ([Cu^{2+}]^2/[H^+]^2)$ $[H^+]^2 = [Cu^{2+}]/23600$ pH = 2.696 p (3p for standard potential, 3p for calculation) Many other routes possible – all correct ones accepted.

minimum pH:

Problem 3 9% of the total

3.1.1.	3.1.2.	3.1.3.	3.2.1.	3.2.2.	3.2.3.	3.3.1.	3.3.2.	3.3.3.	Sum
2	2	6	5	4	7	6	11	5	48

3.1.1. <u>Write</u> a balanced net ionic equation for the reaction when iodate reacts with excess iodide in acidic solution.

 $IO_{3^{-}} + 8 I^{-} + 6 H^{+} \rightarrow 3 I_{3^{-}} + 3 H_{2}O \text{ or } IO_{3^{-}} + 5 I^{-} + 6 H^{+} \rightarrow 3 I_{2} + 3 H_{2}O$

2p (1p species, 1p coefficients, 0.5p penalty if spectator ions are included.)

3.1.2. <u>Write</u> a balanced net ionic equation for the reaction taking place during the titration with thiosulfate.

 I_{3^-} + 2 S₂O₃²⁻ \rightarrow 3 I⁻+ S₄O₆²⁻ or I₂ + 2 S₂O₃²⁻ \rightarrow 2 I⁻+ S₄O₆²⁻

2p (1p species, 1p coefficients, 0.5p penalty if spectator ions are included.)

3.1.3. <u>Calculate</u> the iodization level, in ppm, of this salt sample.

Your work:

 $(0.00750 \text{ dm}^3 \text{ titrant}) \cdot (0.00235 \text{ mol } \text{dm}^{-3} \text{ S}_2 \text{O}_3^{2-}) = 1.76 \cdot 10^{-5} \text{ mol } \text{S}_2 \text{O}_3^{2-})$

 $(1.76 \cdot 10^{-5} \text{ mol } S_2O_3^{2-}) \cdot (1 \text{ mol } IO_3^{-}/6 \text{ mol } S_2O_3^{2-}) = 2.94 \cdot 10^{-6} \text{ mol } IO_3^{-1}$

 $(2.94 \cdot 10^{-6} \text{ mol IO}_{3}) \cdot (126.90 \text{ g/mol}) = 3.73 \cdot 10^{-4} \text{ g iodine}$

 $\{(3.73 \cdot 10^{-4} \text{ g iodine})/(10.00 \text{ g salt})\} \cdot 10^{6} \text{ ppm} = 37.3 \text{ ppm iodine}$

2p for calculating mol thiosulfate

2p for calculating mol iodate

2p for converting to ppm

ppm iodine =

3.2.1. <u>Select</u> an appropriate data point from the experiments and <u>use it to calculate</u> the solubility product of AgI (*K*_{spl}).

Your wo	rk:
	In the experiments, $ E = -(RT/nF)\ln([Ag^+]_{cell}/[Ag^+]_{ref}) = -0.0591 \cdot \log[Ag^+]$
	There is a sharp endpoint at $n(added Ag^+) = n$ (I ⁻ initially present) in experiment A ([Cl ⁻] = 0), so precipitation of AgI(s) must be essentially complete at any point in the titration curve. If one considers, for example, 5.0 µmol added Ag ⁺ , then
	$[I^-] = [I^-]_0 - 5.0 \cdot 10^{-6} \text{ mol/dm}^3 = 5.0 \cdot 10^{-6} \text{ mol/dm}^3$
	$ E = 0.622 \text{ V} = -0.0591 \cdot \log[\text{Ag}^+] \Rightarrow [\text{Ag}^+] = 3.2 \cdot 10^{-11} \text{ mol/dm}^3$
	$K_{\rm spl} = [Ag^+][I^-] = 1.6 \cdot 10^{-16}$
	2p for relationship between <i>E</i> and [Ag ⁺] (full credit if used even if not stated explicitly)
	1p for selecting a data point with $n(Ag^+) \le 10.0 \ \mu mol$
	2p for calculation of K _{spl}
	Full marks are awarded here and later for correct answers with numerical differences stemming from using different data points or minor rounding
KsnI:	

3.2.2. <u>Select</u> an appropriate data point from the experiments and <u>use it to calculate</u> the solubility product of AgCl (K_{spCl}).

Your work:

In the titration with $[Cl^-] = 0.100 \text{ mol/dm}^3$ (experiment **B**), the fact that the potential stops changing at $n(\text{added } \text{Ag}^+) \ge 11.8 \mu \text{mol}$ must be due to the precipitation of AgCl(s) (the high concentration of chloride therefore effectively fixes the [Ag⁺] in the solution). So in this regime:

 $|E| = 0.517 \text{ V} = -0.0591 \cdot \log[\text{Ag}^+] \Rightarrow [\text{Ag}^+] = 1.6 \cdot 10^{-9} \text{ mol/dm}^3$

 $K_{\rm spCl} = [Ag^+][Cl^-] = 1.6 \cdot 10^{-10}$

1p for selecting a data point with $n(Ag^+) > 11.8 \mu mol$

3p for calculation of K_{spCl}

K_{spCl}:

3.2.3. <u>Select</u> an appropriate data point from the experiments and <u>use it to calculate</u> $K_{\rm f}$. You may need to use values of $K_{\rm spl}$ or $K_{\rm spCl}$ to do this calculation. If you were unable to carry out the calculations in **3.2.1**. or **3.2.2**., you may use the arbitrary values of $K_{\rm spl} = 1.00 \cdot 10^{-15}$ and $K_{\rm spCl} = 1.00 \cdot 10^{-9}$ without penalty.

K_f:

3.3.1. <u>Write</u> balanced net ionic equations for the reaction of cerium(IV) with H₃AsO₃ in acidic solution, as well as reactions of cerium(IV) with a species containing the element iodine and H₃AsO₃ with a species containing the element iodine, that could reasonably account for the catalysis of the net reaction by iodide.

Net reaction of cerium(IV) with H₃AsO₃ in acidic solution:

 $2 \text{ Ce}^{4+} + \text{H}_3\text{AsO}_3 + \text{H}_2\text{O} \rightarrow 2 \text{ Ce}^{3+} + \text{H}_3\text{AsO}_4 + 2 \text{ H}^+$

2p (1p for H₃AsO₃/H₃AsO₄ couple, 1p balanced)

Reaction of cerium(IV) with an iodine-containing species:

 $2 \ \text{Ce}^{4+} + 2 \ \text{I}^{-} \rightarrow 2 \ \text{Ce}^{3+} + \text{I}_2$

2p (1p species, 1p balanced). Full marks for I₃- or I· as products

Reaction of H_3AsO_3 with an iodine-containing species:

 $H_3AsO_3 + I_2 + H_2O \rightarrow H_3AsO_4 + 2 I^- + 2 H^+$

2p (1p species, 1p balanced). Full marks for I₃- or I·as products

Two iodine-containing reactions must add up to the net reaction, otherwise –2p for the iodine-containing reactions

3.3.2. Determine the integer values of *m*, *n*, and *p* and <u>calculate</u> the value of *k* (be sure to <u>specify</u> its units).

Your work:

The limiting reactant is Ce(IV) which is < 10% of the concentration of H_3AsO_3 , so only the concentration of Ce(IV) changes appreciably over the course of the reaction. (I⁻ is a catalyst and is not consumed.) So the order in Ce(IV) can be judged by the time course of the reaction. By eye, it appears to be first order.

	This can	be ve	rified by calculat	$\lim_{A\to 0} -\ln(A/A_0) \cdot (1)$	/t), which should	l be a			
	constant (<i>K</i> _{obs}) if the reaction is first-order:								
		t, s	<i>k</i> _{obs} , s ⁻¹ , Run 1	<i>k</i> _{obs} , s ⁻¹ , Run 2	$k_{\rm obs}$, s ⁻¹ , Run 3				
		20	0.0290	0.0328	0.0148				
		40	0.0286	0.0310	0.0147				
		60	0.0284	0.0305	0.0146				
		80	0.0284	0.0305	0.0146				
		100	0.0282	0.0302	0.0145				
		avg.	0.0285	0.0310	0.0146				
	Since k_{ob} decreasi In contra decrease	ng [H3 ng [H3 ast, de e in ob	changed (within AsO3] by a facto creasing [I-] by a served rate cons	a 10%) from run r of two, <i>m</i> = 0. a factor of two fro stant of a factor o	1 to run 2 despit om run 1 to run 3 f two, so <i>p</i> = 1.	e 3 results in a			
	$k = k_{obs}/$ for runs	$k = k_{obs}/[I^-]$, giving values of 1.99·10 ⁴ , 2.17·10 ⁴ , and 2.04·10 ⁴ dm ³ mol ⁻¹ s ⁻¹ for runs 1-3 ; average $k = 2.07 \cdot 10^4$ dm ³ mol ⁻¹ s ⁻¹ .							
	4p for do	4p for documenting 1st-order in Ce(IV), 2p each for <i>m</i> and <i>p</i> ,							
	2p for va	lue of	k, 1p for unit of	k consistent with	n given rate law				
_	<i>n</i> =		<i>p</i> =	<i>k</i> =					

3.3.3. <u>Calculate</u> the iodization level, in ppm, of the salt sample.

Your wo	rk:							
	t, s	$-\ln(A/A_0)\cdot(1/t)$, s ⁻¹						
	20	0.0177						
	40	0.0177						
	60	0.0177						
	80	0.0176						
	100	0.0177						
	So $k_{\rm obs} = 0.01$	77 s ⁻¹ = $k[I^-] = (2.07 \cdot 1)$	$0^4 \mathrm{dm^3 mol^{-1} s^{-1})[I^-]}$					
	[I ⁻] = 8.55·10	⁻⁷ mol/dm ³						
	Since the salt 41, the conce 41·(8.55·10 ⁻⁷	t solution was diluted l ntration in the original mol/dm ³) = 3.51·10 ⁻⁵	by a factor of (2.05 cm ³)/(0.050 cm ³) = salt solution was mol/dm ³ .					
	$(3.51\cdot10^{-5} \text{ mol dm}^{-3})(0.01000 \text{ dm}^{3}) = 3.51\cdot10^{-7} \text{ mol I in the salt sample}$ $(3.51\cdot10^{-7} \text{ mol iodine})(126.90 \text{ g/mol}) = 4.45\cdot10^{-5} \text{ g iodine}$ $\{(4.45\cdot10^{-5} \text{ g iodine})/(1.000 \text{ g salt})\}\cdot10^{6} \text{ ppm} = 44.5 \text{ ppm I}$							
Ţ	2p for calcula	ating $k_{\rm obs}$, 1p for [I-] fro	om $k_{\rm obs}$, 2p for converting to ppm					
ppm I = '								

Problem 4

8% of the total

4.1.1	4.1.2	4.1.3	4.2.1	4.2.2	4.2.3	4.3.1	4.3.2	Sum
5	3	2	1	2	6	2	4	25

4.1.1. <u>Calculate</u> the time in minutes the oxidation process has to continue in order to reach the accepted level of dioxane at 303.15 K if the initial concentration of $K_2S_2O_8$ is $5.0 \cdot 10^{-6}$ mol/dm³. Assume that the rate law obtained from the data above is valid under these conditions.

Your work:

Trial1 and 2 \Rightarrow the rate doubles when concentration of K₂S₂O₈ is doubled. Order w.r.t. K₂S₂O₈ =1.

Trial3 and $4 \Rightarrow$ the rate does not change with concentration of dioxane. Order w.r.t. dioxane =0.

Initial rate = $k[K_2S_2O_8]$ Average $k = 6.65 \cdot 10^{-3} \text{ min}^{-1}$

Change in dioxane concentration: (40.00 –0.35) μ g·dm⁻³ / 88.1 g·mol⁻¹ = 0.450 μ mol·dm⁻³

 $[K_2S_2O_8]_0 = 5.00 \ \mu mol \ dm^{-3}; \ [K_2S_2O_8]_t = 4.55 \ \mu mol \ dm^{-3}$

 $4.55 = 5.00 \exp(-6.65 \cdot 10^{-3} t)$

t = 14.2 minutes

5p (1p for each order, 1 p for *k*, 2p for final answer)

Oxidation time:

4.1.2. Assuming Ag(III) to be in steady state, <u>deduce</u> the rate equation for the oxidation of dioxane.

Your work:

rate of oxidation =
$$\frac{k_1 k_3 [S_2 O_8] [D][Hg}{k_2 [SO_4^{-2}]^2 + k_3 [D]}$$

3p (1p for each step)

4.1.3.

A,C

2p, (1p penalty for every mistake)

4.2.1. Write an expression for
$$k_{obs}$$
 in terms of k_H , k_0 , k_{OH} and $[H^+]$.

Your work:

$$k_{obs} = k_{H}[H^{+}] + k_{0} + k_{OH} \frac{K_{w}}{[H^{+}]}$$

1p, (0.5p if [OH⁻] is included in the expression)

2p, (1p penalty for every mistake)

4.2.3. Using the diagram and the data in the table, <u>calculate</u> $k_{\rm H}$, k_0 and $k_{\rm OH}$. Make sure to specify the units.

B, D

Your work:

At pH = 5.30, k_0 is dominant $log(k_{obs}/min^{-1}) = -4.000 \Rightarrow k_{obs} = k_0 = 1.00 \cdot 10^{-4} min^{-1}$ At pH = 12.18, $[OH^{-}] = 0.01514 mol dm^{-3}$ $log(k_{obs}/min^{-1}) = -1.726 \Rightarrow k_{obs} = 1.88 \cdot 10^{-2} min^{-1}$ $k_{obs} = k_0 + k_{OH}[OH^{-}] \qquad k_0$ can be neglected $k_{OH} = k_{obs}/[OH^{-}] = 1.24 dm^3 \cdot mol^{-1} \cdot min^{-1}$ At pH = 1.30, $[H^+] = 0.0501 mol dm^{-3}$ $log(k_{obs}/min^{-1}) = -3.886 \Rightarrow k_{obs} = 1.30 \cdot 10^{-4} min^{-1}$ $k_{obs} = k_{H}[H^{+}] + k_0 \qquad k_0$ cannot be neglected $k_{H} = \frac{k_{obs} - k_0}{[H^+]} = \frac{3.0 \cdot 10^{-5} min^{-1}}{0.0501 mol \cdot dm^{-3}}$ $k_{H} = 6.0 \cdot 10^{-4} dm^3 \cdot mol^{-1} \cdot min^{-1}$ 6p (1p for k_0 , 2p for k_{OH} , 3p for k_{H} , 0.5p penalty for wrong or no units)

k_0	kon.	ku.	
<u>N01</u>	<u> </u>		
4.3.1.	b, c	2p, (1p penalty for every mistake)]

			-
4.3.2.	Assuming that only reactions I, II and III occur, <u>calculate</u> the value of the pH a	Assuming that only rea	the pH at
	the minimum of <i>k</i> _{obs} .	the minimum of k_{obs} .	

Your work:

$$\begin{aligned} k_{obs} &= k_{\rm H}[{\rm H}^+] + k_0 + k_{\rm OH} \frac{K_{\rm w}}{[{\rm H}^+]} \\ \text{This is a minimum if} \\ \frac{dk_{obs}}{d[{\rm H}^+]} &= k_{\rm H} - k_{\rm OH} \frac{K_{\rm w}}{[{\rm H}^+]^2} = 0 \\ [{\rm H}^+]_{\rm min} &= \sqrt{\frac{k_{\rm OH}K_{\rm w}}{k_{\rm H}}} \quad p{\rm H}_{\rm min} = \frac{1}{2}p{\rm K}_{\rm W} + \frac{1}{2}\log\frac{k_{\rm H}}{k_{\rm OH}} = 2.40 \\ \text{or see alternative solution without calculus} \\ 4p (3p \text{ for expression of } [{\rm H}^+] \text{ at minimum, } 1p \text{ for numerical result}) \end{aligned}$$

$$\begin{aligned} k_{\rm obs} \text{ is a minimum if } k_{\rm H}[{\rm H}^+] + k_{\rm OH} \frac{k_{\rm w}}{[{\rm H}^+]} \text{ is minimal.} \\ \text{The minimum happens when the two terms are equal. So at minimum:} \\ k_{\rm H}[{\rm H}^+] &= k_{\rm OH} \frac{K_{\rm w}}{[{\rm H}^+]} \\ [{\rm H}^+]_{\rm min} &= \sqrt{\frac{k_{\rm OH}K_{\rm w}}{k_{\rm H}}} \quad p{\rm H}_{\rm min} = \frac{1}{2}p{\rm K}_{\rm W} + \log\frac{k_{\rm H}}{k_{\rm OH}} = 2.40 \end{aligned}$$

Problem 5 8% of the total

5.1.1.	5.1.2.	5.1.3.	5.1.4.	5.1.5.	5.1.6.	5.2.1.	5.2.2.	5.3.	Sum
1	3	2	2	5	2	1	1	2	19

5.1.1. <u>Find</u> the mass of the gaseous mixture formed upon heating of **A** with **B** and SiO₂.

Your work:

1 p

m = 10.0 + 21.7 + 9.05 - 34.0 = 6.75 g

5.1.2. <u>Determine</u> the quantitative composition of this gas mixture.

Your work:

At 850°C, the number of moles of gaseous products is: $n_{1} = \frac{pV}{RT} = \frac{101325 \text{ Pa} \cdot 0.0167 \text{ m}^{3}}{8.314 \text{ Jmol}^{-1}\text{K}^{-1} \cdot (850\text{K} + 273\text{K})} = 0.181 \text{ mol}$ while at 0°C $n_{2} = \frac{pV}{RT} = \frac{101325 \text{ Pa} \cdot 0.00304 \text{ m}^{3}}{8.314 \text{ Jmol}^{-1}\text{K}^{-1} \cdot 273 \text{ K}} = 0.136 \text{ mol}$ The difference of 0.045 moles is probably water that has condensed. Hence,

The difference of 0.045 moles is probably water that has condensed. Hence, the mass of the gas at 0°C is $m = 6.75-0.045 \cdot 18 = 5.94$ g, and the molar mass is $m/n_2 \approx 44$ g/mol. Taken into account that we dealt with minerals, and the temperature was high, we can conclude that the rest of the gas is CO₂.

The gas formed at 850°C contains 0.045 mol of H₂O and 0.136 mol of CO₂.

3p (0.5p for finding each compound, 1p for the quantity of each compound)

The gaseous mixture formed at 850°C contains mol of and mol of

5.1.3. <u>Calculate</u> the molar mass and determine the formula of mineral **B**. Hint: it is an ionic solid insoluble in water and containing no water of crystallization.

Your work:

Heating of mineral **A** with SiO₂ alone produces half of the gases evolved in the presence of **B**. Thus, **B** should form the rest 0.181/2 = 0.0905 moles of gases and is a carbonate of some metal. If it forms pure CO₂, the molar mass of **B** per carbonate group is 9.05 g / 0.0905 mol = 100 g mol⁻¹. The molar mass of CO₃ group is

60 g mol⁻¹, so the mass of metal per carbonate group is 40 g mol⁻¹.

This corresponds to Ca, \mathbf{B} – CaCO₃

2p

B is:

5.1.4. <u>Determine</u> the formula of mineral **C**.

Your work:

Similar to the previous question, the molar mass of **C** per carbonate group is $17.8 \text{ g} / 0.0905 \text{ mol} = 197 \text{ g mol}^{-1}$. The mass of metal per carbonate group is 137 g mol^{-1} .

This corresponds to Ba, **C** – BaCO₃.

2p

C is:

5.1.5. <u>Determine</u> the formulae of Egyptian blue and Chinese blue.

Your work:

Taking into account the molar ratios of known compounds, we can write a general equation of formation of Egyptian blue:

$$A + 2 CaCO_3 + 8 SiO_2 = pigment + 3 CO_2 + H_2O$$

The composition of Egyptian blue can be written as $2CaO \cdot 8SiO_2 \cdot nMe_xO_y$. Oxide Me_xO_y forms from mineral **A**. Let us find the molar mass of nMe_xO_y :

 $M(\text{pigment}) = M(2\text{CaO} \cdot 8\text{SiO}_2) + M(n\text{Me}_x\text{O}_y)$

 $M(\text{pigment}) = 2M(\text{CaCO}_3) \frac{m(\text{pigment})}{m(\text{CaCO}_3)}$

$$M(nMe_xO_y) = 2M(CaCO_3)\frac{34.0 \text{ g}}{9.05 \text{ g}} - M(2CaO \cdot 8SiO_2) \approx 159 \text{ g/mol}$$

Trying different values (at least from 1 to 3) of *n*, *x*, and *y*, we ensure that the only possibility is n = 2, x = y = 1, Me is Cu. This is supported by a blue color of a pigment.

The formula of Egyptian blue is then $CaCuSi_4O_{10}$.

The formula of Chinese blue is $BaCuSi_4O_{10}$.

3p for proving presence of Cu (1.5 p for correct molar mass of oxide without further advances)

2p for formulas of the pigments

Any correct way of calculation is fully marked

Egyptian blue is:

Chinese blue is:

5.1.6. <u>Determine</u> the formula of mineral **A**.

Your work:

Upon heating A turns into 2 CuO, 1 CO₂ and 1 H_2O .

It means that **A** is malachite $Cu_2CO_3(OH)_2$.

2p

A is:

5.2.1. <u>Suggest</u> the formula of the mineral used in place of **C**.

	BaSO ₄ (the most stable compound containing Ba and S, mineral barite)								
	1p (BaS is soluble and reactive, can not be a mineral.)								
5.2.2.	<u>Could</u> the	temperature	e of synthesis of Chinese blue be decreased if this mineral						
	is used ins	stead of C ?	No. BaSO4 is more stable than BaCO3.						
	Yes	🗌 No	1p						
5.3.	<u>Write dow</u> required f	<u>vn</u> a formula for Chinese v	of a binary compound that forms under the conditions riolet and is responsible for the change of the color.						
	Cu20 (m	ixing red wi	th blue gives purple)						
	2p								

Problem 6 7% of the total

6.1.1.	6.1.2	6.2.1.	6.2.2.	6.2.3.	6.3.1	6.3.2.	Sum
24	4	3	6	2	2	8	49

6.1.1. <u>Suggest</u> structures for **A**, **B**, **C**, **D**, **F**, and **G**. None of the reactions except for the final transformation with L-selectride are stereoselective. Therefore, stereochemistry does not need to be indicated in your answers.

6.1.2. <u>Give</u> the formula for a possible reagent, **X**, to convert compound **D** to **E**.

CH₃CH₂OCOH or any other reasonable reagent. 4p (3p for formyl chloride) Formic acid = 0p

Х

6.2.1. <u>What</u> is the enantiomeric excess of the resolved compound prepared by the industrial route?

If x is the percentage of the (-) enantiomer: x(-415) + (1 - x)(415) = -400 x = 815/830 ee = (815/830) - (15/830) = 800/830 = 0.964 or 96.4% 3p (2p enantiomer composition, 1p *ee* calculation)

ee:

6.2.2. <u>Assign</u> the labelled stereocentres (α, β, γ) in (-)-**1** as *R* or *S*.

α		β	γ
	S	R	S
())			· · · · · · · · · · · · · · · · · · ·

6.2.3. <u>Give</u> the formula for a reagent that carries out the same reaction as L-selectride, the conversion of **H** to **1**. You need not worry about stereoselectivity.

NaBH4, LiAlH4, etc. 2p

6.3.1. <u>Give</u> the formula for compound **Y** to carry out the first step of the route.

6.3.2. <u>Suggest</u> structures for **J** and **K**.

Problem 7

8% of the total

7.1.	7.2.	7.3.1.	7.3.2.	7.4.	Sum
2	36	16	8	4	66

7.1. <u>Determine</u> the empirical formula of **G** from the percentage masses given.

Your work:

C2H3O

2p (1p for molecular formula)

7.2. <u>Give</u> the structures of A, B, C, D, E1, E2, F1, F2 and G.

7.3.1. <u>Give</u> the structures of **H**, **I**, and **J**. There is no need to show the different diastereoisomers formed.

7.3.2 <u>Give</u> the structures of diastereoisomers **K1**, and **K2**.

7.4. <u>Give</u> the structure of **N**.

Problem 8

7% of the total

8.1.	8.2.1.	8.2.2.	8.3.1.	8.3.2.	8.3.3.	Sum
4	10	1	4	1	2	22

8.1.1. Which of the following sentences is true?

(x) \Box **A** is an α isomer. \Box **A** is a β isomer. \Box **A** is neither α nor β .

 \Box **A** is a mixture of α and β isomers.

8.1.2. Which of the following sentences is true?

 \square We can get product **A** only if we use α-D glucose as starting material. \square We can get product **A** only if we use β-D glucose as starting material. (x) \square We can get product **A** either from α- or from β-D glucose as starting material.

8.1.3. Which one of these reagents can be utilized as **X** for the selective hydrolysis of **A**?

(x)□ 50% acetic acid
□ 6M HCl in water
□ 6M HCl in acetic acid

concentrated H₂SO₄
 1M NaOH in water

8.1.4. Which is the stereochemically correct structure for compound **B**?

 B.2.1. Draw the structures of C, D₁, D₂, E and F including stereochemical information. Show F as the more stable 6-membered ring containing isomer using the ring skeleton. Indicate with a wavy line if absolute chirality around a carbon is not known.

- **8.2.2.** The reaction sequence from glucose to **F** does not seem to be useful. In some cases, however, this is the most economical way to produce **F**. <u>In which case</u>?
 - (x) \square ¹³C labelling at carbon 6 of **F**
 - \square ¹³C labelling at carbon 5 of **F**
 - \square ¹³C labelling at carbon 1 of **F**
 - \square ¹⁵O labelling at glycosidic OH of **F**
 - \square synthesis of an uncommon isomer of ${\bf F}$

B.3.1. <u>Draw</u> the structure of G including stereochemistry.
 <u>Draw</u> H as the more stable 6-membered ring containing isomer using the ring skeleton. <u>Indicate</u> with a wavy line if absolute chirality around a carbon is not known.

- \Box **H** is a D sugar
- \Box **H** is achiral
- □ **H** is a meso compound

2p, 1p with only one mistake (extra or missing letter), 0p with 2 or more mistakes

References

This appears only in the published version, it is not printed for the students.

Problem 1

Christe, Karl O., and William W. Wilson. 1982. "Perfluoroammonium and Alkali-Metal Salts of the heptafluoroxenon(VI) and octafluoroxenon(VI) Anions." *Inorganic Chemistry* 21 (12): 4113–17. doi:10.1021/ic00142a001.

Problem 2

Figure is from:

Gan, J., V. Venkatachalapathy, B.G. Svensson, and E.V. Monakhov. 2015. "Influence of Target Power on Properties of Cu_xO Thin Films Prepared by Reactive Radio Frequency Magnetron Sputtering." *Thin Solid Films* 594 (November): 250–55. doi:10.1016/j.tsf.2015.05.029.

Problem 4

Figures are adapted from:

Kamal, Oussama, Abderazzak Benlyamani, Farid Serdaoui, Mohammed Riri, Abdelmjid Cherif, and Miloudi Hlaïbi. 2012. "Stability Studies of Lysine Acetylsalicylate (Aspirin Derivative): Mechanisms of Hydrolysis." *Open Journal of Physical Chemistry* 2 (2): 81–87. doi:10.4236/ojpc.2012.22011.

Marrs, Peter S. 2004. "Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin." *Journal of Chemical Education* 81 (6): 870. doi:10.1021/ed081p870.

Problem 6

Küenburg, Bernhard, Laszlo Czollner, Johannes Fröhlich, and Ulrich Jordis. 1999. "Development of a Pilot Scale Process for the Anti-Alzheimer Drug (–)-Galanthamine Using Large-Scale Phenolic Oxidative Coupling and Crystallisation-Induced Chiral Conversion." *Organic Process Research & Development* 3 (6): 425–31. doi:10.1021/op990019q.

Trost, Barry M., Weiping Tang, and F. Dean Toste. 2005. "Divergent Enantioselective Synthesis of (-)-Galanthamine and (-)-Morphine." *Journal of the American Chemical Society* 127 (42): 14785–803. doi:10.1021/ja054449+.

Problem 8

Shafizadeh, F., and M. L. Wolfrom. 1955. "Synthesis1 of L-Iduronic Acid and an Improved Production of L-Glucose-6-C14." *Journal of the American Chemical Society* 77 (9): 2568–69. doi:10.1021/ja01614a072.