$46^{\text {th }}$ International Chemistry Olympiad July 25, 2014
 Hanoi, Vietnam

THEORETICAL EXAMINATION

Country:	
Name as in passport:	
Student Code:	
Language:	
This booklet contains 24982 characters	

Student name

Student code

GENERAL INTRODUCTION

- You have additional 15 minutes to read the whole set.
- This booklet is composed of 9 problems. You have 5 hours to fulfill the problems. Failure to stop after the STOP command may result in zero points for the current task.
- Write down answers and calculations within the designated boxes. Give your work where required.
- Use only the pen and calculator provided.
- The draft papers are provided. If you need more draft paper, use the back side of the paper. Answers on the back side and the draft papers will NOT be marked.
- There are 48 pages in the booklet including the answer boxes, Cover Sheet and Periodic Table.
- The official English version is available on demand for clarification only.
- Need to go to the restroom - raise your hand. You will be guided there.
- After the STOP signal put your booklet in the envelope (do not seal), leave at your table. Do not leave the room without permission.

Good luck!

46thiChO
HANOI, VIETNAM 2014

Chemistry: The flavor of life

Student name

Student code

Physical Constants, Units, Formulas and Equations

Avogadro's constant	$N_{\mathrm{A}}=6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
Universal gas constant	$R=8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
Speed of light	$c=2.9979 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Planck's constant	$h=6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Standard pressure	$p^{\circ}=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Atmospheric pressure	$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}=760 \mathrm{mmHg}$
Zero of the Celsius scale	273.15 K
Mass of electron	$\mathrm{m}_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$

1 nanometer $(\mathrm{nm})=10^{-9} \mathrm{~m} ; 1$ angstrom $(\AA)=10^{-10} \mathrm{~m}$
1 electron volt $(\mathrm{eV})=1.6022 \times 10^{-19} \mathrm{~J}=96485 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$

Energy of a light quantum with wavelength λ	$E=h c / \lambda$
Energy of one mole of photons	$E_{\mathrm{m}}=h c N_{\mathrm{A}} / \lambda$
Gibbs energy	$G=H-T S$
Relation between equilibrium constant and standard Gibbs energy	$K=\exp \left(-\frac{\Delta G^{\circ}}{R T}\right)$
van't Hoff equation in integral form	$\ln \frac{K_{2}}{K_{1}}=\frac{\Delta H^{0}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Relationship between internal energy, heat and work	$\Delta U=q+w$
Molar heat capacity at constant volume	$C_{v, m}=\left(\frac{d U}{d T}\right)_{v}$
Change in internal energy from T_{1} to T_{2} assuming constant $C_{v, m}$	$U\left(T_{2}\right)=U\left(T_{1}\right)+n C_{v, m}\left(T_{2}-T_{1}\right)$,
Spin only formula relating number of unpaired electrons to effective magnetic moment	$\mu_{e f f}=\sqrt{n(n+2)} \mathrm{B} . \mathrm{M}$.

Student name

Theoretical	Code:	Question	1	2	3	4	5	Total
Problem 1 $\mathbf{5 . 0}$ \% of the total	Examiner	Mark	3	7	6	4	7	$\mathbf{2 7}$
		Grade						

Problem 1. Particles in a box: polyenes

In quantum mechanics, the movement of π electrons along a neutral chain of conjugated carbon atoms may be modeled using the 'particle in a box' method. The energy of the π electrons is given by the following equation:

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

where n is the quantum number $(n=1,2,3, \ldots), h$ is Planck's constant, m is the mass of electron, and L is the length of the box which may be approximated by $L=(k+$ $2) \times 1.40 \AA$ (k being the number of conjugated double bonds along the carbon chain in the molecule). A photon with the appropriate wavelength λ may promote a π electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). An approximate semi-empirical formula based on this model which relates the wavelength λ, to the number of double bonds k and constant B is as follows:

$$
\lambda(\mathrm{nm})=B \times \frac{(k+2)^{2}}{(2 k+1)} \quad \text { Equation } 1
$$

1. Using this semi-empirical formula with $B=65.01 \mathrm{~nm}$ calculate the value of the wavelength $\lambda(\mathrm{nm})$ for octatetraene $\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)$.

Student name

Student code

2. Derive Equation 1 (an expression for the wavelength $\lambda(\mathrm{nm})$ corresponding to the transfer of an electron from the HOMO to the LUMO) in terms of k and the fundamental constants, and hence calculate theoretical value of the constant $B_{\text {calc. }}$.
3. We wish to synthesize a linear polyene for which the excitation of a π electron from the HOMO to the LUMO requires an absorption wavelength of close to 600 nm . Using your expression from part 2 , determine the number of conjugated double bonds (k) in this polyene and give its structure. [If you did not solve Part 2, use the semi-empirical Equation 1 with $B=65.01 \mathrm{~nm}$ to complete Part 3.]

Student name

Student code
4. For the polyene molecule found in Part 3, calculate the difference in energy between the HOMO and the LUMO, $\Delta E,\left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$.

In case Part 3 was not solved, take $k=5$ to solve this problem.
5. The model for a particle in a one-dimensional box can be extended to a three dimensional rectangular box of dimensions $L_{\mathrm{x}}, L_{\mathrm{y}}$, and L_{z}, yielding the following expression for the allowed energy levels:

$$
E_{n_{x}, n_{y}, n_{z}}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)
$$

The three quantum numbers n_{x}, n_{y}, and n_{z} must be integer values and are independent of each other.
5.1 Give the expressions for the three different lowest energies, assuming that the box is cubic with a length of L.

Student name

Student code

5.2 Levels with the same energy are said to be degenerate. Draw a sketch showing all the energy levels, including any degenerate levels, that correspond to quantum numbers having values of 1 or 2 for a cubic box.

Energy

Student name

Theoretical	Code:		Question	1 a	1 b	2	3	Total
Problem 2 $\mathbf{5 . 0} \%$ of the total	Examiner	Mark	12	8	3	10	33	
		Grade						

Problem 2. Dissociating Gas Cycle

Dinitrogen tetroxide forms an equilibrium mixture with nitrogen dioxide:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

1.00 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ was put into an empty vessel with a fixed volume of $24.44 \mathrm{dm}^{3}$. The equilibrium gas pressure at 298 K was found to be 1.190 bar. When heated to 348 K , the gas pressure increased to its equilibrium value of 1.886 bar.

1a. Calculate $\Delta \mathrm{G}^{0}$ of the reaction at 298 K , assuming the gases are ideal.
1b. Calculate ΔH^{0} and ΔS^{0} of the reaction, assuming that they do not change significantly with temperature.
$\Delta \mathrm{G}^{0}(298 \mathrm{~K})=$ \qquad
$\Delta H^{0}=$ \qquad
$\Delta S^{0}=$ \qquad

Student name

Student code

The tendency of $\mathrm{N}_{2} \mathrm{O}_{4}$ to dissociate reversibly into NO_{2} enables its potential use in advanced power generation systems. A simplified scheme for one such system is shown below in Figure (a). Initially, "cool" $\mathrm{N}_{2} \mathrm{O}_{4}$ is compressed ($1 \rightarrow 2$) in a compressor (\mathbf{X}), and heated $(2 \rightarrow 3)$. Some $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociates into NO_{2}. The hot mixture is expanded $(3 \rightarrow 4)$ through a turbine (\mathbf{Y}), resulting in a decrease in both temperature and pressure. The mixture is then cooled further $(4 \rightarrow 1)$ in a heat $\operatorname{sink}(\mathbf{Z})$, to promote the reformation of $\mathrm{N}_{2} \mathrm{O}_{4}$. This recombination reduces the pressure, thus facilitates the compression of $\mathrm{N}_{2} \mathrm{O}_{4}$ to start a new cycle. All these processes are assumed to take place reversibly.

To understand the benefits of using reversible dissociating gases such as $\mathrm{N}_{2} \mathrm{O}_{4}$, we will focus on step $3 \rightarrow 4$ and consider an ideal gas turbine working with 1 mol of air (which we assume to be an inert, non-dissociating gas). During the reversible adiabatic expansion in the turbine, no heat is exchanged.
2. Give the equation to calculate the work done by the system w (air) during the reversible adiabatic expansion for 1 mol of air during stage $3 \rightarrow 4$. Assume that $C_{\mathrm{v}, \mathrm{m}}$ (air) (the isochoric molar heat capacity of air) is constant, and the temperature changes from T_{3} to T_{4}.

Student name

Student code

3. Estimate the ratio $w_{(\mathrm{N} 2 \mathrm{O} 4)} / w_{\text {(air) }}$, in which $w_{(\mathrm{N} 2 \mathrm{O} 4)}$ is the work done by the gas during the reversible adiabatic expansion process $3 \rightarrow 4$ with the cycle working with 1 mol of $\mathrm{N}_{2} \mathrm{O}_{4} . \mathrm{T}_{3}$ and T_{4} are the same as in Part 2. Take the conditions at stage 3 to be $\mathrm{T}_{3}=440$ K and $\mathrm{P}_{3}=12.156$ bar and assume that:
(i) the gas is at its equilibrium composition at stage 3;
(ii) $C_{v, m}$ for the gas is the same as for air;
(iii) the adiabatic expansion in the turbine takes place in a way that the composition of the gas mixture $\left(\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{NO}_{2}\right)$ is unchanged until the expansion is completed.

Student name

Student code

| Theoretical | | | | | | | |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Problem 3
 $\mathbf{9 . 0} \%$ of the total | Code: | Question | 1 | 2 | 3 | 4 | Total |
| | Examiner | Marks | 8 | 14 | 2 | 12 | $\mathbf{3 6}$ |
| | | Grade | | | | | |

Problem 3. High-valent Silver Compounds

Silver chemistry is dominated by Ag (I) compounds. Compounds of silver in higher oxidation state (from +2 to +5) are not very abundant due to their instability with respect to reduction. High-valent silver compounds are very reactive and can be synthesized from $\operatorname{Ag}(\mathrm{I})$ compounds in electro-chemical oxidations or in chemical oxidations using powerful oxidizing agents.

1. In some peroxydisulfate $\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right)$ oxidations catalyzed by Ag^{+}, black solid (A) with the composition AgO can be isolated.
1a. Choose the appropriate magnetic behaviour of \mathbf{A} if it exists as $\mathrm{Ag}^{\mathrm{II}} \mathrm{O}$.

Single crystal X - ray studies reveal that the lattice of \mathbf{A} contains two nonequivalent Ag atom sites (in equal proportions) of which one denoted as Ag 1 and the other denoted as Ag 2 . Ag 1 shows a linear O atom coordination ($\mathrm{O}-\mathrm{Ag}-\mathrm{O}$) and Ag 2 shows a square-planar O atom coordination. All O atoms are in equivalent environments in the structure. Thus, A should be assigned as $\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\text {III }} \mathrm{O}_{2}$ rather than $\mathrm{Ag}^{\text {II }} \mathrm{O}$.

1b. Assign the oxidation number of Ag 1 and Ag 2 .
Oxidation number of $\mathrm{Ag} 1: \ldots \ldots \ldots$
Oxidation number of Ag 2 : \qquad

1c. What is the coordination number of O atoms in the lattice of \mathbf{A} ?

The coordination number of O atoms $=$ \qquad

Student name

Student code

1d. How many Ag^{I} and $\mathrm{Ag}^{\text {III }}$ bond to one O atom in the lattice of \mathbf{A} ?
Number of $\mathrm{Ag}^{\mathrm{I}}=$ \qquad
Number of $\mathrm{Ag}^{\mathrm{III}}=$ \qquad

1e. Predict the magnetic behaviour of A. Check the appropriate box below.
\square
Diamagnetic

Paramagnetic

1f. The compound \mathbf{A} can also be formed on warming a solution of Ag^{+}with peroxydisulfate. Write down the equation for the formation of \mathbf{A}.
\square
2. Among the silver oxides which have been crystallographically characterized, the most surprising is probably that compound \mathbf{A} is not a $\mathrm{Ag}^{\mathrm{II}} \mathrm{O}$. Thermochemical cycles are useful to understand this fact. Some standard enthalpy changes (at 298 K) are listed:

Atom	Standard enthalpy of formation $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$1^{\text {st }}$ ionization $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$2^{\text {nd }}$ ionization $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$3^{\text {rd }}$ ionization $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$1^{\text {st }}$ electron affinity $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$2^{\text {nd }}$ electron affinity $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{Cu}(\mathrm{g})$	337.4	751.7	1964.1	3560.2		
$\mathrm{Ag}(\mathrm{g})$	284.9	737.2	2080.2	3367.2		
$\mathrm{O}(\mathrm{g})$	249.0				-141.0	844.0

Compounds	$\Delta H^{\mathrm{o}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\text {III }} \mathrm{O}_{2(\mathrm{~s})}$	-24.3
$\mathrm{Cu}^{\mathrm{II}} \mathrm{O}_{(\mathrm{s})}$	-157.3

The relationship between the lattice dissociation energy ($U_{\text {lat }}$) and the lattice dissociation enthalpy $\left(\Delta H_{\text {lat }}\right)$ for monoatomic ion lattices is: $\Delta H_{\text {lat }}=U_{\text {lat }}+n R T$, where n is the number of ions in the formula unit.

Student name

Student code

2a. Calculate $U_{\text {lat }}$ at 298 K of $\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\mathrm{III}} \mathrm{O}_{2}$ and $\mathrm{Cu}^{\text {II }} \mathrm{O}$. Assume that they are ionic compounds.
$\mathbf{U}_{\text {lat }}$ of $\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\text {III }} \mathbf{O}_{2}$
$\mathrm{U}_{\text {lat }}\left(\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\mathrm{III}} \mathbf{O}_{2}\right)$

$\mathrm{U}_{\text {lat }}\left(\mathrm{Cu}^{\text {II }} \mathbf{O}\right)$

If you can not calculate the $U_{\text {lat }}$ of $\mathrm{Ag}^{I} \mathrm{Ag}^{\text {III }} \mathrm{O}_{2}$ and $\mathrm{Cu}^{\text {II }} \mathrm{O}$, use following values for further calculations: $U_{\text {lat }}$ of $\mathrm{Ag}^{I} \mathrm{Ag}^{\text {III }} O_{2}=8310.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$; $U_{\text {lat }}$ of $\mathrm{Cu}^{I I} O=3600.0$ $k J \cdot m o l^{-1}$.

Student name

Student code

The lattice dissociation energies for a range of compounds may be estimated using this simple formula:

$$
U_{l a t}=\mathrm{C} \times\left(\frac{1}{V_{m}}\right)^{\frac{1}{3}}
$$

Where: $V_{\mathrm{m}}\left(\mathrm{nm}^{3}\right)$ is the volume of the formula unit and $C\left(\mathrm{~kJ} \cdot \mathrm{~nm} \cdot \mathrm{~mol}^{-1}\right)$ is an empirical constant which has a particular value for each type of lattice with ions of specified charges.
The formula unit volumes of some oxides are calculated from crystallographic data as the ratio between the unit cell volume and the number of formula units in the unit cell and listed as below:

Oxides	$V_{\mathrm{m}}\left(\mathrm{nm}^{3}\right)$
$\mathrm{Cu}^{\mathrm{II}} \mathrm{O}$	0.02030
$\mathrm{Ag}^{\mathrm{III}}{ }_{2} \mathrm{O}_{3}$	0.06182
$\mathrm{Ag}^{\mathrm{II}} \mathrm{Ag}^{\text {III }}{ }_{2} \mathrm{O}_{4}$	0.08985

2b. Calculate $U_{\text {lat }}$ for the hypothetical compound $\mathrm{Ag}^{\mathrm{II}} \mathrm{O}$. Assume that $\mathrm{Ag}^{\mathrm{II}} \mathrm{O}$ and $\mathrm{Cu}^{\mathrm{II}} \mathrm{O}$ have the same type of lattice, and that $V_{\mathrm{m}}\left(\mathrm{Ag}^{\mathrm{II}} \mathrm{O}\right)=V_{\mathrm{m}}\left(\mathrm{Ag}^{\mathrm{II}} \mathrm{Ag}^{\mathrm{III}}{ }_{2} \mathrm{O}_{4}\right)-V_{\mathrm{m}}\left(\mathrm{Ag}^{\mathrm{III}}{ }_{2} \mathrm{O}_{3}\right)$.

$$
U_{\mathrm{lat}}\left(\mathrm{Ag}^{\mathrm{II}} \mathrm{O}\right)
$$

2c. By constructing an appropriate thermodynamic cycle or otherwise, estimate the enthalpy change for the solid-state transformation from $\mathrm{Ag}^{\mathrm{II}} \mathrm{O}$ to 1 mole of $\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\mathrm{III}} \mathrm{O}_{2}$. (Use $U_{\text {lat }} \mathrm{Ag}^{I I} O=3180.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $U_{\text {lat }} \mathrm{Ag}^{I} \mathrm{Ag}^{\text {III }} \mathrm{O}_{2}=8310.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ if you cannot calculate $U_{\text {lat }} A g^{I I} O$ in Part $2 b$).

Student name

Student code

\square

2d. Indicate which compound is thermodynamically more stable by checking the appropriate box below.

3. When $\mathrm{Ag}^{\mathrm{I}} \mathrm{Ag}^{\text {III }} \mathrm{O}_{2}$ is dissolved in aqueous HClO_{4} solution, a paramagnetic compound (\mathbf{B}) is first formed then slowly decomposes to form a diamagnetic compound (\mathbf{C}). Given that \mathbf{B} and \mathbf{C} are the only compounds containing silver formed in these reactions, write down the equations for the formation of \mathbf{B} and \mathbf{C}.

For B:

For C:

Student name

Student code

4. Oxidation of Ag^{+}with powerful oxidizing agents in the presence of appropriate ligands can result in the formation of high-valent silver complexes. A complex \mathbf{Z} is synthesized and analyzed by the following procedures:

An aqueous solution containing 0.500 g of AgNO_{3} and 2 mL of pyridine $(\mathrm{d}=$ $0.982 \mathrm{~g} / \mathrm{mL}$) is added to a stirred, ice-cold aqueous solution of 5.000 g of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$. The reaction mixture becomes yellow, then an orange $\operatorname{solid}(\mathbf{Z})$ is formed which has a mass of 1.719 g when dried.

Elemental analysis of \mathbf{Z} shows the mass percentages of $\mathrm{C}, \mathrm{H}, \mathrm{N}$ elements are $38.96 \%, 3.28 \%, 9.09 \%$, respectively.

A 0.6164 g Z is added to aqueous NH_{3}. The suspension is boiled to form a clear solution during which stage the complex is destroyed completely. The solution is acidified with excess aqueous HCl and the resulting suspension is filtered, washed and dried (in darkness) to obtain 0.1433 g of white solid (D). The filtrate is collected and treated with excess BaCl_{2} solution to obtain 0.4668 g (when dry) of white precipitate (E).

4a. Determine the empirical formula of \mathbf{Z} and calculate the percentage yield in the preparation.

Student name

Student code

4b. Ag (IV) and $\mathrm{Ag}(\mathrm{V})$ compounds are extremely unstable and found only in few fluorides. Thus, the formation of their complexes with organic ligands in water can be discounted. To confirm the oxidation number of silver in \mathbf{Z}, the effective magnetic moment ($\mu_{e f f}$) of \mathbf{Z} was determined and found to be 1.78 BM . Use the spin only formula to determine the number of unpaired electrons in Z and the molecular formula of \mathbf{Z}. (\mathbf{Z} contains a mononuclear complex with only one species of Ag and only one type of ligand in the ligand sphere.)
\square

4c. Write down all chemical equations for the preparation of \mathbf{Z}, and its analysis.

Formation of \mathbf{Z} :

Destruction of \mathbf{Z} with NH_{3} :

Formation of \mathbf{D} :

Formation of \mathbf{E} :

Student name

Student code

| Theoretical
 Problem 4
 4.0 \% of the total | Code: | Examiner | Maestion | 1 a | 1 b | 2 | 3 a | 3 b | 3 c |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | M

Problem 4. Zeise's Salt

1. Zeise's salt, $\mathrm{K}\left[\mathrm{PtCl}_{3} \mathrm{C}_{2} \mathrm{H}_{4}\right]$, was one of the first organometallic compounds to be reported. W. C. Zeise, a professor at the University of Copenhagen, prepared this compound in 1827 by reacting PtCl_{4} with boiling ethanol and then adding potassium chloride (Method 1). This compound may also be prepared by refluxing a mixture of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$ and ethanol (Method 2). The commercially available Zeise's salt is commonly prepared from $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ and ethylene (Method 3).

1a. Write balanced equations for each of the above mentioned preparations of Zeise's salt, given that in methods 1 and 2 the formation of 1 mole of Zeise's salt consumes 2 moles of ethanol.

Student name

Student code

1b. Mass spectrometry of the anion $\left[\mathrm{PtCl}_{3} \mathrm{C}_{2} \mathrm{H}_{4}\right]^{-}$shows one set of peaks with mass numbers 325-337 and various intensities.

Calculate the mass number of the anion which consists of the largest natural abundance isotopes (using given below data).

Isotope	${ }_{78}^{192} \mathrm{Pt}$	${ }_{78}^{194} \mathrm{Pt}$	${ }_{78}^{195} \mathrm{Pt}$	${ }_{78}^{196} \mathrm{Pt}$	${ }_{78}^{198} \mathrm{Pt}$	${ }_{17}^{35} \mathrm{Cl}$	${ }_{17}^{37} \mathrm{Cl}$	${ }_{6}^{12} \mathrm{C}$	${ }_{6}^{13} \mathrm{C}$	${ }_{1}^{1} \mathrm{H}$
Natural abundance,	0.8	32.9	33.8	25.3	7.2	75.8	24.2	98.9	1.1	99.99
$\%$										

\square
2. Some early structures proposed for Zeise's salt anion were:

(Z1)

(Z2)

(Z3)

(Z4)

(Z5)

In structure $\mathbf{Z 1}, \mathbf{Z 2}$, and $\mathbf{Z 5}$ both carbons are in the same plane as dashed square. [You should assume that these structures do not undergo any fluxional process by interchanging two or more sites.]

Student name

Student code

2a. NMR spectroscopy allowed the structure for Zeise's salt to be determined as structure $\mathbf{Z 4}$. For each structure $\mathbf{Z 1} \mathbf{- Z 5}$, indicate in the table below how many different environments of hydrogen atoms there are, and how many different environments of carbon atoms there are.

Structure	Number of different environments of hydrogen	Number of different environments of carbon
$\mathbf{Z 1}$		
$\mathbf{Z 2}$		
$\mathbf{Z 3}$		
$\mathbf{Z 4}$		
$\mathbf{Z 5}$		

3. For substitution reactions of square platinum(II) complexes, ligands may be arranged in order of their tendency to facilitate substitution in the position trans to themselves (the trans effect). The ordering of ligands is:

$$
\mathrm{CO}, \mathrm{CN}^{-}, \mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{PR}_{3}, \mathrm{H}^{-}>\mathrm{CH}_{3}^{-}, \mathrm{C}_{6} \mathrm{H}_{5}^{-}, \mathrm{I}^{-}, \mathrm{SCN}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{Py}>\mathrm{NH}_{3}>\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}
$$

In above series a left ligand has stronger trans effect than a right ligand. Some reactions of Zeise's salt and the complex $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ are given below.

Student name

Student code

3a. Draw the structure of A, given that the molecule of this complex has a centre of symmetry, no Pt-Pt bond, and no bridging alkene.
A

3b. Draw the structures of $\mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and \mathbf{G}.

\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{E}	\mathbf{F}	\mathbf{G}

3c. Suggest the driving force(s) for the formation of \mathbf{D} and \mathbf{F} by choosing one or more of the following statements (for example, i and ii):
i) Formation of gas
ii) Formation of liquid
iii) Trans effect
iv) Chelate effect

Structure	D	F
Driving force(s)		

Student name

Theoretical Problem 5 $\mathbf{6 . 5} \%$ of the total	Code:	Examiner	Question	1	2	3	4	Total
to		Mark	6	4	4	6	$\mathbf{2 0}$	

Problem 5. Acid-base Equilibria in Water

A solution (X) contains two weak monoprotic acids (those having one acidic proton); HA with the acid dissociation constant of $K_{H A}=1.74 \times 10^{-7}$, and HB with the acid dissociation constant of $K_{H B}=1.34 \times 10^{-7}$. The solution \mathbf{X} has a pH of 3.75 .

1. Titration of 100 mL solution \mathbf{X} requires 100 mL of 0.220 M NaOH solution for completion.
Calculate the initial (total) concentration ($\mathrm{mol} \cdot \mathrm{L}^{-1}$) of each acid in the solution \mathbf{X}. Use reasonable approximations where appropriate. [$K_{\mathrm{W}}=1.00 \times 10^{-14}$ at 298 K .]

Student name

Student code

2. Calculate the pH of the solution \mathbf{Y} which initially contains $6.00 \times 10^{-2} \mathrm{M}$ of NaA and $4.00 \times 10^{-2} \mathrm{M}$ of NaB .

Student name

Student code

3. Adding large amounts of distilled water to solution \mathbf{X} gives a very (infinitely) dilute solution where the total concentrations of the acids are close to zero. Calculate the percentage of dissociation of each acid in this dilute solution.
\square
4. A buffer solution is added to solution \mathbf{Y} to maintain a pH of 10.0. Assume no change in volume of the resulting solution \mathbf{Z}.
Calculate the solubility (in $\mathrm{mol} \cdot \mathrm{L}^{-1}$) of a substance $\mathrm{M}(\mathrm{OH})_{2}$ in \mathbf{Z}, given that the anions A^{-}and B^{-}can form complexes with M^{2+} :
$\mathrm{M}(\mathrm{OH})_{2} \leftrightharpoons \mathrm{M}^{2+}+2 \mathrm{OH}^{-} \quad K_{s p}=3.10 \times 10^{-12}$
$\mathrm{M}^{2+}+\mathrm{A}^{-} \leftrightharpoons[\mathrm{MA}]^{+} \quad K_{l}=2.1 \times 10^{3}$
$[\mathrm{MA}]^{+}+\mathrm{A}^{-} \leftrightharpoons\left[\mathrm{MA}_{2}\right] \quad K_{2}=5.0 \times 10^{2}$
$\mathrm{M}^{2+}+\mathrm{B}^{-} \leftrightharpoons[\mathrm{MB}]^{+} \quad K^{\prime}{ }_{1}=6.2 \times 10^{3}$
$[\mathrm{MB}]^{+}+\mathrm{B}^{-} \leftrightharpoons\left[\mathrm{MB}_{2}\right] \quad K_{2}^{\prime}=3.3 \times 10^{2}$

Student name

Student code

Theoretical Problem 6 7.0% of the total	Code:	Examiner	Question	6 a	6 b	6 c	6 d	6 e
	Total							
		Marks	6	8	4	12	2	32

Problem 6. Chemical Kinetics

The transition-metal-catalyzed amination of aryl halides has become one of the most powerful methods to synthesize arylamines. The overall reaction for the nickelcatalyzed amination of aryl chloride in basic conditions is:

in which NiLL' is the nickel complex catalyst. The reaction goes through several steps in which the catalyst, reactants, and solvent may be involved in elementary steps.

6a. To determine the reaction order with respect to each reactant, the dependence of the initial rate of the reaction on the concentrations of each reagent was carried out with all other reagents present in large excess. Some kinetic data at 298 K are shown in the tables below. (Use the grids if you like)

$[\mathbf{A r C l}]$	Initial rate (M)
0.1	$\left.1.88 \times 10^{-5}\right)$
0.2	4.13×10^{-5}
0.4	9.42×10^{-5}
0.6	1.50×10^{-4}

Student name

Student code

$\left[\mathbf{L}^{\prime}\right]$	Initial rate
(M)	$\left(\mathrm{M} \mathrm{s}^{-1}\right)$
0.06	5.8×10^{-5}
0.09	4.3×10^{-5}
0.12	3.4×10^{-5}
0.15	2.8×10^{-5}

Student name

Student code

Determine the order with respect to the reagents assuming they are integers.

- Order with respect to [ArCl] =
- Order with respect to [NiLL’] =
- Order with respect to $\left[\mathbf{L}^{\prime}\right]=$

6b. To study the mechanism for this reaction, ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectroscopy have been used to identify the major transition metal complexes in solution, and the initial rates were measured using reaction calorimetry. An intermediate, $\mathrm{NiL}(\mathrm{Ar}) \mathrm{Cl}$, may be isolated at room temperature. The first two steps of the overall reaction involve the dissociation of a ligand from NiLL' (step 1) at $50^{\circ} \mathrm{C}$, followed by the oxidation addition (step 2) of aryl chloride to the NiL at room temperature (rt):

$$
\begin{align*}
& \mathbf{N i L L}^{\prime} \xlongequal[\mathrm{k}_{-1}]{\frac{\mathrm{k}_{1}}{}} \mathbf{N i L}+\mathbf{L}^{\prime} \tag{1}\\
& \mathbf{N i L}+\mathbf{A r C l} \xrightarrow{\mathrm{k}_{2}} \mathbf{N i L}(\mathbf{A r}) \mathbf{C l} \tag{2}
\end{align*}
$$

Using the steady state approximation, derive an expression for the rate equation for the formation of [$\mathrm{NiL}(\mathrm{Ar}) \mathrm{Cl}]$.

Student name

Student code

The next steps in the overall reaction involve the amine $\left(\mathrm{RNH}_{2}\right)$ and ${ }^{t} \mathrm{BuONa}$. To determine the order with respect to RNH_{2} and ${ }^{t} \mathrm{BuONa}$, the dependence of the initial rates of the reaction on the concentrations of these two reagents was carried with the other reagents present in large excess. Some results are shown in the tables below.

$\left[\mathbf{N a O}^{\mathrm{t}} \mathbf{B u}\right]$, (M)	Initial rate $\left(\mathrm{M} \cdot \mathrm{s}^{-1}\right)$
0.2	4.16×10^{-5}
0.6	4.12×10^{-5}
0.9	4.24×10^{-5}
1.2	4.20×10^{-5}

$\left[\mathbf{R N H}_{2}\right]$	Initial rate $\left(\mathrm{M} \mathrm{s}^{-1}\right)$
(M)	4.12×10^{-5}
0.3	4.26×10^{-5}
0.6	4.21×10^{-5}
0.9	4.23×10^{-5}
1.2	

Student name

Student code

6c. Determine the order with respect to each of these reagents, assuming each is an integer. (Use the grids if you like.)

- Order with respect to $\left[\mathrm{NaO}^{t} \mathrm{Bu}\right]=$
- Order with respect to $\left[\mathrm{RNH}_{2}\right]=$

During a catalytic cycle, a number of different structures may be involved which include the catalyst. One step in the cycle will be rate-determining.
A proposed cycle for the nickel-catalyzed coupling of aryl halides with amines is as follows:

$$
\begin{align*}
& \mathbf{N i L L}^{\prime} \xlongequal[\mathrm{k}_{-1}]{\mathrm{k}_{1}} \mathbf{N i L}+\mathbf{L}^{\prime} \tag{1}\\
& \mathbf{N i L}+\mathbf{A r C l} \xrightarrow{\mathrm{k}_{2}} \mathbf{N i L} \stackrel{\mathbf{A r}}{\stackrel{-1}{\mathbf{C l}}} \tag{2}
\end{align*}
$$

$$
\mathrm{NiL}(\mathrm{Ar}) \mathrm{NHR} \xrightarrow{\mathrm{k}_{4}} \text { ArNHR }+\mathrm{NiL}
$$

6d. Use the steady-state approximation and material balance equation to derive the rate law for $\mathrm{d}[\mathrm{ArNHR}] / \mathrm{dt}$ for the above mechanism in terms of the initial concentration of the catalyst $[\mathrm{NiLL}]_{0}$ and concentrations of [ArCl$],\left[\mathrm{NH}_{2} \mathrm{R}\right]$, [$\mathrm{NaO}^{t} \mathrm{Bu}$], and [L'].
\square

6e. Give the simplified form of the rate equation in $\mathbf{6 d}$ assuming that k_{1} is very small.
$\mathbf{d}[\mathrm{ArNHR}] / \mathrm{dt}=-\mathbf{d}[\mathrm{ArCl}] / \mathrm{dt}=$

Student name

Student code

Theoretical	Code:	Question	7 a	7 b	7 c	7 d	7 e	7 f	Total
Problem 7 $\mathbf{8 . 0}$ \% of the total	Examiner	Mark	12	8	8	12	12	12	$\mathbf{6 4}$
		Grade							

Problem 7. Synthesis of Artemisinin

(+)-Artemisinin, isolated from Artemisia anпиа L. (Qinghao, Compositae) is a potent antimalarial effective against resistant strains of Plasmodium. A simple route for the synthesis of Artemisinin is outlined below.

(+)-Artemisinin

First, pyrolysis of (+)-2-Carene broke the cyclopropane ring forming, among other products, $(1 R)-(+)$-trans-isolimonene $\mathbf{A}\left(\mathrm{C}_{10} \mathrm{H}_{16}\right)$, which then was subjected to regioselective hydroboration using dicyclohexylborane to give the required alcohol \mathbf{B} in 82% yield as a mixture of diastereoisomers. In the next step, \mathbf{B} was converted to the corresponding γ, δ-unsaturated acid C in 80% yield by Jones' oxidation.

7a. Draw the structures (with stereochemistry) of the compounds A-C.

A	\mathbf{B}	\mathbf{C}

Student name

Student code

The acid \mathbf{C} was subjected to iodolactonization using KI, I_{2} in aqueous. NaHCO_{3} solution to afford diastereomeric iodolactones \mathbf{D} and \mathbf{E} (which differ in stereochemistry only at C_{3}) in 70% yield.
C $\xrightarrow[48 \mathrm{~h}, \text { dark }]{\mathrm{I}_{2}, \mathrm{KI}, \mathrm{NaHCO}_{3} \text { (aq.) }}$
D +
E

7b. Draw the structures (with stereochemistry) of the compounds \mathbf{D} and \mathbf{E}.

\mathbf{D}	\mathbf{E}

The iodolactone \mathbf{D} was subjected to an intermolecular radical reaction with ketone \mathbf{X} using tris(trimethylsilyl)silane (TTMSS) and AIBN (azobisisobutyronitrile) in a catalytic amount, refluxing in toluene to yield the corresponding alkylated lactone \mathbf{F} in 72% yield as a mixture of diastereoisomers which differ only in stereochemistry at C_{7} along with compound $\mathbf{G}(\sim 10 \%)$ and the reduced product $\mathbf{H}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}(<5 \%)$.

Student name

Student code

7c. Draw the structures (with stereochemistry) of compound \mathbf{H} and the reagent \mathbf{X}.

\mathbf{X}	\mathbf{H}

The keto group of \mathbf{F} reacted with ethanedithiol and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane (DCM) at $0{ }^{\circ} \mathrm{C}$ to afford two diastereomers: thioketal lactones \mathbf{I} and \mathbf{J} in nearly quantitative yield (98\%). The thioketalization facilitated the separation of the major isomer \mathbf{J} in which the thioketal group is on the opposite face of the ring to the adjacent methyl group.

7d. Draw the structures (with stereochemistry) of the compounds I and \mathbf{J}.

\mathbf{I}	\mathbf{J}

The isomer \mathbf{J} was further subjected to alkaline hydrolysis followed by esterification with diazomethane providing hydroxy methyl ester \mathbf{K} in 50% yield. The hydroxy methyl ester \mathbf{K} was transformed into the keto ester \mathbf{L} using PCC (Pyridium ChloroChromate) as the oxidizing agent in dichloromethane (DCM).

Student name

Student code

A two-dimensional NMR study of the compound \mathbf{L} revealed that the two protons adjacent to the newly-formed carbonyl group are cis to each other and confirmed the structure of \mathbf{L}.

1) $10 \% \mathrm{NaOH}$

$$
\mathbf{J} \xrightarrow[\text { 3) } \mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}]{\text { 2) } 1 \% \mathrm{HCl}} \quad \mathbf{K} \xrightarrow{\mathrm{PCC}, 0^{\circ} \mathrm{C}} \quad \mathbf{L}
$$

7e. Draw the structures (with stereochemistry) of the compounds \mathbf{K} and \mathbf{L}.

\mathbf{K}	\mathbf{L}

The ketone \mathbf{L} was subjected to a Wittig reaction with methoxymethyl triphenylphosphonium chloride and KHMDS (Potassium HexaMethylDiSilazid - a strong, non-nucleophilic base) to furnish the required methyl vinyl ether \mathbf{M} in 45% yield. Deprotection of thioketal using $\mathrm{HgCl}_{2}, \mathrm{CaCO}_{3}$ resulted in the key intermediate \mathbf{N} (80%). Finally, the compound \mathbf{N} was transformed into the target molecule Artemisinin by photo-oxidation followed by acid hydrolysis with $70 \% \mathrm{HClO}_{4}$.
$\mathbf{L} \xrightarrow[\text { KHMDS }]{\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{OCH}_{3}} \mathbf{M} \xrightarrow{\mathrm{HgCl}_{2}, \mathrm{CaCO}_{3}} \mathbf{N} \xrightarrow[\text { 2. } \mathrm{HClO}_{4}]{\text { 1. } \mathrm{O}_{2}, \mathrm{hu}}$

(+)-Artemisinin

7f. Draw the structures (with stereochemistry) of the compounds \mathbf{M} and \mathbf{N}.

\mathbf{M}	\mathbf{N}

Student name

Theoretical	Code:		Question	8 a	8 b	8 c	8 d
Problem 8							
8.0\% of the total	Examiner	Marks	15	2	12	10	39
3.	Grade						

Problem 8. Star Anise

Illicium verum, commonly called Star anise, is a small native evergreen tree grown in northeast Vietnam. Star anise fruit is used in traditional Vietnamese medicine. It is also a major ingredient in the making the flavour of 'phơ', a Vietnamese favourite soup.
Acid \mathbf{A} is isolated from the star anise fruit. The constitutional formula of \mathbf{A} has been deduced from the following sequence of reactions:
A $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{5}\right) \xrightarrow[\text { ii) } \mathrm{Me}_{2} \mathrm{~S}]{\text { i) } \mathrm{O}_{3}}$
B $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{7}\right) \xrightarrow[25^{\circ} \mathrm{C}]{\mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}^{+}}$
$\mathrm{C}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{7}\right)$
(I)
$\downarrow \begin{gathered}\mathrm{HIO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ \left(\text { or } \mathrm{H}_{5} \mathrm{IO}_{6}\right)\end{gathered}$

D
(I): this overall process results in alkene cleavage at the $\mathrm{C}=\mathrm{C}$ bond, with each carbon of this becoming doubly bonded to an oxygen atom.
(II): this oxidative cleavage process of 1,2 -diols breaks $\mathrm{C}(\mathrm{OH})-\mathrm{C}(\mathrm{OH})$ bond and produces corresponding carbonyl compounds.

8a. Draw the structures for the compounds \mathbf{Y}_{1} and \mathbf{Y}_{2} and hence deduce the structure of $\mathbf{Y}_{\mathbf{3}}$ and $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, given that in \mathbf{A} there is only one ethylenic hydrogen atom.

\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}

Student name

\mathbf{A}	\mathbf{B}
\mathbf{C}	\mathbf{D}

Anethole, a main component of star anise oil, is an inexpensive chemical precursor for the production of many pharmaceutical drugs.

Anethole

Treating anethole with sodium nitrite in acetic acid gives a crystalline solid \mathbf{E} $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$. The IR spectrum of \mathbf{E} shows there is no non-aromatic $\mathrm{C}=\mathrm{C}$ double bond. The ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{E} is given below.

Student name

Student code

8b. What differences in the structure between \mathbf{E} and anethole can be obtained from the ${ }^{1} \mathrm{H}$ NMR data?
i) \mathbf{E} contains a cis $-\mathrm{C}=\mathrm{C}$ ethylenic bond while that of anethole is trans.
ii) E cannot contain a non-aromatic $\mathrm{C}=\mathrm{C}$ bond.
iii) \mathbf{E} is the adduct of anethole and $\mathrm{N}_{2} \mathrm{O}_{2}$.
iv) \mathbf{E} is the adduct of anethole and $\mathrm{N}_{2} \mathrm{O}_{3}$.
$v) \mathbf{E}$ does not contain two trans ethylenic protons as anethole.

	Pick one of the above statements
From ${ }^{1}$ H NMR data	

On heating at $150{ }^{\circ} \mathrm{C}$ for several hours, \mathbf{E} is partially isomerized into \mathbf{F}. Under the same conditions, \mathbf{F} gives the identical equilibrium mixture to that obtained from \mathbf{E}. On heating with phosphorus trichloride, both \mathbf{E} and \mathbf{F} lose one oxygen atom giving compound \mathbf{G}. Compounds \mathbf{E} and \mathbf{F} have the same functional groups.

$$
\mathbf{G} \underset{-\mathrm{POCl}_{3}}{\mathrm{PCl}_{3}} \mathbf{E} \xlongequal{150^{\circ} \mathrm{C}} \mathbf{F} \underset{-\mathrm{POCl}_{3}}{\mathrm{PCl}_{3}} \mathbf{G}
$$

The chemical shifts of methyl protons in \mathbf{E}, \mathbf{F} and \mathbf{G} are given below.

	\mathbf{E}	\mathbf{F}	\mathbf{G}
$\mathrm{CH}_{3}-\mathrm{O}$	3.8 ppm	3.8 ppm	3.8 ppm
$\mathrm{CH}_{3}-\mathrm{C}$	2.3 ppm	2.6 ppm	2.6 ppm

8c. Suggest structures for \mathbf{E}, \mathbf{F} and \mathbf{G}, assuming that they do NOT contain threemembered rings.

\mathbf{E}	\mathbf{F}	\mathbf{G}

Student name

Student code

A simplified structure for compound \mathbf{E} is shown below; the R group does not change throughout the rest of this question. Compound \mathbf{E} is nitrated and subsequently reduced with sodium dithionite to \mathbf{H}. Treatment of \mathbf{H} with sodium nitrite and hydrochloric acid at $0-5{ }^{\circ} \mathrm{C}$ and subsequently reduced with stannous chloride to provide $\mathbf{I}\left(\mathrm{R}-\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right)$. One-pot reaction (three component reaction) of \mathbf{H}, benzaldehyde and thioglycolic acid $\left(\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ leads to the formation of \mathbf{J}. Reaction of \mathbf{I} and methyl phenyl ketone in the presence of ZnCl_{2} affords \mathbf{K}.

8d. Give the structures for $\mathbf{H}, \mathbf{I}, \mathbf{J}$ and \mathbf{K}.

\mathbf{H}	\mathbf{I}
\mathbf{J}	\mathbf{K}

Student name

Student code

Problem 9. Heterocycle Preparation

Tetramethylthiurame disulfide (TMTD) is emerging as a useful reagent to prepare many sulfur-nitrogen functional groups and heterocycles in organic chemistry. The reactions of TMTD with primary amines, as well some corresponding posttransformations of the resulting product(s) are presented in the following schemes:

Similar transformations of benzohydrazides (containing nucleophilic NH_{2} group) and TMTD have been observed.

Student name

Student code

In the synthetic scheme below, the thiocarbamoylation reaction of an aroyl hydrazine with TMTD produces compound \mathbf{C} containing a heterocyclic moiety from p-aminobenzoic acid.

During the formation of \mathbf{C} from \mathbf{B}, an intermediate \mathbf{B}^{\prime} was observed. This intermediate tautomerizes to \mathbf{B}^{\prime}. \mathbf{C} can be formed from \mathbf{B}^{\prime} or $\mathbf{B}^{\prime \prime}$.

9a. Give the structures of \mathbf{A}, \mathbf{B}, and \mathbf{C}.

\mathbf{A}	\mathbf{B}	\mathbf{C}

9b. Suggest a structure for the tautomer B'' and give a curly-arrow mechanism for the formation of \mathbf{C}.

Student name

Student code

Compound \mathbf{C} was then converted to \mathbf{F} by the following pathway:

[The group R remains exactly the same throughout the rest of the question.]

9c. Draw the structures of \mathbf{E}, and \mathbf{F}. (You do not need to draw the structure for the R group from this point)

\mathbf{E}	\mathbf{F}

E was only obtained when \mathbf{D} was slowly added to the solution of excess $\mathrm{N}_{2} \mathrm{H}_{4}$ in dioxane. If $\mathrm{N}_{2} \mathrm{H}_{4}$ was added to the solution of \mathbf{D} in dioxane instead, a major side product $\mathbf{D}^{\prime}\left(\mathrm{R}_{2} \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)$ was formed.

9d. Give the structure of \mathbf{D}^{\prime}.

Slightly heating \mathbf{D} with ethanolamine $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ in dioxane for 2 hours yielded $\mathbf{G}\left(\mathrm{R}-\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS}\right)$.

Student name

Student code

9e. Draw the structural formula of G.

\mathbf{G}

9f. Heating G in the presence of p-toluenesulfonic acid as the catalyst could form a number of different five-membered heterocyclic products.
i) Draw 2 structures that have different molecular formulae.
\square
ii) Draw 2 structures that are constitutional isomers.
\square
iii) Draw 2 structures that are stereoisomers.
\square

6	Lanthanides	$\begin{gathered} \hline \mathbf{5 8} \\ \mathbf{C e} \\ 140.1 \end{gathered}$	$\begin{gathered} \hline \mathbf{5 9} \\ \mathbf{P r} \\ 140.9 \end{gathered}$	$\begin{gathered} \mathbf{6 0} \\ \mathbf{N d} \\ 144.2 \end{gathered}$	$\begin{gathered} \mathbf{6 1} \\ \mathbf{P m} \\ (144.9) \end{gathered}$	$\begin{gathered} \hline \mathbf{6 2} \\ \mathrm{Sm} \\ 150.4 \end{gathered}$	$\begin{gathered} \mathbf{6 3} \\ \text { Eu } \\ 152.0 \end{gathered}$	$\begin{gathered} \mathbf{6 4} \\ \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{gathered} \mathbf{6 5} \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{gathered} \mathbf{6 6} \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} \hline \mathbf{6 7} \\ \mathbf{H o} \\ 164.9 \end{gathered}$	$\begin{gathered} \hline \mathbf{6 8} \\ \mathbf{E r} \\ 167.3 \end{gathered}$	$\begin{gathered} \mathbf{6 9} \\ \mathbf{T m} \\ 168.9 \end{gathered}$	$\begin{gathered} \mathbf{7 0} \\ \mathbf{Y b} \\ 173.0 \end{gathered}$	$\begin{gathered} \hline 71 \\ \mathbf{L u} \\ 174.0 \end{gathered}$
7	Actinides	$\begin{gathered} \mathbf{9 0} \\ \text { Th } \\ 232.0 \end{gathered}$	$\begin{gathered} \hline \mathbf{9 1} \\ \mathbf{P a} \\ 231.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 2} \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{gathered} \mathbf{9 3} \\ \mathbf{N p} \\ (237.1) \end{gathered}$	$\begin{gathered} \mathbf{9 4} \\ \mathbf{P u} \\ (244.1) \end{gathered}$	$\begin{gathered} \mathbf{9 5} \\ \mathbf{A m} \\ (243.1) \end{gathered}$	$\begin{gathered} \mathbf{9 6} \\ \mathbf{C m} \\ (247.1) \end{gathered}$	$\begin{gathered} \mathbf{9 7} \\ \mathbf{B k} \\ (247.1) \end{gathered}$	$\begin{gathered} \mathbf{9 8} \\ \mathbf{C f} \\ (251.1) \end{gathered}$	$\begin{gathered} \mathbf{9 9} \\ \text { Es } \\ (252.1) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 0 0} \\ \text { Fm } \\ (257.1) \end{gathered}$	$\begin{gathered} \mathbf{1 0 1} \\ \text { Md } \\ (258.1) \end{gathered}$	$\begin{gathered} \mathbf{1 0 2} \\ \text { No } \\ (259.1) \end{gathered}$	$\begin{gathered} \mathbf{1 0 3} \\ \mathbf{L r} \\ (260.1) \end{gathered}$

