

Energy for heating the air

Volume of the house is: $V_{air} = 15 \text{ m} \cdot 8 \text{ m} \cdot 3 \text{ m} + 0.5 \cdot 15 \text{ m} \cdot 8 \text{ m} \cdot 2 \text{ m} = 480 \text{ m}^3$ (1 point) $n_{air} = pV \cdot (RT)^{-1} = 1.013 \cdot 10^5 \text{ Pa} \cdot 480 \text{ m}^3 \cdot (8.314 \text{ J} (\text{K mol})^{-1} \cdot 283.15 \text{ K})^{-1} = 2.065 \cdot 10^4 \text{ mol}$ (0.5) $C_p(air) = 0.21 \cdot 29.4 \text{ J} (\text{K mol})^{-1} + 0.79 \cdot 29.1 \text{ J} (\text{K mol})^{-1} = 29.16 \text{ J} (\text{K mol})^{-1}$ (0.5 points) $E_{air} = n_{air} \cdot C_p(air) \cdot \Delta T = 2.065 \cdot 10^4 \text{ mol} \cdot 29.17 \text{ J} (\text{K mol})^{-1} \cdot 20 \text{ K} = 12.05 \text{ MJ}$ (0.5 points)

*E*_{air} = 12.05 *MJ*

(2 points)

(1 point)

(2.5)

surface area of the house: $A_{\text{house}} = 3 \text{ m} \cdot 46 \text{ m} + 8 \text{ m} \cdot 2 \text{ m} + ((2 \text{ m})^2 + (4 \text{ m})^2)^{1/2} \cdot 2 \cdot 15 \text{ m} = 288.16 \text{ m}^2$

1.4 Energy for maintaining the temperature:

Heat conductivity: $\lambda_{wall} = 1 \text{ J (s K m)}^{-1}$

Energy flux along a temperature gradient (wall thickness d = 0.2 m) $J = E_{\text{loss}} (A \cdot \Delta t)^{-1} = \lambda_{\text{wall}} \cdot \Delta T \cdot d^{-1}$

 $E_{\text{loss}} = 288.16 \text{ m}^2 \cdot (12.60.60 \text{ s}) \cdot 1 \text{ J} (\text{s K m})^{-1} \cdot 25 \text{ K} \cdot (0.2 \text{ m})^{-1} = 1556 \text{ MJ}$ (1 point)

E_{loss} **=** 1556 MJ

1.5 Total energy and c	costs:	(3 points)
total energy: $E_{tot} = E_{wate}$	_{er} + <i>E</i> _{air} + <i>E</i> _{loss} = 1316 MJ + 12 MJ + 1556 MJ = 2884 MJ	
total energy	E _{tot} = 2884 MJ	(0.5)
2884 MJ corresponds t	o 2.884·10 ⁶ kJ · (3600 s h ⁻¹ · 9.981 kJ s ⁻¹ m ⁻³ · 0.9) ⁻¹ = 89.18 m ³	
volume of gas	<i>V</i> = 89.18 m ³	(1)
2884 MJ correspond to 0.40 €m ⁻³ · 89.18 m ³		
rent for equipment:	= 35.67 € 150.00 €	
total cost of gas heati	ng = 185.67 €	(0.5)
2884 MJ correspond to	a cost of (3600 s h ^{-1,} 1 kJ s ⁻¹ h) ⁻¹ =109.75 €	
rent for equipment:	100.00 €	
total cost of electric h	eating = 209.75 €	(1)

		^
		2
		(3 points
		(3 points)
true	false	no decision possible
x		
	-	
	x	
		(1 point)
		(2 points
p =	$\frac{\theta}{\mathbf{K} - \theta \cdot \mathbf{K}}$	
		(1 point)
		(3 points)
	1 0	(1.5 points) (1.5 points)
1.		
1	x x p =	$x \qquad \square$ $x \qquad \square$ $x \qquad \square$ $x \qquad \square$ $p = \frac{\theta}{K - \theta \cdot K}$ 1 0

2	Name:		2
5 1	Student code	e:	5 1
3.1 Chemical equation	n s: (a) CaCl ₂ + Ca	→ 2 CaCl	(3 points)
	(b) 2 CaCl ₂ + H ₂	→ 2 CaCl + 2 HCl	
	(c) 4 CaCl ₂ + C	\longrightarrow 4 CaCl + CCl ₄	
3.2	silvery metallic parti	cles: Ca	(2 points)
	colorless crystals:	CaCl ₂	
Note: CaCl cannot be	obtained by a conventio	nal solid state reaction of Ca and $CaCl_2$	
3.3 Empirical formula	a:		(4 points)
		% Ca + m/m% Cl) = m/m% X 6% + 46.32%) = 1.32% X	(1)
	mol% of Ca	= 52.36 m/m% / M(Ca) = 52.36 m/m% / 40.08 g mol ⁻¹ = 1.31 mol%	(0.5)
	mol% of Cl	= 46.32 m/m% / M (Cl) = 46.32 m/m% / 35.45 g mol ⁻¹ = 1.31 mol%	(0.5)
	mol% of X	= 1.32 % X / M (H) = 1.32 % X / 1.01 g mol ⁻¹ = 1.31 mol%	(1)
	<i>n</i> (Ca) : <i>n</i> (Cl) :	<i>n</i> (H) = 1 : 1 : 1	
empirical formula	CaClH		(1)
instead. The structure suitable method to det	of this compound was c ermine the position of lig	bes not lead to CaCl. The hydride CaClH is for letermined by X-ray structure analysis which ght elements like hydrogen. Thus, the presen t to be CaCl for quite a long time.	is not a
3.4 a) Structures or	ıly:		(2 points)
Н	с = c= c ́ ́ н	$H-C \equiv C-CH_3$	

Name: Student code: 3.4 b) Empirical formula of the compound formed: (2 points) $Ca_3C_3Cl_2$ Notes: If the ratio of n(Ca):n(Cl) = 1.5: 1 [or better = 3: 2 which can be rewritten as $CaCl_2 \cdot 2Ca^{2+} = 1.5: 1$ $Ca_3Cl_2^{4+}$] is given and the reduction product must contain a C_3^{4+} anion which needs two Ca^{2+} cations for electroneutrality, the composition $Ca_3C_3CI_2$ will follow. 3.5 a) Structure type CaCl likely to have: (1 point) $r(Ca^{+})/r(Cl^{-}) = 120 \text{ pm}/167 \text{ pm} = 0.719$ CsCl no decision possible NaCl ZnS ΒN х 3.5 b) $\Delta_f H^0$ (CaCl) with a Born-Haber-cycle: (5 points) $\Delta_L H^0$ Ca⁺_(g) + Cl⁻_(g)-CaCl_(s) ionization energy ∆_{EA}H electron affinity ∆_fH Enthalpy of formation Ca_{g)} Cl_(g) % ∆_{diss}H dissociation erngy Cl_(g) ∆_rH sublimation enthalpy Ca(s) Summing up of all the single steps of the Born-Haber-cycle: $\Delta_{\rm f} H^0$ (CaCl) $= \Delta_{subl} H^{0}(Ca) + \Delta_{1. \ IE} H(Ca) + \frac{1}{2} \Delta_{diss} H(Cl_{2}) + \Delta_{EA} H(Cl) + \Delta_{L} H(CaCl)$ = (159.3 + 589.7 + 120 - 349.0 - 751.9) kJ mol⁻¹ (1) (0.5)(0.5) (1) (1) ∆_f*H*⁰(CaCl) = -231.9 kJmol⁻¹ (1) 3.6 Stability to disproportionation: (2 points) 2 CaCl \longrightarrow CaCl₂ + Ca $\Delta H = \Delta_{f} H^{0}(CaCl_{2}) - 2 \Delta_{f} H^{0}(CaCl) = -796.0 \text{ kJ mol}^{-1} + 463.8 \text{ kJ mol}^{-1} = -332.2 \text{ kJ mol}^{-1}$ (1) disproportionation no decision possible, more information needed yes no х (1)

Name:

Student code:

4.2 Atomic mass of Y and empirical formula of Argyrodite: (9 points) $Ag_aY_bS_{0.5:a+2:b} + bH_2 \longrightarrow 0.5aAg_2S + bYS + bH_2S$ 10 g = $n(Ag_aY_bS_{0.5\cdot a+2\cdot b}) \cdot [a \cdot 107.87 \text{ g mol}^{-1} + b \cdot M(Y) + (0.5\cdot a+2\cdot b) \cdot 32.07 \text{ g mol}^{-1}]$ (3) I) $n(H_2) = \frac{100kPa \cdot 0.295 \cdot 10^{-3}m^3}{8.314JK^{-1}mol^{-1} \cdot 400K}$ $n(H_2) = \frac{p \cdot V(H_2)}{RT}$ II) $n(Ag_aY_bS_{0.5\cdot a+2\cdot b}) = b^{-1} \cdot 8.871 \cdot 10^{-3} \text{ mol}$ $n(H_2) = 8.871 \cdot 10^{-3} \text{ mol}$ (1) $11.88 = \frac{a \cdot 107.87 gmol^{-1}}{b \cdot M(Y)}$ $a \cdot 107.87 \text{ gmol}^{-1} = 11.88 \cdot b \cdot M(Y)$ III) (1) II,I) \rightarrow II') b·10 g·(8.871·10⁻³ mol)⁻¹ = a·107.87 g mol⁻¹ + b·M(Y) + (0.5·a + 2b)·32.07 g mol⁻¹ $b \cdot 1127 \text{ g mol}^{-1} = a \cdot 107.87 \text{ g mol}^{-1} + b \cdot M(Y) + (0.5 \cdot a + 2b) \cdot 32.07 \text{ g mol}^{-1}$ $b \cdot 1127 \text{ g mol}^{-1} = 11.88 \cdot b \cdot M(Y) + b \cdot M(Y) + (0.5 \cdot a + 2b) \cdot 32.07 \text{ g mol}^{-1}$ III,II')→IV) $b \cdot 1127 \text{ g mol}^{-1} = 11.88 \cdot b \cdot M(Y) + b \cdot M(Y) + (0.5 \cdot \frac{11.88 \cdot b \cdot M(Y)}{107.87 \text{ g mol}^{-1}} + 2b) \cdot 32.07 \text{ g mol}^{-1}$ $M(Y) = 72.57 \text{ g mol}^{-1}$ (2) atomic mass $M(Y) = 72,57 \text{ g mol}^{-1}$ (1) $M(Y) = 72.57 \text{ g mol}^{-1} \rightarrow III$ a:b = 8:1 (1) chemical symbol of Y: Ge empirical formula of Argyrodite: Ag₈GeS₆

51

Name: _____

Student code:

5.1 Actua	II ⊿G' of react	tion (1)	:			(2 points)
⊿G'	=⊿G°′+RTI	n <u></u>	DP ³⁻)/(1 <i>molL</i> ⁻¹)·c(HPO ₄ ² c(ATP ⁴⁻)/(1 <i>molL</i> ⁻¹)	⁻)/(1 <i>molL</i> ⁻¹)	-	(0.5)
	= -30500 J m = -30.5 kJ m		.314 J mol ⁻¹ K ⁻¹ · 298.15	K · In (0.00	0025 · 0.00165 / 0.00225)	(1)
	= -51.8 kJ m					(0.5)
⊿G'=	-51.8 kJ mol ⁻¹					
5.2 Equili	brium consta	ant <i>K</i> ' o	of reaction (2), ratio c(g	lucose 6-p	bhosphate) / c(glucose):	(3 points)
		⊿G°′	= -RT·InK'			(0.5)
		K'	$= e^{-\Delta G^{\circ'/RT}}$ = $e^{-13800 \text{ J/mol / (8.314 J/(mol K))}}$	() · 298.15 K)		(0.5)
			= 0.0038			(0.5)
		К'	$= \frac{c(\text{glucose 6-pl})}{c(\text{glucose})/(1 \text{ mol } l)}$			(0.5)
		-	(glucose 6-phosphate) (glucose)	= K' · c(H	<i>PO</i> ₄ ²⁻)·(1 mol L ⁻¹) ⁻¹	(0.5)
				= 0.0038 = 6.3 · 10		(0.5)
К' =	0.0038		<u>c(glucose 6-ph</u> c(glucos		= 6.3 · 10 ⁻⁶	
	(Σ 1.5)				(Σ 1.5)	

5₂

Name: _____

5.3 ⊿G°' and <i>K</i> ' of reaction (3	3), ratio c(glucose 6-phosphate) / c(glucose):	(4 points)		
$\Delta G^{\circ}(3) = \Delta G^{\circ}(1) + \Delta G^{\circ}(2)$ = -30.5 kJ mol ⁻¹ + 13.8 kJ mol ⁻¹				
	$= -16.7 \text{ kJ mol}^{-1}$	(0.5)		
⊿G°' <i>K</i> '	$= -RT \cdot lnK'$ $= e^{-\Delta G^{\circ}/RT}$	(0.5)		
	$= e^{16700 \text{ J/mol / (8.314 J/(mol K) \cdot 298.15 K)}}$ = 843	(0.5) (0.5)		
K'	$= \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}$	(0.5)		
c(glucose 6-phosphate) c(glucose)	$= K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$	(0.5)		
	= $843 \cdot 2.25 \text{ mmol } \text{L}^{-1} / 0.25 \text{ mmol } \text{L}^{-1}$ = 7587	(0.5)		
Δ G °' = -16.7 kJ mol ⁻¹ (Σ 1)	$K' = 843 (\Sigma \ 1.5) \qquad \frac{c(glucose \ 6-phosphate)}{c(glucose)} = 758$	7 (Σ 1.5)		
5.4 a) Mass of ATP produce	ed per day:	(2 points)		
Energy required for synthe	synthesis: 8000 kJ day ⁻¹ · 0.5 = 4000 kJ day ⁻¹ esis of ATP: 52 kJ mol ⁻¹ 4000 kJ day ⁻¹ / 52 kJ mol ⁻¹ = 76.9 mol day ⁻¹ 76.9 mol day ⁻¹ · 503 g mol ⁻¹ = 38700 g day ⁻¹ = 38.7 kg da	(0.5) (0.5) y ⁻¹ (1)		
m_{day-1} = 38.7 kg day ⁻¹				
5.4 b) Mass of ATP in the h	uman body:	(1 points)		
Average lifetime: Mass of ATP in the body:	1 day = 1440 min 1 min = 1440 ^{−1} day 38.7 kg day ⁻¹ /(1440 min day ^{−1}) · 1 min = 26.9 g	(0.5) (0.5)		
m _{body} = 26.9 g				
5.4 c) What happens to the	rest of the free energy? Mark one correct answer:	(2 points)		
It is used to reduce the e	entropy of the body.			
It is released from the bo	ody in the O-H bonds of the water molecule and the C=O bonds of the carbon dioxide molecule.			
It is used to regenerate the state of the enzymes which act as catalysts				
in the production of ATP.				
It heats the body of the p	person.	х		

Name: Student code: 5.5 a) How many protons are in a spherical mitochondrium with a diameter of 1 μ m at pH=7? (2 points) $V = 4/3 \pi r^3$ $= 4/3 \pi (0.5 \cdot 10^{-6} \text{ m})^{3}$ = 5.2 \cdot 10^{-19} m^{3} = 5.2 \cdot 10^{-16} L (0.5) $c = 10^{-7} \text{ mol L}^{-1}$ (0.5) $n = V \cdot c \cdot N_A$ (0.5) $= 5.2 \cdot 10^{-16} \text{ L} \cdot 10^{-7} \text{ mol } \text{ L}^{-1} \cdot 6.022 \cdot 10^{23} \text{ mol}^{-1} = 31$ (0.5) **n =** 31 5.5 b) How many protons have to enter a mitochondrium? (2 points) Number of ATP molecules: $n(ATP) = \frac{m(ATP) \cdot N_A}{M(ATP)} = \frac{0.2 \cdot 10^{-15} g \cdot 6.022 \cdot 10^{23} mol^{-1}}{503 g mol^{-1}} = 239400$ (1) Number of H⁺ per cell $n(H^+_{per cell}) = n(ATP) \cdot 3 = 718300$ (0.5) Number of H⁺ per mitochondrium: $n(H_{mit}) = n(H_{per cell})/1000 = 718$ (0.5) **n(H⁺**_{mit}) = 718

6	
U	2

Name: _____

6.4 Decide the questions concerning the Diels-Alder reaction.	true	false	(6 points) no decision possible
The Diels-Alder reaction is reversible The formation of B in the original reaction is	x		
thermodynamically controlled		x	
B is thermodynamically more stable than E E is thermodynamically less stable than F	□ x	x D	
G is an enantiomer of B G is thermodynamically more stable than F		× □	□ x
6.5 Structures of I, K, L only:			(6 points)
I K		L	
$\begin{array}{c} & & & \\ & &$	\bigcirc		OMe OMe CO,Me
(2) (2)		(2)	
Notes: from the initial olefin after loss of MeOH \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow			X K CO_2Me $X = CO_2$ $C_{11}H_{12}O_4$ be a 1,3-diene
$\begin{array}{c} \overbrace{CO_2Me}^{X} \\ from the initial \\ cyclohexenone \end{array} \xrightarrow{X} = CO_2 \\ \begin{array}{c} K \\ lactone = transesterification \\ with loss of MeOH \end{array} \xrightarrow{OH} \\ \begin{array}{c} OH \\ \stackrel{OH}{\longrightarrow} \\ \stackrel{OH}{\longrightarrow} \\ \begin{array}{c} OH \\ \stackrel{OH}{\longrightarrow} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} $	CO ₂ Me =	from Mic	CO ₂ Me CO ₂ Me utomer chael Addition with tent loss of MeOH

Name:

Student code:

8₁

8.1 pH of solution B: (3 points) $K_{b2} = \frac{c(HCO_3^-)/(1 \mod L^{-1}) \cdot c(OH^-)/(1 \mod L^{-1})}{c(CO_3^{2-})/(1 \mod L^{-1})} \quad (1) \qquad K_{b2} = \frac{10^{-14}}{10^{-10.33}}$ $K_{\rm b2} = 2.14 \cdot 10^{-4}$ $K_{\rm b1} = 2.34 \cdot 10^{-8}$ Since $K_{b2} >> K_{b1}$, only one protonation step of the CO_3^{2-} has to be considered. $c(CO_3^{2-}) = c_0(CO_3^{2-}) - x$ $c(HCO_3) = c(OH) = x$ and $c_0(Na_2CO_3) = \frac{1.700 \ g \ L^{-1}}{105.99 \ a \ mol^{-1}}$ $c_0(Na_2CO_3) = c_0(CO_3^{2-}) = 0.016 \text{ mol } L^{-1}$ (0.5) $K_{b2} = \frac{x^2 / (1 \ mol \ L^{-1})}{(c_0 (CO_3^{2^-}) - x)}$ $x = c(OH^{-}) = 1.75 \cdot 10^{-3} mol L^{-1}$ (1)Solving equation: 0.5 points **pH =** 11.2 8.2 Ca(OH)₂, CaCO₃ in the precipitate? (6 points) $M(CaCl_2) = 110.98 \text{ g mol}^{-1}$ pH = 10, $c(OH^{-}) = 10^{-4} mol L^{-1}$ (0.5) $c_0(Na_2CO_3) = \frac{1.700 \ g \ L^{-1}}{105.99 \ g \ mol^{-1} \cdot 2}$ c(CaCl₂) = $\frac{1.780 \text{ g } L^{-1}}{110.98 \text{ g mol}^{-1} \cdot 2}$ $c_0(Na_2CO_3) = 8.0 \cdot 10^{-3} \text{ mol } L^{-1}$ $c(CaCl_2) = c_0(Ca^{2+}) = 8.0.10^{-3} \text{ mol } L^{-1}$ (0.5) (0.5)Calculations for Ca(OH)₂: $c(OH^{-})^{2} \cdot c_{0}(Ca^{2+}) = 8 \cdot 10^{-11} \text{ mol}^{3} \text{ L}^{-3} < 6.46 \cdot 10^{-6} \text{ mol}^{3} \text{ L}^{-3} = K_{sp}(Ca(OH)_{2})$ no precipitate (1) (0.5)Calculations for CaCO₃: (regarding proteolysis: 1 point) $\mathsf{K}_{\mathsf{b2}} = \frac{c(HCO_3^-) \cdot c(OH^-)}{c(CO_3^{2-})},$ $c(HCO_3^{-}) = \frac{K_{b2}}{c(OH^{-})} \cdot c(CO_3^{2-})$ $c(HCO_3) = 2.14 \cdot c(CO_3)^{2}$ $c(HCO_3) + c(CO_3) = c_0(Na_2CO_3)$ and $2.14 \cdot c(CO_3^{2-}) + c(CO_3^{2-}) = 8.0 \cdot 10^{-3} \text{ mol } L^{-1}$ (1)Initial concentration of CO_3^{2-} in solution C: $c(CO_3^{2-}) = 2.55 \cdot 10^{-3} \text{ mol } L^{-1}$ (0.5) Initial concentration of Ca^{2+} in solution C: $c(Ca^{2+}) = 8.0 \cdot 10^{-3} \text{ mol } L^{-1}$ hence $c(CO_3^{2-}) \cdot c(Ca^{2+}) = 2.04 \cdot 10^{-5} \text{ mol}^2 \text{ L}^{-2} > 3.31 \cdot 10^{-9} \text{ mol}^2 \text{ L}^{-2} = K_{sp}(CaCO_3)$ precipitate (0.5)Ca(OH)₂ will be found in the precipitate yes 🛛 no x CaCO₃ will be found in the precipitate yes x no 🛛

$$\begin{array}{c|c} \textbf{B}_{2} & \textbf{Mame:} \\ \underline{\textbf{Student code:}} & \textbf{B}_{2} \\ \hline \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf{Student code:} & \textbf{Student code:} & \textbf{Student code:} \\ \hline \textbf$$

Name:

Student code:

8.5 Modification of CaCO₃: (5 points) The charge of the particles is caused by the number of protolized COOH groups per particle. $c(COO^{-}) \approx c_0(COOH), \alpha \approx 1$ $N_{COOH} = \frac{|Z|}{\alpha}$ $N_{COOH} = 800$ Number of COOH groups per particle: (1) $N_{polymer} = \frac{N_{COOH}}{8} = 100$ Number of polymer chains per particle: : (1) The number of polymers per particle indicates the mass of polymer per particle. Thus, the mass of the calcium carbonate particle can be calculated: M (CaCO₃ particle) = M (total particle) – N_{polymer} · M(polymer) (1) M (CaCO₃ particle) = $8.01 \cdot 10^8$ g mol⁻¹ - 100 · 3574.66 g mol⁻¹ $= 8.01 \cdot 10^8 \text{ g mol}^{-1}$ M (CaCO₃ particle) Mass of one CaCO₃ particle: $m(CaCO_3 particle) = M (CaCO_3 particle) \cdot N_A^{-1}$ (0.5)and with the volume of the spherical particle (V = $\frac{4}{3} \cdot \pi \cdot r^3$) the density can be calculated: $\rho(CaCO_3) = \frac{m(CaCO_3 \text{ particle})}{V(CaCO_3 \text{ particle})} = \frac{3 \cdot m(CaCO_3 \text{ particle})}{4\pi \cdot r^3}$ (1) $= \frac{3(M \text{ (total particle)} - N_{polymer} \cdot M(polymer))}{N_a \cdot 4\pi \cdot r^3}$ $=\frac{3\cdot 8.01\cdot 10^8 \text{ g mol}^{-1}}{N_{\text{A}}\cdot 4\pi (5\cdot 10^{-6} \text{ cm})^3} = 2.54 \text{ g cm}^{-3}$ (0.5) The modification of calcium carbonate is Calcite Vaterite x Aragonite