\qquad
Student code:

1.1 Chemical equations:

(2 points)
a) methane:
b) ethane:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2}$
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2}$
$\longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\longrightarrow \quad 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Thermodynamic data for the equations:

$$
\begin{array}{ll}
\Delta H^{0}=[2 \cdot(-241.8)-393.5-(-74.6)] \mathrm{kJ} \mathrm{~mol}^{-1} & =-802.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta S^{0}=[2 \cdot(188.8)+213.8-186.3-2 \cdot 205.2] \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} & =-5.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
\Delta G^{0}=-802.5 \mathrm{~kJ} \mathrm{~mol}^{-1}-298.15 \mathrm{~K} \cdot\left(-5.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) & =-800.9 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Methane: $\quad \Delta \boldsymbol{H}^{0}=-802.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta \boldsymbol{S}^{0}=-5.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \quad \Delta \boldsymbol{G}^{0}=-800.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\Delta H^{0}=[6 \cdot(-241.8)-4 \cdot 393.5-2 \cdot(-84.0)] \mathrm{kJ} \mathrm{~mol}^{-1} \quad=-2856.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\Delta S^{0}=[6 \cdot 188.8+4 \cdot 213.8-2 \cdot 229.2-7 \cdot 205.2] \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=+93.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

$$
\Delta G^{0}=-2856.8 \mathrm{~kJ} \mathrm{~mol}^{-1}-298.15 \mathrm{~K} \cdot\left(93.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \quad=-2884.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Ethane: $\quad \Delta \boldsymbol{H}^{0}=-2856.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \boldsymbol{\Delta} \boldsymbol{S}^{0}=+93.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \quad \boldsymbol{\Delta} \boldsymbol{G}^{0}=-2884.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
1.2 a) Amount of methane and ethane in $1 \mathrm{~m}^{3}$ natural gas:
(7 points) (idea 2 points)
$m=\rho \cdot V=0.740 \mathrm{~g} \mathrm{~L}^{-1} \cdot 1000 \mathrm{~L}=740 \mathrm{~g}$
$M_{\mathrm{av}}=\sum_{i} x(i) M(i)=0.0024 \cdot 44.01 \mathrm{~g} \mathrm{~mol}^{-1}+0.0134 \cdot 28.02 \mathrm{~g} \mathrm{~mol}^{-1}$
(1 point)
$+0.9732 \cdot 16.05 \mathrm{~g} \mathrm{~mol}^{-1}+0.011 \cdot 30.08 \mathrm{~g} \mathrm{~mol}^{-1}$
$=16.43 \mathrm{~g} \mathrm{~mol}^{-1}$
(2 points)
$n_{\text {tot }}=m\left(M_{\text {av }}\right)^{-1}=740 \mathrm{~g} \cdot(16.43 \mathrm{~g} / \mathrm{mol})^{-1}=45.04 \mathrm{~mol}$
(1 point)
$n(i)=x(i) \cdot n_{\text {tot }} \quad n\left(\mathrm{CH}_{4}\right)=x\left(\mathrm{CH}_{4}\right) \cdot n_{\text {tot }}=0.9732 \cdot 45.04 \mathrm{~mol}=43.83 \mathrm{~mol}$
(1 point)
1.2 b) Energy of combustion, deviation:
(2 points)
$E_{\text {comb. }}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)=\sum_{i} n(i) \Delta_{c} H^{\circ}(i)=43.83 \mathrm{~mol} \cdot\left(-802.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+0.495 \mathrm{~mol} \cdot 0.5 \cdot\left(-2856.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $=-35881 \mathrm{~kJ}$
$E_{\text {comb. }}\left(\mathrm{H}_{2} \mathbf{O}(\mathrm{~g})\right)=-35881 \mathrm{~kJ}$
(1 point)

Deviation from PUC

$E_{\text {PUC }}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right) \quad=9.981 \mathrm{kWh} \mathrm{m}{ }^{-3} \cdot 1 \mathrm{~m}^{3} \cdot 3600 \mathrm{~kJ}(\mathrm{kWh})^{-1}=35932 \mathrm{~kJ}$
deviation: $\Delta E=\left(E_{\text {comb. }}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)-E_{\text {Puc }}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right) \cdot 100 \% \cdot\left[E_{\text {comb. }} .\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)\right]^{-1}\right.$
$=(35881 \mathrm{~kJ}-35932 \mathrm{~kJ}) \cdot 100 \% \cdot(35881 \mathrm{~kJ})^{-1}=-0.14 \%$
deviation $=-0.14 \%$
Name: \qquad

```
1.3 Energy for heating the water:
(4 points)
Volume of water: }\quad\mp@subsup{V}{\mathrm{ water }}{}=22.5\mp@subsup{\textrm{m}}{}{3
(0.5 points)
n}\mathrm{ water }=\mp@subsup{V}{\mathrm{ water }}{}\mp@subsup{\rho}{\mathrm{ water }}{}(\mp@subsup{M}{\mathrm{ water }}{}\mp@subsup{)}{}{-1}=22.5 \mp@subsup{\textrm{m}}{}{3}\cdot1\mp@subsup{0}{}{6}\mp@subsup{\textrm{g m}}{}{-3}\cdot(18.02\mp@subsup{\textrm{g mol}}{}{-1}\mp@subsup{)}{}{-1}=1.249\cdot1\mp@subsup{0}{}{6}\textrm{mol
(0.5 points)
E
(0.5 points)
E
(1.5 points)
```


Energy for heating the air

Volume of the house is: $V_{\text {air }}=15 \mathrm{~m} \cdot 8 \mathrm{~m} \cdot 3 \mathrm{~m}+0.5 \cdot 15 \mathrm{~m} \cdot 8 \mathrm{~m} \cdot 2 \mathrm{~m}=480 \mathrm{~m}^{3} \quad$ (1 point)
$n_{\text {air }} \quad=p V \cdot(R T)^{-1}=1.013 \cdot 10^{5} \mathrm{~Pa} \cdot 480 \mathrm{~m}^{3} \cdot\left(8.314 \mathrm{~J}(\mathrm{~K} \mathrm{~mol})^{-1} \cdot 283.15 \mathrm{~K}\right)^{-1}=2.065 \cdot 10^{4} \mathrm{~mol} \quad$ (0.5)
C_{p} (air) $=0.21 \cdot 29.4 \mathrm{~J}(\mathrm{~K} \mathrm{~mol})^{-1}+0.79 \cdot 29.1 \mathrm{~J}\left(\mathrm{~K} \mathrm{~mol}^{-1}=29.16 \mathrm{~J}(\mathrm{~K} \mathrm{~mol})^{-1} \quad\right.$ (0.5 points)
$E_{\text {air }} \quad=n_{\text {air }} \cdot C_{p}($ air $) \cdot \Delta T=2.065 \cdot 10^{4} \mathrm{~mol} \cdot 29.17 \mathrm{~J}(\mathrm{~K} \mathrm{~mol})^{-1} \cdot 20 \mathrm{~K}=12.05 \mathrm{MJ}$
$E_{\text {air }}=12.05 \mathrm{MJ}$
1.4 Energy for maintaining the temperature:
(2 points)
surface area of the house:
$A_{\text {house }}=3 \mathrm{~m} \cdot 46 \mathrm{~m}+8 \mathrm{~m} \cdot 2 \mathrm{~m}+\left((2 \mathrm{~m})^{2}+(4 \mathrm{~m})^{2}\right)^{1 / 2} \cdot 2 \cdot 15 \mathrm{~m}=288.16 \mathrm{~m}^{2}$

Heat conductivity: $\lambda_{\text {wall }}=1 \mathrm{~J}(\mathrm{~s} \mathrm{~K} \mathrm{~m})^{-1}$

Energy flux along a temperature gradient (wall thickness $\mathrm{d}=0.2 \mathrm{~m}$)
$J=E_{\text {loss }}(A \cdot \Delta t)^{-1}=\lambda_{\text {wall }} \cdot \Delta T \cdot d^{-1}$
$E_{\text {loss }}=288.16 \mathrm{~m}^{2} \cdot(12 \cdot 60 \cdot 60 \mathrm{~s}) \cdot 1 \mathrm{~J}(\mathrm{~s} \mathrm{~K} \mathrm{~m})^{-1} \cdot 25 \mathrm{~K} \cdot(0.2 \mathrm{~m})^{-1}=1556 \mathrm{MJ}$
(1 point)

1_{3}	Name: \qquad Student code:	1_{3}

1.5 Total energy and costs:		(3 points)
total energy: $E_{\text {tot }}=E_{\text {water }}+E_{\text {air }}+E_{\text {loss }}=1316 \mathrm{MJ}+12 \mathrm{MJ}+1556 \mathrm{MJ}=2884 \mathrm{MJ}$		
total energy $\quad E_{\text {tot }}=2$		(0.5)
2884 MJ corresponds to $2.884 \cdot 10^{6} \mathrm{~kJ} \cdot\left(3600 \mathrm{~s} \mathrm{~h}^{-1} \cdot 9.981 \mathrm{~kJ} \mathrm{~s}^{-1} \mathrm{~m}^{-3} \cdot 0.9\right)^{-1}=89.18 \mathrm{~m}^{3}$		
volume of gas $\quad V=89$.		(1)
2884 MJ correspond to a cost of:		
$0.40 €^{-3} \cdot 89.18 \mathrm{~m}^{3}$	$=35.67 €$	
rent for equipment:	$150.00 €$	
total cost of gas heating	$=185.67 €$	(0.5)
2884 MJ correspond to a cost of		
$2.884 \cdot 10^{6} \mathrm{~kJ} \cdot 0.137 € \cdot\left(3600 \mathrm{~s} \mathrm{~h}^{-1} \cdot 1 \mathrm{~kJ} \mathrm{~s}^{-1} \mathrm{~h}\right)^{-1}=109.75 €$		
rent for equipment:	$100.00 €$	
total cost of electric heating	$=209.75 €$	(1)

Name: \qquad
2
Student code:

2.1 Reaction equations:

(3 points)

$2 \mathrm{CO}+\mathrm{O}_{2}$		
$2 \mathrm{NO}+2 \mathrm{CO}$	\longrightarrow	$2 \mathrm{CO}_{2}$
$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}$	\longrightarrow	$\mathrm{~N}_{2}+2 \mathrm{CO}_{2}$
	$16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$	

2.2 Questions concerning the λ probe:
(3 points)
true false no decision possible
If the λ-value is in the range of the λ-window, carbon monoxide and hydrocarbons can be oxidised at the three-way catalytic converter.
With $\lambda>1$, carbon monoxide and hydrocarbons can be oxidised at the three-way catalytic converter.

With $\lambda<0.975$, nitrogen oxides can be reduced poorly.
ㅁ x
2.3 a) Surface coverage:
(1 point)
$\theta=\frac{0.85 \mathrm{kPa}^{-1} \cdot 0.65 \mathrm{kPa}}{1+0.85 \cdot 0.65}$
$\theta=0.356$ or 35.6%
2.3 b) Pressure at which 15% of the surface is covered:
$\theta=\frac{K \cdot p}{1+K \cdot p} \Leftrightarrow K \cdot p=\theta+\theta \cdot K \cdot p \quad \Leftrightarrow \quad p \cdot(K-\theta \cdot K)=\theta \quad \Leftrightarrow \quad p=\frac{\theta}{K-\theta \cdot K}$
(1 point)
$\theta=0.15$
$\mathrm{p}=0.21 \mathrm{kPa}$
(1 point)
2.3 c) Orders of decomposition:
order of the decomposition reaction at low gas pressures
1
(1.5 points)
order of the decomposition reaction at high gas pressures
0
(1.5 points)
notes:
$r=k \cdot \theta=k \cdot \frac{K \cdot p}{1+K \cdot p}, \quad p$ low $\Rightarrow p \ll \frac{1}{K} \Rightarrow r=k \cdot K \cdot p \quad$ reaction order 1.

$$
p \text { high } \Rightarrow p \gg \frac{1}{K} \Rightarrow r=k \quad \text { reaction order } 0
$$

2
 Name:

$2.3 \mathrm{~d})$ Gas volume $V_{\mathrm{a}, \max }$ and product $K \cdot V_{\mathrm{a}, \max }$:

$$
\begin{equation*}
\frac{1}{\theta}=\frac{1}{K \cdot p}+1=\frac{V_{a, \max }}{V_{a}} \quad \Rightarrow \quad \frac{1}{K \cdot V_{a, \max }}+\frac{p}{V_{a, \max }}=\frac{p}{V_{a}} \tag{2}
\end{equation*}
$$

slope: $\frac{1}{V_{a, \max }}=1.9 \mathrm{~cm}^{-3}$
$\Rightarrow \quad V_{\mathrm{a}, \max } \quad=0.53 \mathrm{~cm}^{3}$
intercept:

$$
\begin{equation*}
\frac{1}{K \cdot V_{a, \max }}=6 \cdot 10^{2} \mathrm{~Pa} \mathrm{~cm}^{-3} \quad \Rightarrow \quad K \cdot V_{\mathrm{a}, \max }=1.7 \cdot 10^{-3} \mathrm{~Pa}^{-1} \mathrm{~cm}^{3} \tag{1}
\end{equation*}
$$

2.4 Equation for reaction rate:

The information given in the text leads directly to $\quad r=k_{2} \cdot \theta_{\mathrm{CO}_{2}}$
The law of mass action for the first step of the mechanism is given by
$\theta_{\mathrm{CO}_{2}}=\frac{k_{1}}{k_{-1}} \cdot \theta_{\mathrm{CO}} \cdot \theta_{o_{2}}^{\frac{1}{2}}$,

$$
\begin{equation*}
\Rightarrow \quad r=k_{2} \cdot \frac{k_{1}}{k_{-1}} \cdot \theta_{c o} \cdot \theta_{o_{2}}^{\frac{1}{2}} . \tag{2}
\end{equation*}
$$

The Langmuir isotherm gives:

$$
\begin{align*}
\theta_{\mathrm{CO}} & =\frac{K_{\mathrm{CO}} \cdot p_{\mathrm{CO}}}{1+K_{\mathrm{CO}_{2}} \cdot p_{\mathrm{CO}_{2}}+K_{\mathrm{CO}} \cdot p_{\mathrm{CO}}+K_{\mathrm{O}_{2}} \cdot p_{\mathrm{O}_{2}}} \text { and } \theta_{\mathrm{O}_{2}}=\frac{K_{\mathrm{O}_{2}} \cdot p_{\mathrm{O}_{2}}}{1+K_{\mathrm{CO}_{2}} \cdot p_{\mathrm{CO}_{2}}+K_{\mathrm{CO}} \cdot p_{\mathrm{CO}}+K_{\mathrm{O}_{2}} \cdot p_{\mathrm{O}_{2}}} \tag{1.5}\\
\boldsymbol{r} & =k_{2} \frac{k_{1}}{k_{-1}} \frac{K_{\mathrm{CO}} \cdot p_{\mathrm{CO}} \cdot\left(K_{\mathrm{O}_{2}} \cdot p_{\mathrm{O}_{2}}\right)^{\frac{1}{2}}}{\left(1+K_{\mathrm{CO}_{2}} \cdot p_{\mathrm{CO}_{2}}+K_{\mathrm{CO}} \cdot p_{\mathrm{CO}}+K_{\mathrm{O}_{2}} \cdot p_{\mathrm{O}_{2}}\right)^{\frac{3}{2}}} \tag{0.5}
\end{align*}
$$

3.1 Chemical equations:

(a) $\mathrm{CaCl}_{2}+\mathrm{Ca} \longrightarrow 2 \mathrm{CaCl}$
(b) $2 \mathrm{CaCl}_{2}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{CaCl}+2 \mathrm{HCl}$
(c) $4 \mathrm{CaCl}_{2}+\mathrm{C} \longrightarrow 4 \mathrm{CaCl}+\mathrm{CCl}_{4}$

3.2

$$
\begin{array}{ll}
\text { silvery metallic particles: } & \mathrm{Ca} \\
\text { colorless crystals: } & \mathrm{CaCl}_{2}
\end{array}
$$

Note: CaCl cannot be obtained by a conventional solid state reaction of Ca and CaCl_{2}

3.3 Empirical formula:

$$
\begin{align*}
100 \%-(\mathrm{m} / \mathrm{m} \% & \mathrm{Ca}+\mathrm{m} / \mathrm{m} \% \mathrm{Cl})=\mathrm{m} / \mathrm{m} \% \mathrm{X} \\
100 \%-(52.36 \% & +46.32 \%)=1.32 \% \mathrm{X} \tag{1}\\
\mathrm{~mol} \% \text { of } \mathrm{Ca} & =52.36 \mathrm{~m} / \mathrm{m} \% / \mathrm{M}(\mathrm{Ca}) \\
& =52.36 \mathrm{~m} / \mathrm{m} \% / 40.08 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =1.31 \mathrm{~mol} \% \tag{0.5}\\
\mathrm{~mol} \% \text { of } \mathrm{Cl} & =46.32 \mathrm{~m} / \mathrm{m} \% / \mathrm{M}(\mathrm{Cl}) \\
& =46.32 \mathrm{~m} / \mathrm{m} \% / 35.45 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =1.31 \mathrm{~mol} \% \tag{0.5}\\
\mathrm{~mol} \% \text { of } \mathrm{X} & =1.32 \% \mathrm{X} / \mathrm{M}(\mathrm{H}) \\
& =1.32 \% \mathrm{X} / 1.01 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =1.31 \mathrm{~mol} \% \tag{1}
\end{align*}
$$

$n(\mathrm{Ca}): n(\mathrm{Cl}): n(\mathrm{H})=1: 1: 1$
empirical formula CaCIH
Notes: The reaction of CaCl_{2} with hydrogen does not lead to CaCl . The hydride CaClH is formed instead. The structure of this compound was determined by X-ray structure analysis which is not a suitable method to determine the position of light elements like hydrogen. Thus, the presence of hydrogen was missed and CaClH was thought to be CaCl for quite a long time.

3.4 a) Structures only:

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}
$$

3.

Name:

Student code:

3.4 b) Empirical formula of the compound formed:

$$
\mathrm{Ca}_{3} \mathrm{C}_{3} \mathrm{Cl}_{2}
$$

Notes: If the ratio of $n(\mathrm{Ca}): n(\mathrm{Cl})=1.5: 1$ [or better $=3: 2$ which can be rewritten as $\mathrm{CaCl}_{2} \cdot 2 \mathrm{Ca}^{2+}=$ $\mathrm{Ca}_{3} \mathrm{Cl}_{2}{ }^{4+}$] is given and the reduction product must contain a $\mathrm{C}_{3}{ }^{4-}$ anion which needs two Ca^{2+} cations for electroneutrality, the composition $\mathrm{Ca}_{3} \mathrm{C}_{3} \mathrm{Cl}_{2}$ will follow.
3.5 a) Structure type CaCl likely to have:
$\mathrm{r}\left(\mathrm{Ca}^{+}\right) / \mathrm{r}\left(\mathrm{Cl}^{-}\right)=120 \mathrm{pm} / 167 \mathrm{pm}=0.719$
NaCl
CsCl ZnS
BN
no decision possible
X
\square

ロ

\square
(5 points)
3.5 b) $\Delta_{\mathrm{f}} H^{0}(\mathrm{CaCl})$ with a Born-Haber-cycle:

Summing up of all the single steps of the Born-Haber-cycle:
$\Delta_{\mathrm{f}} H^{0}(\mathrm{CaCl}) \quad=\Delta_{\text {subl }} H^{0}(\mathrm{Ca})+\Delta_{1 . \text { IE }} H(\mathrm{Ca})+1 / 2 \Delta_{\text {diss }} H\left(\mathrm{Cl}_{2}\right)+\Delta_{\text {EA }} H(\mathrm{Cl})+\Delta_{\mathrm{L}} H(\mathrm{CaCl})$

$$
\begin{equation*}
=(159.3+589.7+120 \quad-349.0-751.9) \mathrm{kJ} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

(1)
(0.5)
(0.5)
(1)
$\Delta_{f} H^{0}(\mathrm{CaCl}) \quad=-231.9 \mathrm{kJmol}^{-1}$

3.6 Stability to disproportionation:

$2 \mathrm{CaCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{Ca}$
$\Delta \mathrm{H}=\Delta_{\mathrm{f}} \mathrm{H}^{0}\left(\mathrm{CaCl}_{2}\right)-2 \Delta_{\mathrm{f}} \mathrm{H}^{0}(\mathrm{CaCl})=-796.0 \mathrm{~kJ} \mathrm{~mol}^{-1}+463.8 \mathrm{~kJ} \mathrm{~mol}^{-1}=-332.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
disproportionation yes no no decision possible, more information needed
X

4.1 Atomic mass of X, symbol of X, structures:

1) $\mathrm{X}+2 \mathrm{H}_{2} \longrightarrow \mathrm{XH}_{4}$
2)

$$
\begin{equation*}
2 \mathrm{X}+3 \mathrm{H}_{2} \longrightarrow \mathrm{X}_{2} \mathrm{H}_{6} \tag{1}
\end{equation*}
$$

I) $\quad 5.0 \mathrm{~g}=\left[n_{1}(\mathrm{X})+n_{2}(\mathrm{X})\right] \cdot M(\mathrm{X})$
II) $\quad 5.628 \mathrm{~g}=n_{1}\left(\mathrm{XH}_{4}\right) \cdot\left[M(\mathrm{X})+4 \cdot 1.01 \mathrm{~g} \mathrm{~mol}^{-1}\right]+n_{2}\left(\mathrm{X}_{2} \mathrm{H}_{6}\right) \cdot\left[2 M(\mathrm{X})+6 \cdot 1.01 \mathrm{~g} \mathrm{~mol}^{-1}\right]$
III) $\quad n_{1}\left(\mathrm{XH}_{4}\right)=2 n_{2}\left(\mathrm{X}_{2} \mathrm{H}_{6}\right)$
$\mathrm{III}, \mathrm{I}) \rightarrow \mathrm{I}$ ') $\quad 2 n_{1}(\mathrm{X}) \cdot M(\mathrm{X})=5.0 \mathrm{~g}$
$\left.\mathrm{III}, \mathrm{II}) \rightarrow \mathrm{II}^{\prime}\right) \quad n_{1}(\mathrm{X}) \cdot\left[2 \mathrm{M}(\mathrm{X})+7.07 \mathrm{~g} \mathrm{~mol}^{-1}\right]=5.628 \mathrm{~g}$
$\left.\left.\mathrm{I}^{\prime}, \mathrm{II}^{\prime}\right) \rightarrow \mathrm{VI}\right) \quad(5.0 \mathrm{~g}) \cdot[2 M(\mathrm{X})]^{-1}=(5.628 \mathrm{~g}) \cdot\left[2 M(\mathrm{X})+7.07 \mathrm{~g} \mathrm{~mol}^{-1}\right]^{-1}$

$$
\begin{equation*}
M(X)=3.535 \mathrm{~g} \mathrm{~mol}^{-1} \cdot(5.628 \mathrm{~g})^{-1} \cdot\left[(5.0 \mathrm{~g})^{-1}-(5.628 \mathrm{~g})^{-1}\right]^{-1} \tag{1}
\end{equation*}
$$

$$
M(\mathrm{X})=28.14 \mathrm{~g} \mathrm{~mol}^{-1}
$$

3D structures of the two products:

4
 Name:
 \qquad

4.2 Atomic mass of Y and empirical formula of Argyrodite:

$$
\begin{align*}
& \mathrm{Ag}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}} \mathrm{~S}_{0.5 \cdot a+2 \cdot b}+b \mathrm{H}_{2} \longrightarrow 0.5 a \mathrm{Ag}_{2} \mathrm{~S}+b \mathrm{YS}+b \mathrm{H}_{2} \mathrm{~S} \\
& \text { I) } \quad 10 \mathrm{~g}=n\left(\mathrm{Ag}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}} \mathrm{~S}_{0.5 \cdot \mathrm{a}+2 \cdot b}\right) \cdot\left[a \cdot 107.87 \mathrm{~g} \mathrm{~mol}^{-1}+b \cdot M(\mathrm{Y})+(0.5 \cdot a+2 \cdot b) \cdot 32.07 \mathrm{~g} \mathrm{~mol}^{-1}\right] \tag{3}\\
& \text { II) } n\left(\mathrm{H}_{2}\right)=\frac{p \cdot V\left(\mathrm{H}_{2}\right)}{R T} \quad n\left(\mathrm{H}_{2}\right)=\frac{100 \mathrm{kPa} \cdot 0.295 \cdot 10^{-3} \mathrm{~m}^{3}}{8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \cdot 400 \mathrm{~K}} \\
& n\left(\mathrm{H}_{2}\right)=8.871 \cdot 10^{-3} \mathrm{~mol} \quad n\left(\mathrm{Ag}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}} \mathrm{~S}_{0.5 \cdot \mathrm{a}+2 \cdot \mathrm{~b}}\right)=\mathrm{b}^{-1} \cdot 8.871 \cdot 10^{-3} \mathrm{~mol} \tag{1}\\
& \text { III) } \quad 11.88=\frac{a \cdot 107.87 \mathrm{gmol}^{-1}}{b \cdot M(Y)} \quad a \cdot 107.87 \mathrm{gmol}^{-1}=11.88 \cdot b \cdot M(\mathrm{Y}) \tag{1}\\
& \left.I I, I) \rightarrow I I^{\prime}\right) \quad b \cdot 10 \mathrm{~g} \cdot\left(8.871 \cdot 10^{-3} \mathrm{~mol}\right)^{-1}=a \cdot 107.87 \mathrm{~g} \mathrm{~mol}^{-1}+b \cdot M(Y)+(0.5 \cdot a+2 b) \cdot 32.07 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \mathrm{~b} \cdot 1127 \mathrm{~g} \mathrm{~mol}^{-1}=a \cdot 107.87 \mathrm{~g} \mathrm{~mol}^{-1}+b \cdot M(\mathrm{Y})+(0.5 \cdot a+2 b) \cdot 32.07 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \mathrm{III}, \mathrm{II}) \rightarrow \mathrm{IV}) \quad \mathrm{b} \cdot 1127 \mathrm{~g} \mathrm{~mol}^{-1}=11.88 \cdot b \cdot M(\mathrm{Y})+b \cdot M(\mathrm{Y})+(0.5 \cdot a+2 b) \cdot 32.07 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \mathrm{~b} \cdot 1127 \mathrm{~g} \mathrm{~mol}^{-1}=11.88 \cdot b \cdot M(\mathrm{Y})+b \cdot M(\mathrm{Y})+\left(0.5 \cdot \frac{11.88 \cdot b \cdot M(Y)}{107.87 \mathrm{gmol}^{-1}}+2 b\right) \cdot 32.07 \mathrm{~g} \mathrm{~mol}^{-1} \\
& M(Y)=72.57 \mathrm{~g} \mathrm{~mol}^{-1} \tag{2}
\end{align*}
$$

atomic mass $\quad M(Y)=72,57 \mathrm{~g} \mathrm{~mol}^{-1}$
$M(Y)=72.57 \mathrm{~g} \mathrm{~mol}^{-1} \rightarrow$ III $\quad a: b=8: 1$
chemical symbol of Y : Ge
empirical formula of Argyrodite: $\quad \mathrm{Ag}_{8} \mathrm{GeS}_{6}$

Name: \qquad

4.3 The force constants of a C-H bond:

$$
\begin{aligned}
k(\mathrm{C}-\mathrm{H}) & =[2 \pi \cdot \mathrm{C} \cdot \tilde{v}(\mathrm{C}-\mathrm{H})]^{2} \cdot \frac{1}{N_{A}} \cdot \frac{3 M(\mathrm{C}) \cdot M(\mathrm{H})}{3 M(\mathrm{C})+4 M(\mathrm{H})} \\
& =\left[2 \pi \cdot 3 \cdot 10^{10} \mathrm{~cm} \cdot \mathrm{~s}^{-1} \cdot 3030 \mathrm{~cm}^{-1}\right]^{2} \cdot \frac{1}{6.022 \cdot 10^{23} \mathrm{~mol}^{-1}} \cdot \frac{3 \cdot 12.01 \cdot 1.01}{3 \cdot 12.01+4 \cdot 1.01} \mathrm{gmol}^{-1} \\
\boldsymbol{k}(\mathrm{C}-\mathrm{H}) & =491.94 \mathrm{~N} \mathrm{~m}^{-1}
\end{aligned}
$$

The force constants of a Z-H bond:

$$
\begin{aligned}
k(Z-\mathrm{H}) & =k(\mathrm{C}-\mathrm{H}) \cdot \frac{\Delta_{b} H(Z-H)}{\Delta_{b} H(C-H)} \\
& =491.94 \mathrm{~N} \mathrm{~m}^{-1} \cdot 450.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \cdot\left[438.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~J}^{-1}\right. \\
k(\mathrm{Z}-\mathrm{H}) & =505.18 \mathrm{~N} \mathrm{~m}^{-1}
\end{aligned}
$$

The atomic mass and symbol of Z :

$$
\begin{aligned}
\frac{3 M(Z) \cdot M(H)}{3 M(Z)+4 M(H)} & =\frac{k(Z-H) \cdot N_{A}}{[2 \pi \cdot c \cdot \tilde{v}(Z-H)]^{2}} \\
M(Z) & =\frac{4}{3} \cdot\left(\frac{[2 \pi \cdot c \cdot \tilde{v}(Z-H)]^{2}}{k(Z-H) \cdot N_{A}}-\frac{1}{M(H)}\right)^{-1}
\end{aligned}
$$

$$
M(Z)=\frac{4}{3} \cdot\left(\frac{\left[2 \pi \cdot 3 \cdot 10^{10} \cdot 2938.45\right]^{2}}{505180 \cdot 6.022 \cdot 10^{23}}-\frac{1}{1.01}\right)^{-1} \mathrm{~g} \mathrm{~mol}^{-1}
$$

atomic mass of Z
$M(\mathrm{Z}) \quad=72.68 \mathrm{~g} \mathrm{~mol}^{-1}$
chemical symbol of Z
Ge

Note: Even if the students find different values (± 2) due to different ways of rounding, they will be able to find Ge as Z has to be an analogue of carbon.

5
 Name:
 Student code:

5.1 Actual ΔG^{\prime} of reaction (1):

$$
\begin{align*}
\Delta G^{\prime} & =\Delta G^{o}+R T \ln \frac{c\left(\mathrm{ADP}^{3}-\right) /\left(1 \mathrm{moll}^{-1}\right) \cdot \mathrm{c}\left(\mathrm{HPO}_{4}{ }^{2-}\right) /\left(1 \mathrm{molL}^{-1}\right)}{c\left(\mathrm{ATP}^{4}\right) /\left(1 \mathrm{molL}^{-1}\right)} \tag{0.5}\\
& =-30500 \mathrm{~J} \mathrm{~mol}^{-1}+8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \cdot 298.15 \mathrm{~K} \cdot \ln (0.00025 \cdot 0.00165 / 0.00225) \tag{1}\\
& =-30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}-21.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& =-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{0.5}
\end{align*}
$$

```
\DeltaG'= -51.8 kJ mol
```

5.2 Equilibrium constant K ' of reaction (2), ratio c (glucose 6 -phosphate) / c (glucose): (3 points)

$$
\begin{align*}
& \Delta G^{0^{\prime}}=-R T \cdot / n K^{\prime} \tag{0.5}\\
& K^{\prime} \quad=\mathrm{e}^{-46^{\circ} \%} /{ }^{2} T \tag{0.5}\\
& =\mathrm{e}^{-13800 \mathrm{~J} / \mathrm{mol} /(8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{~K}) \cdot 298.15 \mathrm{~K})} \\
& =0.0038 \tag{0.5}\\
& c\left(\text { glucose } 6 \text {-phosphate) } /\left(1 \mathrm{~mol}^{-1}\right)\right. \\
& K^{\prime} \quad=\frac{}{c(\text { glucose }) /\left(1 \mathrm{~mol}^{-1}\right) \cdot \mathrm{c}\left(\mathrm{HPO}_{4}{ }^{2}\right) /\left(1 \mathrm{~mol}^{-1}\right)} \tag{0.5}\\
& \frac{\text { (glucose 6-phosphate) }}{\text { (glucose) }}=K^{\prime} \cdot c\left(H P O_{4}{ }^{2-}\right) \cdot\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{-1} \tag{0.5}\\
& \text { (glucose) } \\
& =0.0038 \cdot 0.00165 \\
& =6.3 \cdot 10^{-6} \tag{0.5}
\end{align*}
$$

$$
K^{\prime}=0.0038 \quad \frac{\text { c(glucose 6-phosphate) }}{\text { c(glucose) }}
$$

($\Sigma 1.5$)

5
 Name:
 Student code:

5.5 a) How many protons are in a spherical mitochondrium with a diameter of $1 \mu \mathrm{~m}$ at $\mathrm{pH}=7$?

$$
\begin{align*}
V & =4 / 3 \pi r^{3} \\
& =4 / 3 \pi\left(0.5 \cdot 10^{-6} \mathrm{~m}\right)^{3} \\
& =5.2 \cdot 10^{-19} \mathrm{~m}^{3} \quad=5.2 \cdot 10^{-16} \mathrm{~L} \tag{0.5}\\
c & =10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \tag{0.5}\\
n & =V \cdot c \cdot N_{A} \tag{0.5}\\
& =5.2 \cdot 10^{-16} \mathrm{~L} \cdot 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \cdot 6.022 \cdot 10^{23} \mathrm{~mol}^{-1}=31 \tag{0.5}
\end{align*}
$$

$\mathrm{n}=31$
5.5 b) How many protons have to enter a mitochondrium?

Number of ATP molecules:
$n(A T P)=\frac{m(A T P) \cdot N_{A}}{M(A T P)}=\frac{0.2 \cdot 10^{-15} \mathrm{~g} \cdot 6.022 \cdot 10^{23} \mathrm{~mol}^{-1}}{503 \mathrm{~g} \mathrm{~mol}^{-1}}=239400$

Number of H^{+}per cell
$n\left(\mathrm{H}^{+}{ }_{\text {per cell }}\right)=n($ ATP $) \cdot 3=718300$

Number of H^{+}per mitochondrium: $n\left({H^{+}}_{\text {mit }}\right)=n\left({H^{+}}_{\text {per cell }}\right) / 1000=718$
$n\left(H^{+}{ }_{\text {mit }}\right)=718$

6.1 Structure of A only:

6.2 Structures of D1, D2 only:
D1:

D2:
alternatively, the following structures are also correct:

Note: The two compounds are enantiomers
6.3 Correct structure of B (circle only one):

1	2	3	4	5	6

Notes: The Diels-Alder reaction gives products with an endo-stereochemistry. The preference of this configuration was outlined in problem 6.2, structure \boldsymbol{C}. As shown in structure \boldsymbol{C} this endoconfiguration is characterized by the two H atoms and the CH_{2}-bridge of the bicyclic system being on the same side of the ring. Only structures 1 and 2 of the six stereoisomers have an endo,endo stereochemistry. All other isomers have at least one exo configuration. In structure 1 the three rings form a U-shaped molecule which is sterically more hindered than structure 2 which has a zig-zag structure.
2 points are given for answer 1.

6.
 Name:

7.4 Equation with oxidation numbers and stereochemically correct structure of $\mathbf{2}$:

(4 points)

1 point for structure 2, 1 point for stoichiometry, 2 points for oxidation numbers (0.5 points for each)

7.5a) Structure of 3 (correct stereochemistry):

1 point for correct formula, 1 point for correct stereochemistry
7.5b) Statements concerning isomers:

1 and 3 are stereo-isomers
1 and 3 are enantiomers
1 and 3 are diastereomers
1 and 3 are conformational isomers
(2 points)
false

x
$x \quad \square$
$\square \quad x$ 0.5 points each
7.5c) Draw a structural model to rationalize the exclusive formation of 3 from 2

Notes: Attack of hydride occurs from the sterically least hindered side.
Full points will also be given for an explanation using the formation of a hydrogen bond.
1 point will be given for any representation indicating the attack of hydride on the correct face of the carbonyl group, i.e.

Final

8.
 Name:
 Student code:

8.1 pH of solution B :

$$
\begin{align*}
& \left.K_{\mathrm{b} 2}=\frac{c\left(\mathrm{HCO}_{3}^{-}\right) /\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right) \cdot c\left(\mathrm{OH}^{-}\right) /(1 \mathrm{~mol} \mathrm{~L}}{}{ }^{-1}\right) \\
& \text { (1) } \quad K_{\mathrm{b} 2}=\frac{10^{-14}}{10^{-10.33}} \\
& K_{\mathrm{b} 2}=2.14 \cdot 10^{-4} \quad K_{\mathrm{b} 1}=2.34 \cdot 10^{-8} \\
& \text { Since } K_{b 2} \gg K_{b 1} \text {, only one protonation step of the } \mathrm{CO}_{3}{ }^{2-} \text { has to be considered. } \\
& \mathrm{c}\left(\mathrm{HCO}_{3}{ }^{-}\right)=\mathrm{c}\left(\mathrm{OH}^{-}\right)=\mathrm{x} \\
& \mathrm{c}_{0}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\frac{1.700 \mathrm{~g} \mathrm{~L}^{-1}}{105.99 \mathrm{~g} \mathrm{~mol}^{-1}} \tag{0.5}\\
& \left.K_{\mathrm{b} 2}=\frac{x^{2} /(1 \mathrm{~mol} \mathrm{~L}}{}{ }^{-1}\right) \tag{1}\\
& \text { and } \\
& \mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right)=\mathrm{C}_{0}\left(\mathrm{CO}_{3}{ }^{2-}\right)-\mathrm{x} \\
& \mathrm{C}_{0}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\mathrm{c}_{0}\left(\mathrm{CO}_{3}{ }^{2-}\right)=0.016 \mathrm{~mol} \mathrm{~L}^{-1} \\
& \mathrm{x}=\mathrm{c}\left(\mathrm{OH}^{-}\right)=1.75 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
\end{align*}
$$

Solving equation: 0.5 points
pH = 11.2

8.2 $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{CaCO}_{3}$ in the precipitate?

$\mathrm{M}\left(\mathrm{CaCl}_{2}\right)=110.98 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{pH}=10, \mathrm{c}\left(\mathrm{OH}^{-}\right)=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{c}_{0}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \quad=\frac{1.700 \mathrm{~g} \mathrm{~L}^{-1}}{105.99 \mathrm{~g} \mathrm{~mol}^{-1} \cdot 2} \quad \mathrm{c}\left(\mathrm{CaCl}_{2}\right) \quad=\frac{1.780 \mathrm{~g} \mathrm{~L}^{-1}}{110.98 \mathrm{~g} \mathrm{~mol}^{-1} \cdot 2}$
$\mathrm{C}_{0}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \quad=8.0 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \quad(0.5) \quad \mathrm{c}\left(\mathrm{CaCl}_{2}\right) \quad=\mathrm{c}_{0}\left(\mathrm{Ca}^{2+}\right)=8.0 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

Calculations for $\mathrm{Ca}(\mathrm{OH})_{2}$:
$\mathrm{c}\left(\mathrm{OH}^{-}\right)^{2} \cdot \mathrm{c}_{0}\left(\mathrm{Ca}^{2+}\right)=8 \cdot 10^{-11} \mathrm{~mol}^{3} \mathrm{~L}^{-3}<6.46 \cdot 10^{-6} \mathrm{~mol}^{3} \mathrm{~L}^{-3}=\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right) \quad$ no precipitate (1)
(0.5)

Calculations for CaCO_{3} :
(regarding proteolysis: 1 point)
$\mathrm{K}_{\mathrm{b} 2}=\frac{c\left(\mathrm{HCO}_{3}^{-}\right) \cdot c\left(\mathrm{OH}^{-}\right)}{c\left(\mathrm{CO}_{3}^{2-}\right)}$,
$\mathrm{c}\left(\mathrm{HCO}_{3}{ }^{-}\right)=2.14 \cdot \mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right) \quad$ and
$2.14 \cdot \mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right)+\mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right)=8.0 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

$$
\begin{align*}
& \mathrm{c}\left(\mathrm{HCO}_{3}^{-}\right)=\frac{K_{b 2}}{c\left(\mathrm{OH}^{-}\right)} \cdot \mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right) \\
& \mathrm{c}\left(\mathrm{HCO}_{3}^{-}\right)+\mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right)=\mathrm{c}_{0}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \tag{1}
\end{align*}
$$

Initial concentration of $\mathrm{CO}_{3}{ }^{2-}$ in solution C : $\quad \mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right)=2.55 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
Initial concentration of Ca^{2+} in solution C : $\quad \mathrm{c}\left(\mathrm{Ca}^{2+}\right)=8.0 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
hence $\mathrm{c}\left(\mathrm{CO}_{3}{ }^{2-}\right) \cdot \mathrm{c}\left(\mathrm{Ca}^{2+}\right)=2.04 \cdot 10^{-5} \mathrm{~mol}^{2} \mathrm{~L}^{-2}>3.31 \cdot 10^{-9} \mathrm{~mol}^{2} \mathrm{~L}^{-2}=\mathrm{K}_{\mathrm{sp}}\left(\mathrm{CaCO}_{3}\right) \quad$ precipitate (0.5)

$\mathrm{Ca}(\mathrm{OH})_{2}$	will be found in the precipitate	yes	\square	no	x
CaCO_{3}	will be found in the precipitate	yes	x	no	\square

Name: $\square \boldsymbol{O}_{2}$

8.3 Circle the block that attaches to the CaCO_{3} crystal:

(1 point)

Notes: Both polymer blocks are hydrophilic. The acrylic acid block will preferably bind to the crystal since it is more polarized and additionally charged. The polymer binds to the surface at positions where there is an excess of calcium ions on the surface of the ionic crystal.
8.4 How much of the initial amount of polymer (2 g) can still be found in the hybrid particles?
(7 points)

$$
\begin{equation*}
\mathrm{RCOOH}+\mathrm{OH}^{-} \rightleftarrows \quad \mathrm{RCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{pK}_{\mathrm{b}}=9.12 \tag{1}
\end{equation*}
$$

pH and pK_{a} lead to the total concentration of COOH groups in the solution:

$$
\begin{array}{ll}
\mathrm{c}\left(\mathrm{COO}^{-}\right)=\mathrm{x} & \mathrm{c}(\mathrm{COOH})=\mathrm{c}_{0}(\mathrm{COOH})-\mathrm{x}=\mathrm{c}_{0}\left(\mathrm{OH}^{-}\right)-\mathrm{c}\left(\mathrm{OH}^{-}\right) \\
\mathrm{c}_{0}\left(\mathrm{OH}^{-}\right)=\frac{50 \mathrm{~mL}}{250 \mathrm{~mL}} 0.19 \mathrm{~mol} \mathrm{~L} \\
\mathrm{c} \\
\mathrm{c}\left(\mathrm{OH}^{-}\right)=10^{-1.7} \mathrm{~mol} \mathrm{~L}^{-1}=0.02 \mathrm{~mol} \mathrm{~L}^{-1} & \mathrm{c}_{0}\left(\mathrm{OH}^{-}\right)=0.038 \mathrm{~mol} \mathrm{~L}^{-1} \tag{0.5}\\
K_{b}=\frac{(0.5)}{\left(c_{0}(\mathrm{COOH})-x\right) /\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right) \cdot c\left(\mathrm{OH}^{-}\right) /\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right)} \\
x /\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right) & \mathrm{x}=0.018 \mathrm{~mol} \mathrm{~L}^{-1} \\
\end{array}
$$

$c_{0}(\mathrm{COOH})=\frac{K_{b} x \cdot\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right)}{c\left(\mathrm{OH}^{-}\right)}+x$
(1) $\quad c_{0}(\mathrm{COOH})=\left(\frac{0.018 \cdot 10^{-9.12}}{0.02}+0.018\right) \mathrm{mol} \cdot \mathrm{L}^{-1}$
$\mathrm{c}_{0}(\mathrm{COOH})=0.018 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$
(Or as $\mathrm{pH} \gg \mathrm{pK}_{\mathrm{a}}: \quad \mathrm{c}_{0}(\mathrm{COOH})=\mathrm{c}(\mathrm{COOH})+\mathrm{x} \approx \mathrm{x}$)
(calculate polymer mass from $\mathrm{c}_{0}(\mathrm{COOH}): 0.5$ point)
Total concentration of polymer chains $\quad c($ polymer $)=\frac{c_{0}(\mathrm{COOH})}{8}$
$\mathrm{M}($ polymer $)=\mathrm{M}\left(\mathrm{C}_{160} \mathrm{O}_{84} \mathrm{H}_{306}\right)=3574.66 \mathrm{~g} \mathrm{~mol}^{-1}$
(0.5) (0.5)
$\mathrm{m}($ polymer $)=\mathrm{c}($ polymer $) \cdot \mathrm{V} \cdot \mathrm{M}($ polymer $)$
$\mathrm{m}($ polymer $)=\frac{c_{0}(\mathrm{COOH}) \cdot V \cdot M(\text { polymer })}{8}=\frac{0.018 \cdot 0.250 \cdot 3574.66}{8} \mathrm{~g}=2.0 \mathrm{~g}$

8.
 Name:
 Student code:
 3

8.5 Modification of CaCO_{3} :

The charge of the particles is caused by the number of protolized COOH groups per particle.
$\mathrm{c}\left(\mathrm{COO}^{-}\right) \approx \mathrm{c}_{0}(\mathrm{COOH}), \alpha \approx 1$

Number of COOH groups per particle: $\quad \mathrm{N}_{\mathrm{COOH}}=\frac{|Z|}{\alpha} \quad \mathrm{N}_{\mathrm{COOH}}=800$

Number of polymer chains per particle: : $\quad \mathrm{N}_{\text {polymer }}=\frac{N_{\mathrm{COOH}}}{8}=100$

The number of polymers per particle indicates the mass of polymer per particle. Thus, the mass of the calcium carbonate particle can be calculated:

$$
\begin{array}{ll}
\mathrm{M}\left(\mathrm{CaCO}_{3} \text { particle }\right) & =\mathrm{M}(\text { total particle })-\mathrm{N}_{\text {polymer }} \cdot \mathrm{M}(\text { polymer }) \tag{1}\\
\mathrm{M}\left(\mathrm{CaCO}_{3} \text { particle }\right) & =8.01 \cdot 10^{8} \mathrm{~g} \mathrm{~mol}^{-1}-100 \cdot 3574.66 \mathrm{~g} \mathrm{~mol}^{-1} \\
\mathrm{M}\left(\mathrm{CaCO}_{3} \text { particle }\right) & =8.01 \cdot 10^{8} \mathrm{~g} \mathrm{~mol}^{-1}
\end{array}
$$

Mass of one CaCO_{3} particle: $\quad \mathrm{m}\left(\mathrm{CaCO}_{3}\right.$ particle $)=\mathrm{M}\left(\mathrm{CaCO}_{3}\right.$ particle $) \cdot \mathrm{N}_{\mathrm{A}}{ }^{-1}$
and with the volume of the spherical particle $\left(\mathrm{V}=\frac{4}{3} \cdot \pi \cdot r^{3}\right)$ the density can be calculated:

$$
\begin{align*}
\rho\left(\mathrm{CaCO}_{3}\right) & =\frac{m\left(\mathrm{CaCO}_{3} \text { particle }\right)}{V\left(\mathrm{CaCO}_{3} \text { particle }\right)}=\frac{3 \cdot m\left(\mathrm{CaCO}_{3} \text { particle }\right)}{4 \pi \cdot r^{3}} \tag{1}\\
& =\frac{\left.3(M \text { (total particle })-N_{\text {polymer }} \cdot M(\text { polymer })\right)}{N_{a} \cdot 4 \pi \cdot r^{3}} \\
& =\frac{3 \cdot 8.01 \cdot 10^{8} \mathrm{~g} \mathrm{~mol}^{-1}}{N_{A} \cdot 4 \pi\left(5 \cdot 10^{-6} \mathrm{~cm}\right)^{3}}=2.54 \mathrm{~g} \mathrm{~cm}^{-3} \tag{0.5}
\end{align*}
$$

The modification of calcium carbonate is Calcite $\square \quad$ Vaterite $x \quad$ Aragonite

