Worked Solutions to Problems

1. Water

A. Phase diagram

a. The three phases of water coexist in equilibrium at a unique temperature and pressure (called the triple point):

$$
\mathrm{T}_{\mathrm{tr}}=273.16 \mathrm{~K}=0.01^{\circ} \mathrm{C} \quad \mathrm{P}_{\mathrm{tr}}=6.11 \times 10^{-3} \mathrm{bar}
$$

b. If pressure decreases, boiling point decreases, but melting point increases (slightly).
c. Beyond this point, there is no distinction between liquid and vapour phases of water. Put alternatively, it is possible to have liquid to vapour transition by a continuous path going around the critical point. (In contrast, solid-liquid transition is discontinuous.)
d. $\quad T=300 \mathrm{~K}, \quad \mathrm{P}=12.0$ bar: liquid phase $\mathrm{T}=270 \mathrm{~K}, \quad \mathrm{P}=1.00$ bar : solid phase
e. Below $P=6.11 \times 10^{-3}$ bar, ice heated isobarically will sublimate to vapour.
f. If x_{l} and x_{v} are the mole fractions of water in liquid and vapour phases,

$$
\begin{aligned}
& V=x_{1} \bar{V}_{1}+x_{v} \bar{V}_{v}=x_{1} \bar{V}_{1}+\left(1-x_{1}\right) \bar{V}_{v} \\
& \therefore \quad x_{1}=\frac{\bar{V}_{v}-V}{\bar{V}_{v}-\bar{V}_{1}}=4.6 \times 10^{-1} \\
& \frac{V_{1}}{V}=\frac{x_{1} \bar{V}_{1}}{V}=0.140 \\
& \frac{V_{v}}{V}=1-0.14=0.860
\end{aligned}
$$

B. Clausius - Clapeyron equation
a. $\frac{\mathrm{dP}}{\mathrm{dT}}=\frac{\Delta \overline{\mathrm{H}}}{\mathrm{T} \overline{\Delta \mathrm{V}}}$
$\Delta \overline{\mathrm{H}}=$ molar enthalpy change in phase transition
$\Delta \overline{\mathrm{V}}=$ molar change in volume in phase transition.

For ice-liquid water transition :

$$
\begin{aligned}
& \Delta \overline{\mathrm{H}}>0 \\
& \therefore \quad \frac{\mathrm{dP}}{\mathrm{dT}}<0
\end{aligned}
$$

Since $\quad \Delta \overline{\mathrm{V}} \mid$ is not large, the P-T curve for this transition is steep, with a negative slope. Thus decrease of pressure increases the melting point slightly.

For liquid water - vapour transition

$$
\begin{aligned}
& \Delta \overline{\mathrm{H}}>0 \quad \Delta \overline{\mathrm{~V}}<0 \\
& \therefore \quad \frac{\mathrm{dP}}{\mathrm{dT}}>0
\end{aligned}
$$

Decrease of pressure decreases the boiling point.
b. Clausius - Clapeyron equation for (solid) liquid - vapour transition is
$\frac{d P}{d T}=\frac{P \Delta \bar{H}_{\text {vap }}}{R T^{2}}$
This equation follows from the Clapeyron equation under the assumptions:

1. Vapour follows ideal gas law.
2. Molar volume of the condensed phase is negligible compared to molar volume of vapour phase.
3. If further $\Delta \overline{\mathrm{H}}_{\text {vap }}$ is assumed to be constant (no variation with T), the eq. is integrated to give

$$
\ln \frac{P_{2}}{P_{1}}=\frac{\Delta \bar{H}_{\text {vap }}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

$$
\begin{array}{ll}
\text { Here } \mathrm{P}_{1}=1.01 \mathrm{bar}, & \mathrm{~T}_{1}=373.15 \mathrm{~K} \\
\mathrm{~T}_{2}=393.15 \mathrm{~K} & \Delta \overline{\mathrm{H}}_{\text {vap }}=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} & \\
\therefore \quad \mathrm{P}_{2}=2.01 \mathrm{bar} &
\end{array}
$$

The estimate is based on assumptions 1,2 and 3 .
c. For ice - liquid water equilibrium, use Clapeyron equation

At $\mathrm{T}_{1}=273.15 \mathrm{~K}, \quad \mathrm{P}_{1}=1.01 \mathrm{bar}$

1. Assume that for a small change in $\mathrm{T}, \frac{\Delta \overline{\mathrm{H}}}{\Delta \overline{\mathrm{V}}}$ is constant.

Integrating the Clapeyron equation above

$$
\begin{aligned}
& \mathrm{P}_{2}-\mathrm{P}_{1}=\frac{\Delta \overline{\mathrm{H}}}{\overline{\overline{\mathrm{~V}}} \ln \left(\frac{\mathrm{~T}_{2}}{T_{1}}\right)} \\
& \mathrm{T}_{2}=272.95 \mathrm{~K}, \quad \Delta \overline{\mathrm{H}}_{\text {(usion) }}=6008 \mathrm{Jmol}^{-1} \\
& \Delta \overline{\mathrm{~V}}=\left(\frac{1}{1.00}-\frac{1}{0.917}\right) \times 18.015=-1.63 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \\
& \mathrm{P}_{2}-\mathrm{P}_{1} \quad=27.0 \mathrm{bar} \\
& \mathrm{P}_{2}=28.0 \mathrm{bar}
\end{aligned}
$$

The estimate is based on assumption 1.

C. Irreversible condensation

a. On the P-T plane, this equilibrium state is a solid phase (ice). Water in liquid phase at this temperature and pressure is not an equilibrium state - it is a supercooled state that does not lie on the given P-T plane.
b. Treating the metastable state as equilibrium state, we can go from the supercooled liquid state to the solid state at the same temperature and pressure by a sequence of 3 reversible steps.

1. Supercooled liquid at $-12.0^{\circ} \mathrm{C}$ to liquid at $0^{\circ} \mathrm{C}$
$\mathrm{q}_{1}=$ number of moles $\times \overline{\mathrm{C}}_{\mathrm{p}}$ (liquid water) \times change of temperature

$$
\frac{28.5 \mathrm{~g}}{18.015 \mathrm{~g} \mathrm{~mol}^{-1}} \times 76.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 12.0 \mathrm{~K}=1445 \mathrm{~J}
$$

2. liquid at $0^{\circ} \mathrm{C}$ to ice at $0^{\circ} \mathrm{C}$
$\mathrm{q}_{2}=28.5 \mathrm{~g} \times(-333.5) \mathrm{J} \mathrm{g}^{-1}=-9505 \mathrm{~J}$
3. Ice at $0^{\circ} \mathrm{C}$ to ice at $-12.0^{\circ} \mathrm{C}$
$\mathrm{q}_{3}=$ number of moles $\times \quad \overline{\mathrm{C}}_{\mathrm{p}}$ (liquid water) \times change of temp.

$$
\begin{aligned}
& =\frac{28.5}{18.015 \mathrm{~g} \mathrm{~mol}^{-1}} \times 37.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times(-12.0 \mathrm{~K}) \\
& =-705.3 \mathrm{~J} \\
& \therefore \quad \mathrm{q}=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}=-8765 \mathrm{~J}
\end{aligned}
$$

Since all the steps are at the constant pressure of 1.00 bar,

$$
\mathrm{q}=\Delta \mathrm{H}
$$

But $\Delta \mathrm{H}$ is independent of the path, i.e., it depends only on the end points.
Thus for the irreversible condensation of supercooled liquid to ice

$$
\mathrm{q}=\Delta \mathrm{H}=-8765 \mathrm{~J}
$$

c. The actual irreversible path between the two end states of the system is replaced by the sequence of three reversible steps, as above. For each reversible step, $\Delta \mathrm{S}$ can be calculated.

$$
\begin{aligned}
\Delta \mathrm{S}_{1} & =\mathrm{n} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\overline{\mathrm{C}}_{\mathrm{p}}}{\mathrm{~T}} \mathrm{dT}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} \\
\Delta \mathrm{~S}_{1} & =\frac{28.5 \mathrm{~g}}{18.015 \mathrm{~g} \mathrm{~mol}^{-1}} 76.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times \ln \frac{273.15}{261.15} \\
& =5.41 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathrm{S}_{2} & =\frac{\Delta \mathrm{H}_{2}}{\mathrm{~T}}=\frac{-9505}{273.15}=-34.79 \mathrm{JK}^{-1} \\
\Delta \mathrm{~S}_{3} & =\frac{28.5 \mathrm{~g}}{18.015 \mathrm{~g} \mathrm{~mol}^{-1}} 37.15 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \ln \frac{261.15}{273.15} \\
& =-2.64 \mathrm{~J} \mathrm{~K}^{-1} \\
\Delta \mathrm{~S}_{\text {system }} & =\Delta \mathrm{S}_{1}+\Delta \mathrm{S}_{2}+\Delta \mathrm{S}_{3}=-32.02 \mathrm{~J} \mathrm{~K}^{-1} \\
\Delta \mathrm{~S}_{\text {sur }} & =\frac{\mathrm{q}_{\text {sur }}}{\mathrm{T}_{\text {sur }}}=\frac{8765}{261.15}=33.56 \mathrm{JK}^{-1} \\
\Delta \mathrm{~S}_{\text {univ }} & =\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {sur }}=1.54 \mathrm{JK}^{-1}
\end{aligned}
$$

The entropy of the universe increases in the irreversible process, as expected by the Second Law of Thermodynamics.

2. van der Waals gases

a. For a van der Waals gas

$$
Z=\frac{P V}{n R T}=1+\frac{b P}{R T}-\frac{n a}{V R T}+\frac{n^{2} a b}{V^{2} R T}
$$

The ratio of the magnitudes of the second and third terms on the right side is :
$\frac{\mathrm{b}}{\mathrm{n} \mathrm{a}} \mathrm{PV} \approx \frac{\mathrm{b}}{\mathrm{a}} \mathrm{RT}, \quad$ taking $\mathrm{PV}=\mathrm{nRT}$ up to zeroth order.
The ratio of the magnitudes of the fourth and third terms on the right side is :

$$
\frac{\mathrm{nb}}{\mathrm{~V}} \approx \frac{\mathrm{bP}}{\mathrm{RT}}
$$

i. From the ratios above, it follows that at sufficiently high temperature for any given pressure, the second term dominates the third and fourth terms. Therefore,

$$
Z \cong 1+\frac{b P}{R T}>1
$$

For small P, Z nearly equals unity.
ii. At lower temperatures, the third term can be greater (in magnitude) than the second term. It may be greater (in magnitude) than the fourth term also, provided P is not too large. Since the third term has a negative sign, this implies that Z can be less than unity.
iii. For $\mathrm{a}=0$

$$
Z=1+\frac{b P}{R T}
$$

which shows that Z increases linearly with P.
b. Helium has negligible value of a. Graph (1) corresponds to He and (2) corresponds to N_{2}.
c. Above $T>T_{c}$, only one phase (the gaseous phase) exists, that is the cubic equation in V has only one real root. Thus isotherm (2) corresponds to $T<T_{c}$.
d. At $T=T_{c}$, the three roots coincide at $V=V_{c}$ This is an inflexion point.

$$
\left.\frac{\mathrm{dP}}{\mathrm{dV}}\right|_{\mathrm{V}_{\mathrm{c}}}=\left.\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dV}^{2}}\right|_{V_{c}}=0
$$

The first condition gives

$$
\begin{equation*}
\frac{\mathrm{RT}_{\mathrm{c}}}{\left(\mathrm{~V}_{\mathrm{c}}-\mathrm{nb}\right)^{2}}=\frac{2 \mathrm{na}}{\mathrm{~V}_{\mathrm{c}}{ }^{3}} \tag{1}
\end{equation*}
$$

The second condition gives
$\frac{R T_{c}}{\left(V_{c}-n b\right)^{3}}=\frac{3 n a}{V_{c}{ }^{4}}$
These equations give
$\mathrm{V}_{\mathrm{c}}=3 \mathrm{nb}$ and $\mathrm{T}_{\mathrm{c}}=\frac{8 \mathrm{a}}{27 \mathrm{bR}}$
For $\mathrm{He}, \mathrm{T}_{\mathrm{c}}=5.2 \mathrm{~K}$
For $\mathrm{N}_{2}, \mathrm{~T}_{\mathrm{C}}=128 \mathrm{~K}$

Since, $T_{c}\left(N_{2}\right)$ is greater than $T_{c}(H e), N_{2}$ is liquefied more readily than He .
e. $W=\int_{V_{1}}^{V_{2}} P d V$

$$
\begin{aligned}
& =\int_{V_{1}}^{V_{2}}\left(\frac{R T}{V-b}-\frac{a}{V^{2}}\right) d V \\
& =R T \ln \left(\frac{V_{2}-b}{V_{1}-b}\right)+a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right) \\
& =56.7 \quad \mathrm{~L} \text { bar } \mathrm{mol}^{-1}
\end{aligned}
$$

3. Rates and reaction mechanisms

a. Mechanism 1:

$$
\frac{1}{2} \frac{\mathrm{~d}[\mathrm{HI}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{I}]^{2}\left[\mathrm{H}_{2}\right]
$$

Since the first step is fast, there is a pre-equilibrium :

$$
\begin{aligned}
& \mathrm{K}=\frac{[I]^{2}}{\left[\mathrm{I}_{2}\right]} \\
& \therefore \frac{\mathrm{d}[\mathrm{HI}]}{\mathrm{dt}}=2 \mathrm{k}_{1} \mathrm{~K}\left[\mathrm{I}_{2}\right]\left[\mathrm{H}_{2}\right]=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
\end{aligned}
$$

Mechanism 2 :

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}[\mathrm{HI}]}{\mathrm{dt}}=\mathrm{k}_{2}\left[\mathrm{I}_{2}\right]_{\mathrm{d}}\left[\mathrm{H}_{2}\right] \\
& \mathrm{K}^{\prime}=\frac{\left[\mathrm{I}_{2}\right]_{\mathrm{d}}}{\left[\mathrm{I}_{2}\right]} \\
& \therefore \quad \frac{\mathrm{d}[\mathrm{HI}]}{\mathrm{dt}}=2 \mathrm{k}_{2} \mathrm{~K}^{\prime}\left[\mathrm{I}_{2}\right]\left[\mathrm{H}_{2}\right]=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
\end{aligned}
$$

Both mechanisms are consistent with the observed rate law.
b. i. $\quad k=A e^{-E a / R T}$

$$
\mathrm{E}_{\mathrm{a}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)=\mathrm{R} \ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}
$$

With the given numerical values,

$$
\mathrm{E}_{\mathrm{a}}=170 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

ii. The activation energy is greater than the bond dissociation energy of
I_{2}. Hence the second step is rate determining in both the mechanisms.
c. The activation energy E_{a} for the reverse reaction is

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}}^{\prime} & =\mathrm{E}_{\mathrm{a}}-\Delta \mathrm{U} \\
& =170+8.2=178.2 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

d. i.

$$
\begin{aligned}
& \frac{\mathrm{d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\mathrm{k}_{3}[\mathrm{IAr}][\mathrm{I}] \\
& \begin{aligned}
\mathrm{K}^{\prime \prime} & =\frac{[\mathrm{IAr}][\mathrm{Ar}]}{[\mathrm{I}][\mathrm{Ar}]^{2}} \\
\therefore \quad \frac{\mathrm{~d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}} & =\mathrm{K}^{\prime \prime} \mathrm{k}_{3}[\mathrm{I}]^{2}[\mathrm{Ar}] \\
& =\mathrm{k}[\mathrm{I}]^{2}[\mathrm{Ar}]
\end{aligned}
\end{aligned}
$$

ii. A possible reason why this is negative is that $E a_{3}$ is positive and less in magnitude than $\left|\Delta H^{\circ}\right|$, while ΔH^{0} is negative.

$$
\begin{aligned}
& \mathrm{k}=\mathrm{k}_{3} \mathrm{~K}^{\prime \prime} \\
& =\mathrm{A}_{3} \mathrm{e}^{-\mathrm{E}_{\mathrm{a} 3} / \mathrm{RT} \quad \mathrm{e}^{-\Delta \mathrm{G}^{\circ} / \mathrm{RT}}} \\
& \text { we know } \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \therefore \mathrm{k}=\mathrm{A}_{3} \mathrm{e}^{\frac{\Delta \mathrm{S}^{\circ}}{R}} \mathrm{e}^{-\left(\mathrm{E}_{\mathrm{a3}}+\Delta H^{\circ}\right) / R T}
\end{aligned}
$$

The activation energy for the overall reaction is $E_{a 3}+\Delta H^{\circ}$

4. Enzyme catalysis

a. i. The differential rate equations for the Michaelis-Menten mechanism are

$$
\begin{align*}
& \frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{E}][\mathrm{S}]-\mathrm{k}_{1}^{\prime}[\mathrm{ES}]-\mathrm{k}_{2}[\mathrm{ES}] \tag{1}\\
& \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{ES}] \tag{2}
\end{align*}
$$

In the steady-state approximation, $\frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{dt}}=0$
Eq. (1) then gives $[E S]=\frac{k_{1}[E][S]}{k_{1}^{\prime}+k_{2}}$
Now

$$
\begin{equation*}
[\mathrm{E}]_{0}=[\mathrm{E}]+[\mathrm{ES}] \tag{5}
\end{equation*}
$$

where $[E]_{0}$ is the total enzyme concentration. Eqs. (4) and (5) gives $[\mathrm{ES}]=\frac{[\mathrm{E}]_{0}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]}$
where $K_{m}=\frac{k_{1}+k_{2}}{k_{1}}$ is the Michaelis-Menten constant.
From eq. (2),

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=\frac{\mathrm{k}_{2}[\mathrm{E}]_{0}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]} \tag{7}
\end{equation*}
$$

Since the backward rate is ignored, our analysis applies to the initial rate of formation of P and not close to equilibrium. Further, since the enzyme concentration is generally much smaller than the substrate concentration, [S] is nearly equal to $[\mathrm{S}]_{0}$ in the initial stage of the reaction.

Thus, according to the Michaelis-Menten mechanism, the initial rate versus substrate concentration is described by eq. (7), where [S] is replaced by [S] ${ }_{0}$.

For $[\mathrm{S}] \ll \mathrm{K}_{\mathrm{m}}$,
Initial rate $=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{\mathrm{m}}}[\mathrm{E}]_{0}[\mathrm{~S}]$
i.e., initial rate varies linearly with [S].

For $[\mathrm{S}] \gg \mathrm{K}_{\mathrm{m}}$,

Initial rate $=k_{2}[E]_{0}$
i.e., for large substrate concentration, initial rate approaches a constant value $\mathrm{k}_{2}[E]_{0}$.

Thus the indicated features of the graph are consistent with Michaelis-Menten mechanism.
ii. The asymptotic value of initial rate is $k_{2}[E]_{0}$

From the graph,
$\mathrm{k}_{2}[E]_{0}=3.0 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$

With $[E]_{0}=1.5 \times 10^{-9} \mathrm{M}$
we get $\mathrm{k}_{2}=2.0 \times 10^{3} \mathrm{~s}^{-1}$
iii. From eq. (7), for $[\mathrm{S}]=\mathrm{K}_{\mathrm{m}}$, the initial rate is half the asymptotic value.

From the graph, therefore,

$$
\mathrm{K}_{\mathrm{m}}=5.0 \times 10^{-5} \mathrm{M}
$$

$$
\text { For }[S]=1.0 \times 10^{-4} \mathrm{M}, \quad \text { using eq. (7) again, }
$$

$$
\text { Initial rate }=\frac{\left[2.0 \times 10^{3} \mathrm{~s}^{-1}\right] \times\left[1.5 \times 10^{-9} \mathrm{M}\right] \times\left[1.0 \times 10^{-4}\right] \mathrm{M}}{\left[5.0 \times 10^{-5}\right] \mathrm{M}+\left[1.0 \times 10^{-4}\right] \mathrm{M}}
$$

$$
=2.0 \times 10^{-6} \mathrm{M} \mathrm{~s}^{-1}
$$

iv. We have $K_{m}=\frac{k_{1}^{1}+k_{2}}{k_{1}}=5.0 \times 10^{-5} \mathrm{M}$

The enzyme equilibrates with the substrate quickly, that is the first step of equilibration between E, S and [ES] is very fast. This means that k_{1}^{\prime} is much greater than k_{2}. Therefore, neglecting k_{2} above,

$$
\frac{\mathrm{k}_{1}^{\prime}}{\mathrm{k}_{1}}=5.0 \times 10^{-5} \mathrm{M}
$$

The equilibrium constant K for the formation of $E S$ from E and S is,

$$
\frac{\mathrm{K}}{1 \mathrm{M}}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}^{\prime}}=2.0 \times 10^{-5}
$$

b. From the graph at the new temperature, $\mathrm{k}_{2}[\mathrm{E}]_{0}=6.0 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$
i.e., $\quad k_{2}=\frac{6.0 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}}{1.5 \times 10^{-9} \mathrm{M}}=4.0 \times 10^{3} \mathrm{~s}^{-1}$

Using Arrhenius relation for temperature dependence of rate constant :
$k=A e^{-\frac{E_{a}}{R T}}$
where E_{a} is the molar activation energy.

$$
\frac{k\left(T_{1}\right)}{k\left(T_{2}\right)}=e^{-\frac{E_{\mathrm{a}}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{T_{2}}\right]}
$$

i.e. $\quad E_{a}=R \frac{\ln \frac{k\left(T_{2}\right)}{k\left(T_{1}\right)}}{\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}$

Now $\quad \frac{\mathrm{k}_{2}(310)}{\mathrm{k}_{1}(285)}=2.0, \quad \mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\therefore \quad \mathrm{E}_{\mathrm{a}}=20.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c. i. The fraction of enzyme that binds with the substrate is, from eq. (6):
$\frac{[\mathrm{ES}]}{[\mathrm{E}]_{0}}=\frac{[\mathrm{S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]}$
where $[\mathrm{S}]$ is nearly equal to $[\mathrm{S}]_{0}$ in the initial stage of the reaction.
Now $[\mathrm{S}]_{0}=\frac{3.0 \times 10^{-6} \mathrm{~mol}}{1 \times 10^{-3} \mathrm{~L}}=3.0 \times 10^{-3} \mathrm{M}$
and $K_{m}=5.0 \times 10^{-5} \mathrm{M}$

$$
\therefore \frac{[\mathrm{ES}]}{[\mathrm{E}]_{0}}=\frac{3.0 \times 10^{-3} \mathrm{M}}{\left(5.0 \times 10^{-5}+3.0 \times 10^{-3}\right) \mathrm{M}}=0.98
$$

Nearly the whole of the enzyme is bound with the substrate.
ii. From eq. (7),

Integrating the equation gives,
$\frac{\mathrm{d}[\mathrm{S}]}{\mathrm{dt}}=-\frac{\mathrm{k}_{2}[\mathrm{E}]_{0}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]}$
$\mathrm{K}_{\mathrm{m}} \ln \frac{[\mathrm{S}]}{[\mathrm{S}]_{0}}+[\mathrm{S}]-[\mathrm{S}]_{0}=-\mathrm{K}_{2}[\mathrm{E}]_{0} \mathrm{t}$
If at $t=T,[S]=1 / 2[S]$,
$T \mathrm{~K}_{2}[\mathrm{E}]_{0}=\mathrm{K}_{\mathrm{m}} \ln 2+\frac{1}{2}[\mathrm{~S}]_{0}$
Here $[E]_{0}=\frac{2.0 \times 10^{-12} \mathrm{~mol}}{1.0 \times 10^{-3} \mathrm{~L}}=2.0 \times 10^{-9} \mathrm{M}$
$\mathrm{k}_{2}=2.0 \times 10^{3} \mathrm{~s}^{-1}, \quad \mathrm{~K}_{\mathrm{m}}=5.0 \times 10^{-5} \mathrm{M}$,
$[\mathrm{S}]_{0}=3.0 \times 10^{-3} \mathrm{M}$
Substituting these values in eq. (14) gives

$$
T=384 \mathrm{~s}
$$

Thus 50% of the antibiotic dose is inactivated in 384 s .
d. i. The differential rate equations for the situation are :

$$
\begin{align*}
& \frac{d}{d t}[E S]=k_{1}[E][S]-k_{1}^{\prime}[E S]-k_{2}[E S] \tag{15}\\
& \frac{d}{d t}[E I]=k_{3}[E][1]-k_{3}^{\prime}[E I] \tag{16}\\
& \frac{d}{d t}[P]=k_{2}[E S] \tag{17}
\end{align*}
$$

where k_{3} and k_{3}^{\prime} are the forward and backward rate constants for the enzyme-inhibitor reaction.

Applying steady-state approximation to [ES] and [EI],

$$
\begin{equation*}
[\mathrm{ES}]=\frac{\mathrm{k}_{1}[\mathrm{E}][\mathrm{S}]}{\mathrm{k}_{1}^{\prime}+\mathrm{k}_{2}} \tag{18}
\end{equation*}
$$

and [EI] $=\frac{\mathrm{k}_{3}[\mathrm{E}][\mathrm{I}]}{\mathrm{k}_{3}^{〕}}$
Now $[E]_{0}=[E]+[E S]+[E I]$

Eliminating [E] and [EI] from eqs. (18) to (20) gives :

$$
\begin{align*}
{[\mathrm{ES}] } & =\frac{[\mathrm{E}]_{0}[\mathrm{~S}]}{[\mathrm{S}]+\mathrm{K}_{\mathrm{m}}\left(1+\frac{[\mathrm{I}]}{\mathrm{K}_{1}(1 \mathrm{M})}\right)} \tag{21}\\
\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}} & =\frac{\mathrm{k}_{2}[\mathrm{E}]_{0}[\mathrm{~S}]}{[\mathrm{S}]+\mathrm{K}_{\mathrm{m}}\left(1+\frac{[\mathrm{I}]}{\mathrm{K}_{\mathrm{I}}(1 \mathrm{M})}\right)} \tag{22}
\end{align*}
$$

Here, $\mathrm{K}_{1}(1 \mathrm{M})=\frac{\mathrm{k}_{3}^{\prime}}{\mathrm{k}_{3}}$ is the equilibrium constant for the dissociation of El to E and I.

The degree of inhibition is $i=1-\frac{r}{r_{0}}$
Using eq. (22), $i=\frac{\frac{K_{m}}{K_{I}} \frac{[I]}{(1 \mathrm{M})}}{[\mathrm{S}]+\mathrm{K}_{m}\left(1+\frac{[I]}{\mathrm{K}_{\mathrm{I}}(1 \mathrm{M})}\right)}$
For fixed [I], i decreases with increase in [S] (competitive inhibition).
and for large [S], i $\rightarrow 0, \quad$ i.e., the inhibitor ceases to play any role.
ii. For small $[\mathrm{S}] \quad \mathrm{i}=\frac{[\mathrm{I}]}{\mathrm{K}_{1}(1 \mathrm{M})+[\mathrm{I}]}$

If $r=\frac{1}{4} r_{0} \quad i=\frac{3}{4}$
i.e., $[\mathrm{I}]=3 \mathrm{~K}_{\mathrm{I}} \times(1 \mathrm{M})=1.5 \times 10^{-4} \mathrm{M}$

The inhibitor concentration required to reduce the rate of inactivation by a factor of 4 is $1.5 \times 10^{-4} \mathrm{M}$; i.e., $0.15 \mu \mathrm{~mol}$ in a volume of 1.00 mL .

5. Schrödinger equation

a.
i. One-dimensional Schrödinger equation for a free particle of mass m :

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi}{\mathrm{dx}^{2}}=\mathrm{E} \psi \quad \hbar=\frac{\mathrm{h}}{2 \pi}
$$

where E stands for the energy of the particle and ψ its wave function.
ii. The boundary conditions are :
$\psi(0)=\psi(\mathrm{L})=0$
Only $\quad \Psi_{n}(x)=\sin \frac{n \pi x}{L}$ satisfies the required boundary conditions.

Other functions are not possible wave functions of the electron in a one-dimensional rigid box.
iii.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \sin \frac{n \pi x}{L}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2} \sin \frac{n \pi x}{L} \\
& \therefore \quad E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2}=\frac{h^{2} n^{2}}{8 m L^{2}}
\end{aligned}
$$

iv. Ground state $(\mathrm{n}=1)$

$$
\psi_{1}(x)=\sin \frac{\pi x}{L}
$$

First excited state $(\mathrm{n}=2)$
$\psi_{2}(x)=\sin \frac{2 \pi x}{L}$
Second excited state $(\mathrm{n}=3)$

$$
\Psi_{3}(x)=\sin \frac{3 \pi x}{L}
$$

Number of nodes in $\psi_{\mathrm{n}}=\mathrm{n}-1$, apart from the nodes at the end points.
v.

$$
\begin{aligned}
\Psi_{1}^{N}(x) & =N \sin \frac{\pi x}{L} \\
1 & =\int_{-\infty}^{\infty}\left|\Psi_{1}^{N}(x)\right|^{2} d x \\
& =N^{2} \int_{0}^{L} \sin ^{2} \frac{\pi x}{L} d x=\frac{N^{2}}{2} \int_{0}^{L}\left(1-\cos \frac{2 \pi x}{L}\right) d x \\
& =N^{2} \frac{L}{2} \\
\therefore N & =\sqrt{\frac{2}{L}} \quad(N \text { is chosen to be real) } \\
\Psi_{1}^{N}(x) & =\sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}
\end{aligned}
$$

b. In the example

$$
\mathrm{L}=5 \times 1.4 \times 10^{-10} \mathrm{~m}=7.0 \times 10^{-10} \mathrm{~m}
$$

The first three energy levels are:

$$
\begin{aligned}
& E_{1}=\frac{h^{2}}{8 \mathrm{~mL}^{2}}=1.22 \times 10^{-19} \mathrm{~J} \\
& \mathrm{E}_{2}=4 \mathrm{E}_{1}=4.88 \times 10^{-19} \mathrm{~J} \\
& \mathrm{E}_{3}=9 \mathrm{E}_{1}=10.98 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

In the ground state, the four electrons will occupy the levels E_{1} and E_{2}, each with two electrons.

E_{3}

E

Lowest excited state

The lowest excitation energy

$$
E_{3}-E_{2}=6.10 \times 10^{-19} \mathrm{~J}
$$

C. The condition that $\psi(\phi)$ is single valued demands that

$$
\begin{aligned}
& \Psi(\phi)=\Psi(\phi+2 \pi) \\
& e^{\mathrm{i} \lambda \phi}=\mathrm{e}^{\mathrm{i} \lambda(\phi+2 \pi)} \\
& \mathrm{e}^{\mathrm{i} 2 \pi \lambda}=1
\end{aligned}
$$

i.e. $\lambda=m$, where $m=0, \pm 1, \pm 2, \pm 3, \ldots \ldots$.

This shows that angular momentum projection $\left(L_{z}\right)$ cannot be an arbitrary real number but can have only discrete values: $m \hbar$, where m is a positive or negative integer (including zero).

6. Atomic and molecular orbitals

A. Atomic orbitals

a.
i. $\quad \boldsymbol{u}_{1 \mathrm{~s}}^{N}=N e^{-\frac{r}{a_{0}}}$

$$
1=\int\left|\Psi_{1 s}^{N}\right|^{2} d v=4 \pi a_{0}^{3} N^{2}
$$

$$
=4 \pi N^{2} x \frac{a_{o}^{3}}{4}=\pi a_{o}^{3} N^{2}
$$

(N chosen to be real)
$\therefore \quad N=\left[\pi a_{0}^{3}\right]^{-\frac{1}{2}}$
$\Psi_{1 s}^{N}=\left[\pi a_{o}^{3}\right]^{\frac{1}{2}} e^{-\frac{r}{a_{0}}}$
ii. Probability of finding an electron between r and $r+d r$

$$
=4 \pi r^{2} \times\left[\pi a_{0}^{3}\right]^{-1} e^{-\frac{2 r}{a_{0}}} d r
$$

This is a maximum at $r=r_{\text {max }}$, given by

$$
\frac{d}{d r}\left(r^{2} e^{-\frac{2 r}{a_{0}}}\right)_{r=r_{\max }}=0
$$

This gives

$$
r_{\max }=a_{0}
$$

The 1 s electron is most likely to be found in the neighborhood of $r=a_{0}$.
b. $\quad \Psi_{2 s}=0$ at $r=2 a 0$

Nodal surface is a sphere of radius $2 \mathrm{a}_{0}$

$$
\psi_{2 p_{z}}=0 \quad \text { at } \theta=\frac{\pi}{2}
$$

Nodal surface is the xy plane.
$\Psi_{3 \mathrm{z}^{2}}=0 \quad$ at $3 \cos ^{2} \theta-1=0, \quad$ i.e., $\theta=\cos ^{-1}\left(\pm \frac{1}{\sqrt{3}}\right)$
Nodal surfaces are cones with these values of half-angle, one above the xy plane and the other below it.
(Note: all three wave functions vanish as $r \rightarrow \infty$. At $r=0, \psi_{\text {is }}$ does not vanish, but the other two wave functions vanish.)
c. Each electron in $n=1$ shell of helium atom has energy $-Z^{2}$ eff $\times 13.6 \mathrm{eV}$

Helium ground state energy $=-Z^{2}$ eff $\times 27.2 \mathrm{eV}$
Energy of He^{+}ground state $=-4 \times 13.6=-54.4 \mathrm{eV}$
Ionization energy $=\left(-54.4+Z^{2}{ }_{\text {eff }} \times 27.2\right) \mathrm{eV}=24.46 \mathrm{eV}$
This gives $Z_{\text {eff }}=1.70$

B. Molecular orbitals

a. $\quad \Psi_{1}$ and Ψ_{2} are bonding orbitals
$\tilde{\Psi}_{1}$ and $\tilde{\Psi}_{2}$ are antibonding orbitals

Bonding orbital

No nodal surface between the nuclei. Electronic energy has a minimum at a certain internuclear distance. Qualitative reason: electron has considerable probability of being between the nuclei and thus has attractive potential energy due to both the nuclei.

Antibonding orbital

Nodal surface between the nuclei. Electronic energy decreases monotonically with internuclear distance. Hence bound state is not possible.
b. $\quad R_{e}=1.32 \times 10^{-10} \mathrm{~m}$
$D=-1.36-(-15.36)=1.76 \mathrm{eV}$
c. It will dissociate to a hydrogen atom in 2 s state and a bare hydrogen nucleus (proton).
d. The two electrons occupy the same molecular orbital with the lowest energy. By Pauli's principle, their spins must be antiparallel. Hence the total electronic spin is zero.
e. In the first excited state of H_{2}, one electron is in ψ_{1} (bonding orbital) and the other in ψ_{1} (antibonding orbital). It will dissociate into two hydrogen atoms.
f. Using the aufbau principle, in the ground state two electrons of He_{2} are in ψ_{1} (bonding orbital) and two in ψ_{1} (antibonding orbital). The bond order is $1 / 2(2-2)=0$

Therefore, bound He_{2} is unstable and difficult to detect. However, if one or more electrons are elevated from the antibonding orbital to (higher energy) bonding orbitals, the bond order becomes greater than zero. This is why it is possible to observe He_{2} in excited states.

7. Fission

a.

$$
\begin{aligned}
& { }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }_{38}^{94} \mathrm{Sr}+{ }_{54}^{140} \mathrm{Xe}+2 \mathrm{n} \\
& { }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3 \mathrm{n}
\end{aligned}
$$

b. The net nuclear reaction is

$$
{ }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }_{40}^{94} \mathrm{Zr}+{ }_{58}^{140} \mathrm{Ce}+2 \mathrm{n}+6 \mathrm{e}^{-}+(\mathrm{Q})
$$

The energy released is
$Q=\left[m_{N}\left({ }^{235} U\right)-m_{N}\left({ }^{94} \mathrm{Zr}\right)-m_{N}\left({ }^{140} \mathrm{Ce}\right)-m_{\mathrm{n}}-6 \mathrm{~m}_{\mathrm{e}}\right] \mathrm{c}^{2}$
where the small energy of the initial thermal neutron has been ignored. (m_{N} denotes the nuclear mass.) Now
$\mathrm{m}_{\mathrm{N}}\left({ }^{235} \mathrm{U}\right)=m\left({ }^{235} \mathrm{U}\right)-92 \mathrm{~m}_{\mathrm{e}}$
ignoring the small electronic binding energies compared to rest mass energies.
Similarly for other nuclear masses.
$Q=\left[m\left({ }^{235} \mathrm{U}\right)-\mathrm{m}\left({ }^{94} \mathrm{Zr}\right)-m\left({ }^{140} \mathrm{Ce}\right)-\mathrm{m}_{\mathrm{n}}\right] \mathrm{c}^{2}$
Using the given data,
$\mathrm{Q}=213.3 \mathrm{MeV}$
c. $\quad 1 \mathrm{MWd}=10^{6} \mathrm{Js}^{-1} \times 24 \times 3600 \mathrm{~s}=8.64 \times 10^{10} \mathrm{~J}$

No. of atoms of ${ }^{235} U$ fissioned $=\frac{8.64 \times 10^{10}}{213.3 \times 1.60 \times 10^{-13}}=2.53 \times 10^{21}$
Mass of 235 U fissioned $=\frac{2.53 \times 10^{21} \times 235}{6.02 \times 10^{23}}=0.99 \mathrm{~g}$

Mass of ${ }^{235} \mathrm{U}$ in 1 kg uranium removed from the reactor $=7.2-0.99=6.2 \mathrm{~g}$
Abundance of ${ }^{235} \mathrm{U}$ is 0.62%

8. Radioactive decay

a. $\quad 1 \mu \mathrm{Ci}=3.7 \times 10^{4}$ disintegrations per second (dps).

Initial β-activity $=3.7 \times 10^{6} \mathrm{dps}$
$\left.\frac{-\mathrm{dN}_{1}}{\mathrm{dt}}\right|_{\mathrm{t}=0}=\mathrm{N}_{1}^{0} \lambda_{1}=3.7 \times 10^{6} \mathrm{dps}$
where N_{1}^{o} is the number of atoms of ${ }^{210} \mathrm{Bi}$ at $\mathrm{t}=0$ and λ_{1} is its decay constant.

$$
\frac{0.693}{5.01 \times 24 \times 3600} \mathrm{~N}_{1}^{0}=3.7 \times 10^{6}
$$

$$
N_{1}^{0}=2.31 \times 10^{12}
$$

$$
\text { Intial mass of }{ }^{210} \mathrm{Bi}=2.31 \times 10^{12} \times \frac{210}{6.02 \times 10^{23}} \mathrm{~g}
$$

$$
=8.06 \times 10^{-10} \mathrm{~g}
$$

b. Number of atoms of ${ }^{210} \mathrm{Bi}$ at time t is given by

$$
N_{1}=N_{1}^{0} e^{-\lambda_{1} t}
$$

The number of atoms of ${ }^{210} \mathrm{Po}, \mathrm{N}_{2}$, is given by equation

$$
\frac{\mathrm{dN}}{2} \mathrm{dt}=\lambda_{1} N_{1}-\lambda_{2} N_{2}
$$

where λ_{2} is the decay constant of ${ }^{210} \mathrm{Po}$.
$\frac{d N_{2}}{d t}=\lambda_{1} N_{1}^{0} e^{-\lambda_{1} t}-\lambda_{2} N_{2}$
Using the integrating factor $e^{\lambda_{2} t}$

$$
e^{\lambda_{2} t} \frac{d N_{2}}{d t}+\lambda_{2} N_{2} e^{\lambda_{2} t}=\lambda_{1} N_{1}^{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}
$$

$$
\frac{d}{d t}\left(N_{2} e^{\lambda_{2} t}\right)=\lambda_{1} N_{1}^{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}
$$

Integrating

$$
N_{2} e^{\lambda_{2} t}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} N_{1}^{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}+C
$$

To calculate C, use the condition that at $t=0, N_{2}=0$
$C=-\frac{\lambda_{1} N_{1}^{0}}{\lambda_{2}-\lambda_{1}}$
This gives
$N_{2}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} N_{1}^{0}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right)$

The time $t=T$ when N_{2} is maximum is given by the condition

$$
\left.\frac{\mathrm{d} \mathrm{~N}_{2}}{\mathrm{dt}}\right|_{\mathrm{t}=\mathrm{T}}=0
$$

which gives
$\mathrm{T}=\frac{\ln \frac{\lambda_{1}}{\lambda_{2}}}{\lambda_{1}-\lambda_{2}}=24.9 \mathrm{~d}$
At $t=T, N_{2}$ can be calculated from above.
$\mathrm{N}_{2}=2.04 \times 10^{12}$
Mass of ${ }^{210} \mathrm{Po}$ at $\mathrm{t}=\mathrm{T}$,
$=7.11 \times 10^{-10} \mathrm{~g}$
c. $\quad \alpha$-disintegration rate of ${ }^{210} \mathrm{Po}$ at $\mathrm{t}=\mathrm{T}$
$=1.18 \times 10^{5} \mathrm{dps}$
At $t=T$
β-disintegration rate of ${ }^{210} \mathrm{Bi}$
$=\alpha$-disintegration rate of ${ }^{210} \mathrm{Po}=1.18 \times 10^{5} \mathrm{dps}$
9. Redox reactions
a.
i. Over-all reaction

$$
\begin{aligned}
\mathrm{Sn}^{2+}+2 \mathrm{Fe}^{3+} \rightarrow & \mathrm{Sn}^{4+}+2 \mathrm{Fe}^{2+} \quad \mathrm{E}^{\circ}=+0.617 \mathrm{~V} \\
\Delta \mathrm{G}^{\circ}=-\mathrm{nFE} & \\
& =-2 \mathrm{FE}^{\circ} \\
& =-2 \times 96485 \times 0.617 \mathrm{~V} \\
& =-119 \mathrm{KJ}
\end{aligned}
$$

ii.

$$
\begin{aligned}
E^{\circ} & =\frac{0.0592}{n} \log K \\
\log K & =\frac{(2 \times 0.617)}{0.0592} \cong 20.84 \\
K & =6.92 \times 10^{20}
\end{aligned}
$$

b. Before the equivalence point, E of the cell is given by following equation

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & ={ }_{\text {ox }} \mathrm{E}_{\mathrm{S} . \mathrm{C} . \mathrm{E}}^{0}+\operatorname{red}^{\mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}}{ }^{2+}}-\frac{0.0592}{2} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]} \\
& =-0.242+0.154-\frac{0.0592}{2} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}
\end{aligned}
$$

i. The addition of 5.00 mL of Fe^{3+} converts $5.00 / 20.00$ of the Sn^{2+} to Sn^{4+}; thus

$$
\begin{aligned}
& \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}=\frac{15.0 / 20.0}{5.0 / 20.0}=3.00 \\
& \mathrm{E}_{\text {cell }}=-0.102 \mathrm{~V} .
\end{aligned}
$$

ii. At the equivalence point, add the two expressions corresponding to $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$.
$2 \mathrm{E}_{\text {cell }}=2$ ox $\mathrm{E}_{\text {S.C.E }}^{\circ}+2 \mathrm{red}^{\circ} \mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}-0.0592 \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}$
$1 \mathrm{E}_{\text {cell }}={ }_{o x} \mathrm{E}_{\text {S.C.E }}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}{ }^{2+}-0.0592 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
to get
$3 \mathrm{E}_{\text {cell }}=3{ }_{\text {ox }} \mathrm{E}_{\text {S.C.E }}^{\circ}+2{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}-0.0592 \log \frac{\left[\mathrm{Sn}^{2+}\right]\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]\left[\mathrm{Fe}^{3+}\right]}$

At the equivalence point, $\left[\mathrm{Fe}^{3+}\right]=2\left[\mathrm{Sn}^{2+}\right]$ and $\left[\mathrm{Fe}^{2+}\right]=2\left[\mathrm{Sn}^{4+}\right]$
Thus,

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}={ }_{\text {ox }} \mathrm{E}_{\mathrm{S} . \mathrm{C} . \mathrm{E}}^{\circ}+\frac{2_{\mathrm{red}} \mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}}^{\circ}}{3} \\
& =-0.242+\frac{(2)(0.154)+0.771}{3}=+0.118 \mathrm{~V}
\end{aligned}
$$

Beyond the equivalence point, E of the cell is given by following equation

$$
\mathrm{E}_{\text {cell }}={ }_{\text {ox }} \mathrm{E}_{\text {S.C.E }}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}-0.0592 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}
$$

When 30 mL of Fe^{3+} is added, 10 mL of Fe^{3+} is in excess. i.e.
$\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=\frac{20.0}{10.0}=2.00$
$\mathrm{E}_{\text {cell }}=0.511 \mathrm{~V}$
c.
i. $\quad \Delta G^{\circ}=-R T \ln K_{s p}$

$$
=68.27 \mathrm{~K} \mathrm{~J}
$$

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ}, \quad \mathrm{n}=1
$$

$$
E^{\circ}=-0.707 V
$$

ii.

$$
\begin{array}{ll}
\mathrm{Cu}^{+}+\mathrm{I}^{-}=\mathrm{CuI}_{(\mathrm{s})} & \mathrm{E}^{\circ}=0.707 \mathrm{~V} \\
\mathrm{Cu}^{2+}+\mathrm{e}^{-}=\mathrm{Cu}^{+} & \mathrm{E}^{\circ}=0.153 \mathrm{~V}
\end{array}
$$

The overall reaction for reduction of Cu^{2+} by I^{-}is

$$
\mathrm{Cu}^{2+}+\mathrm{I}^{-}+\mathrm{e}^{-}=\mathrm{Cul}_{(\mathrm{s})} \quad \mathrm{E}^{\circ}=0.86 \mathrm{~V}
$$

The E° value for the reduction of Cu^{2+} by I^{-}can now be calculated
$2 \times \mathrm{Cu}^{2+}+\mathrm{I}^{-}+\mathrm{e}^{-}=\mathrm{Cul}_{(\mathrm{s})}$
$\mathrm{E}^{\circ}=0.86 \mathrm{~V}$
$I_{2}+2 e^{-}=2 I^{-}$
$\mathrm{E}^{\circ}=0.535 \mathrm{~V}$

The over-all reaction is

$$
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cul}_{(\mathrm{s})}+\mathrm{I}_{2} \quad \mathrm{E}^{\circ}=0.325 \mathrm{~V}
$$

The positive value of effective E° indicates that the reduction reaction is spontaneous. This has come about since in this reaction, I^{-}is not only a reducing agent, but is also a precipitating agent. Precipitation of Cu^{+} as Cul is the key step of the reaction, as it practically removes the product Cu^{+}from the solution, driving the reaction in the forward direction.
iii. $\quad \Delta \mathrm{G}^{0}=-\mathrm{nF} \mathrm{E}^{\circ}$

$$
\begin{aligned}
& \text { Here } \quad n=1, \quad E^{\circ}=0.325 V \\
& \Delta G^{\circ}=-31.3 \mathrm{~kJ} \\
& \Delta G^{\circ}=-R T \ln K \\
& \log K=5.47 \\
& K=2.9 \times 10^{5}
\end{aligned}
$$

10. Solubility of sparingly soluble salts

a. $\quad \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{~s})}=2 \mathrm{Ag}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

The solubility product Ksp is given by
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$
If S is the solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

$$
\begin{equation*}
\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~S} \tag{1}
\end{equation*}
$$

The total oxalate concentration, denoted by $\mathrm{C}_{0 \mathrm{x}}$, is

$$
\begin{equation*}
\mathrm{C}_{0 \mathrm{x}}=\mathrm{S}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] \tag{2}
\end{equation*}
$$

The dissociation reactions are:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} & \mathrm{K}_{1}=5.6 \times 10^{-2} \\
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}=\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} & \mathrm{K}_{2}=6.2 \times 10^{-5} \tag{4}
\end{array}
$$

Eqs. (2), (3) and (4) give
$\mathrm{C}_{0 \mathrm{x}}=\mathrm{S}=\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]+\frac{\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{2}}+\frac{\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
$\therefore\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]=\alpha \mathrm{C}_{\mathrm{ox}}=\alpha \mathrm{S}$
where $\quad \alpha=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}}$
At $\mathrm{pH}=7,\left[\mathrm{H}^{+}\right]=10^{-7}$ and $\alpha \cong 1$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}=3.5 \times 10^{-11}$

At $\mathrm{pH}=5.0,\left[\mathrm{H}^{+}\right]=10^{-5}$

From the values of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and $\left[\mathrm{H}^{+}\right]$, we get
$\alpha=0.861$
$\mathrm{K}_{\mathrm{sp}}=[2 \mathrm{~S}]^{2}[\alpha \mathrm{~S}]$
$\therefore \quad S=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{4 \alpha}\right)^{\frac{1}{3}}=2.17 \times 10^{-4}$
b. $\left[\mathrm{NH}_{3}\right]=0.002$

At $\mathrm{pH}=10.8, \quad\left[\mathrm{H}^{+}\right]=1.585 \times 10^{-11}$

Eq. (5) implies
$\alpha=1$
i.e $\quad C_{0 x}=S=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}\right]$

The total silver ion in the solution is given by

$$
\begin{equation*}
\mathrm{C}_{\mathrm{Ag}}=2 \mathrm{~S}=\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{AgNH}_{3}^{+}\right]+\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right] \tag{8}
\end{equation*}
$$

The complex formation reactions are
$\mathrm{Ag}^{+}+\mathrm{NH}_{3}=\mathrm{AgNH}_{3}{ }^{+}$
$\mathrm{K}_{3}=1.59 \times 10^{3}$
$\mathrm{AgNH}_{3}{ }^{+}+\mathrm{NH}_{3}=\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$
$K_{4}=6.76 \times 10^{3}$

From eqs. (8), (9) and (10)

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Ag}}=2 \mathrm{~S}=\left[\mathrm{Ag}^{+}\right]\left\{1+\mathrm{K}_{3}\left[\mathrm{NH}_{3}\right]+\mathrm{K}_{3} \mathrm{~K}_{4}\left[\mathrm{NH}_{3}\right]^{2}\right\} \\
& \therefore \quad\left[\mathrm{Ag}^{+}\right]=\beta \times \mathrm{C}_{\mathrm{Ag}}=\beta \times 2 \mathrm{~S} \\
& \text { where } \quad \beta=\frac{1}{1+\mathrm{K}_{3}\left[\mathrm{NH}_{3}\right]+\mathrm{K}_{3} \mathrm{~K}_{4}\left[\mathrm{NH}_{3}\right]^{2}}
\end{aligned}
$$

Using the values of $\mathrm{K} 3, \mathrm{~K}_{4}$ and $\left[\mathrm{NH}_{3}\right]$,

$$
\beta=2.31 \times 10^{-4}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right] \\
&=[\beta \times 2 \mathrm{~S}]^{2}[\mathrm{~S}] \\
& \therefore \mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{4 \beta^{2}}\right)^{\frac{1}{3}} \\
&=5.47 \times 10^{-2}
\end{aligned}
$$

11. Spectrophotometry

a. Denote the molar absorptivity of MnO_{4}^{-}at 440 nm and 545 nm by ε_{1} and ε_{2} and that of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-}$by \in_{3} and \in_{4} :

$$
\begin{array}{ll}
\epsilon_{1}=95 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}, & \epsilon_{2}=2350 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1} \\
\epsilon_{3}=370 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}, & \epsilon_{4}=11 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}
\end{array}
$$

The absorbance A is related to \% transmittance T by
$A=2-\log T$
From the values given for the sample solution
$A_{440}=2-\log 35.5=0.45$
$A_{545}=2-\log 16.6=0.78$

Now if one denotes the molar concentrations of $\mathrm{MnO}_{4}{ }^{-}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in the steel sample solution by C_{1} and C_{2} respectively, we have
$\mathrm{A}_{440}=\epsilon_{1} \times \mathrm{C}_{1} \times 1+\epsilon_{3} \times \mathrm{C}_{2} \times 1$
$A_{545}=\epsilon_{2} \times C_{1} \times 1+\epsilon_{4} \times C_{2} \times 1$

Using the given data, we get
$\mathrm{C}_{1}=0.0003266 \mathrm{M}$
$\mathrm{C}_{2}=0.001132 \mathrm{M}$

Amount of Mn in 100 mL solution
$=0.0003266 \mathrm{molL}^{-1} \times 54.94 \mathrm{gmol}^{-1} \times 0.1 \mathrm{~L}$
$=0.001794 \mathrm{~g}$
$\% \mathrm{Mn}$ in steel sample $=\frac{0.001794 \times 100}{1.374}=0.13 \%$

Amount of Cr present in 100 mL solution
$=0.001132 \mathrm{~mol} \mathrm{~L}^{-1} \times 2 \times 52.00 \mathrm{~g} \mathrm{~mol}^{-1} \times 0.1 \mathrm{~L}$
$=0.0118 \mathrm{~g}$
$\%$ Cr in steel sample $=\frac{0.0118 \times 100}{1.374}=0.86 \%$
b. In solution 1, since all the ligand is consumed in the formation of the complex,

$$
\left[\mathrm{CoL}_{3}^{2+}\right]=\frac{2 \times 10^{-5}}{3}=0.667 \times 10^{-5}
$$

Absorptivity of the complex $\mathrm{CoL}_{3}{ }^{2+}$ is

$$
\epsilon=\frac{0.203}{0.667 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \times 1.0 \mathrm{~cm}}=3.045 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}
$$

If the concentration of the complex $\mathrm{CoL}_{3}{ }^{2+}$ in solution 2 is C ,

$$
C=\frac{0.68}{3.045 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \times 1.0 \mathrm{~cm}}
$$

$=\quad 2.233 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{Co}^{2+}\right]=\left[\mathrm{Co}^{2+}\right]_{\text {total }}-\left[\mathrm{CoL}_{3}{ }^{2+}\right]$
$=3 \times 10^{-5}-2.233 \times 10^{-5}=0.767 \times 10^{-5}$

Similarly, $\quad[\mathrm{L}]=[\mathrm{L}]_{\text {total }}-3\left[\mathrm{CoL}_{3}{ }^{2+}\right]$
$=7 \times 10^{-5}-3 \times 2.233 \times 10^{-5}=0.300 \times 10^{-5}$

The complex formation reaction is

$$
\mathrm{Co}^{2+}+3 \mathrm{~L}=\left[\mathrm{CoL}_{3}^{2+}\right]
$$

The stability constant K is given by

$$
\begin{aligned}
\mathrm{K} & =\frac{\left[\mathrm{CoL}_{3}^{2+}\right]}{\left[\mathrm{Co}^{2+}\right][\mathrm{L}]^{3}} \\
& =1.08 \times 10^{17}
\end{aligned}
$$

12. Reactions in buffer medium

$$
\begin{aligned}
& \mathrm{RNO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow \mathrm{RNHOH}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HOAc}=\mathrm{H}^{+}+\mathrm{OAc}^{-} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]} \\
& \text { i.e } \\
& \mathrm{pK}_{\mathrm{a}}=\mathrm{pH}+\log \frac{[\mathrm{HOAc}]}{\left[\mathrm{OAc}^{-}\right]}
\end{aligned}
$$

$4.76=5.0+\log \frac{\left[\mathrm{HOAc}^{-}\right]}{\left[\mathrm{OAc}^{-}\right]}$
$\frac{\left[\mathrm{HOAc}^{-}\right]}{\left[\mathrm{OAc}^{`}\right]}=0.5715$
$[\mathrm{HOAc}]+\left[\mathrm{OAc}^{-}\right]=0.500$
$\left[\mathrm{OAc}^{-}\right.$] $=0.3182$
$[\mathrm{HOAc}]=0.5-0.3182=0.1818$
mmoles of acetate $\left(\mathrm{OAc}^{-}\right)$present initially in 300 mL
$=0.3182 \times 300=95.45$
mmoles of acetic acid (HOAc) present initially in 300 mL
$=0.1818 \times 300=54.55$
mmoles of RNO_{2} reduced
$=300 \times 0.0100=3$
From the stoichiometry of the equation, 3 mmoles of RNO_{2} will consume 12 moles of H^{+}for reduction. The H^{+}is obtained from dissociation of HOAc .

On complete electrolytic reduction of RNO_{2},

$$
\begin{aligned}
& \text { mmoles of } \mathrm{HOAc}=54.55-12.00=42.55 \\
& \text { mmoles of } \mathrm{OAc}^{-}=95.45+12.00=107.45 \\
& 4.76=\mathrm{pH}+\log \frac{42.55}{107.45} \\
& \mathrm{pH}=5.16
\end{aligned}
$$

13. Identification of an inorganic compound

a. The white gelatinous precipitate in group (III) obtained by qualitative analysis of solution \mathbf{B} indicates the presence of Al^{3+} ions. The white precipitate with AgNO_{3} indicates the presence of Cl^{-}ions.

From the above data the compound \mathbf{A} must be a dimer of aluminium chloride $\mathrm{Al}_{2} \mathrm{Cl}_{6}$.
b. The reactions are as follows

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{Cl}_{6} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} 2\left[\mathrm{Al} .6 \mathrm{H}_{2} \mathrm{O}\right]^{3+}+6 \mathrm{Cl}^{-} \\
& 6 \mathrm{Cl}^{-}+6 \mathrm{AgNO}_{3} \longrightarrow 6 \mathrm{AgCl}_{(\mathrm{s})}+6 \mathrm{NO}_{3}^{-} \\
& \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \longrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+} \text {or } \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-} \\
& \mathrm{Al}^{3+}+\mathrm{NH}_{4} \mathrm{OH}_{(\text {(aq) }} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{NH}_{4}^{+} \\
& \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{NaOH}_{(\text {aq) }} \longrightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+\mathrm{Na}^{+} \\
& {\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+\mathrm{CO}_{2} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{HCO}_{3}^{-}} \\
& \mathrm{Al} \mathrm{Cl}_{6}+\mathrm{LiH} \longrightarrow\left(\mathrm{AlH}_{3}\right)_{\mathrm{n}} \xrightarrow{\text { excess of } \mathrm{LiH}}{\mathrm{Li}\left[\mathrm{AlH}_{4}\right]}^{2}
\end{aligned}
$$

14. Ionic and metallic structures

a.
i. The lattice of NaCl consist of interpenetrating fcc lattices of Na^{+}and Cl^{-}
ii. The co-ordination number of sodium is six since, it is surrounded by six nearest chloride ions.
iii. For NaCl , the number of Na^{+}ions is: twelve at the edge centres shared equally by four unit cells thereby effectively contributing $12 \times 1 / 4=$
$3 \mathrm{Na}^{+}$ions per unit cell and one at body center. Thus, a total of $3+1=4$ Na^{+}ions per unit cell.

Number of Cl^{-}ions is: six at the center of the faces shared equally by two unit cells, thereby effectively contributing $6 \times 1 / 2=3 \mathrm{Cl}^{-}$ions per unit cell and eight at the corners of the unit cell shared equally by eight unit cells thereby effectively contributing $8 \times 1 / 8=1 \mathrm{Cl}^{-}$ion per unit cell. Thus, a total of $3+1=4 \mathrm{Cl}^{-}$ions per unit cell.

Hence, the number of formula units of NaCl per unit cell $=4 \mathrm{Na}^{+}+4 \mathrm{Cl}^{-}$ $=4 \mathrm{NaCl}$
iv. The face diagonal of the cube is equal to $\sqrt{ } 2$ times 'a' the lattice constant for NaCl . The anions/anions touch each other along the face diagonal. The anion/cations touch each other along the cell edge.

Thus, $\mathrm{a}=2\left(\mathrm{r}_{\mathrm{Na}^{+}}+\mathrm{rcI}_{\mathrm{Cl}}\right)$
Face diagonal $\sqrt{2} \mathrm{a}=4 \mathrm{rcI}$
Substituting for 'a' from (1) into (2) we get :
$\sqrt{ } 2 \times 2\left(r_{\mathrm{Na}^{+}}+\mathrm{r}_{\mathrm{Cl}}\right)=4 \mathrm{r}_{\mathrm{Cl}}$ from which,
the limiting radius ratio $r_{\mathrm{Na}^{+}}{ }^{+} \mathrm{r}_{\mathrm{Cl}}=\underline{0.414}$
v. The chloride ion array is expanded to make the octahedral holes large enough to accommodate the sodium ions since, the $\mathrm{r}_{\mathrm{Na}}{ }^{+} / \mathrm{r}_{\mathrm{Cl}}$ ratio of 0.564 is larger than the ideal limiting value of 0.414 for octahedral six coordination number.
vi. As the cation radius is progressively increased, the anions will no longer touch each other and the structure becomes progressively less stable. There is insufficient room for more anions till the cation / anion radius ratio equals 0.732 when, eight anions can just be grouped around the cation resulting in a cubic eight coordination number as in CsCl .
vii. Generally, the fcc structure with a six coordination number is stable in the cation/anion radius ratio range 0.414 to 0.732 . That is, if $0.414<$ $\mathrm{r}^{+} / \mathrm{r}^{-}<0.732$ then, the resulting ionic structure will generally be NaCl type fcc.
b.
i. Bragg's law states $\lambda=2 d_{\text {hkl }} \operatorname{Sin}(\theta)$
$154 \mathrm{pm}=2 \times \mathrm{d}_{200} \operatorname{Sin}\left(15.8^{\circ}\right)$
$d_{200}=\frac{154 \mathrm{pm}}{2 \times \operatorname{Sin}\left(15.8^{\circ}\right)}=\frac{154 \mathrm{pm}}{2 \times 0.272}=283 \mathrm{pm}$
Thus, the separation between the (200) planes of NaCl is $\underline{283 \mathrm{pm}}$.
ii. Length of the unit cell edge, $a=d_{100}=2 \times d_{200}$
$\mathrm{a}=2 \times 283 \mathrm{pm}=566 \mathrm{pm}$.
iii. Since it is an fcc lattice,
cell edge, $\mathrm{a}=2\left(\mathrm{r}_{\mathrm{Na}}{ }^{+}+\mathrm{r}_{\mathrm{Cl}}^{-}\right)$
radius of sodium ion $\mathrm{r}_{\mathrm{Na}+}=\frac{\mathrm{a}-2}{2} \mathrm{r}_{\mathrm{Cl}}^{-}=\frac{566-362}{2}=\underline{102 \mathrm{pm}}$
c.
i. The difference in an $h c p$ and a ccp arrangement is as follows:

The two ' A ' layers in a hcp arrangement are oriented in the same direction making the packing of successive layers $A B A B$.. and the pattern repeats after the second layer whereas, they are oriented in the opposite direction in a ccp arrangement resulting in a ABCABC... packing pattern which repeats after the third layer.

The unit cell in a ccp arrangement is based on a cubic lattice whereas in a hcp arrangement it is based on a hexagonal lattice.
ii. Packing fraction $=\frac{\text { Volume occupied by } 4 \text { atoms }}{\text { Volume of unit cell }}$

Let 'a' be the length of the unit cell edge
Since it is an fcc lattice, face diagonal $=\sqrt{ } 2 a=4 r$ \qquad

Volume of the unit cell $=a^{3}$
Packing fraction $=\frac{4 \times 4 \pi \mathrm{r}^{3}}{3 \times \mathrm{a}^{3}}$.

Substituting for 'a' from (1) into (2), we get
Packing fraction $=\frac{4 \times 4 \times 22 \times(\sqrt{2})^{3} \times \mathrm{r}^{3}}{3 \times 7 \times(4 r)^{3}}=0.74$
Thus, packing fraction in a ccp arrangement $=\underline{0.74}$
iii. The coordination number(12) and the packing fraction (0.74) remain the same in a hcp as in a ccp arrangement.
d.
i. For an $f c c$, face diagonal $=\sqrt{ } 2 \mathrm{a}=4 \mathrm{r}_{\mathrm{Ni}}$
where $\mathrm{a}=$ lattice constant
$r_{\mathrm{Ni}}=$ radius of the nickel atom
$\mathrm{r}_{\mathrm{Ni}}=\frac{\sqrt{ } 2 \times \mathrm{a}}{4}=\frac{\sqrt{ } 2 \times 352.4 \mathrm{pm}}{4}=\underline{124.6 \mathrm{pm}}$
ii. Volume of unit cell $=a^{3}=(3.524 \AA)^{3}=43.76 \AA^{3}$
iii. Density of Nickel, $\rho_{\mathrm{Ni}}=\frac{\mathrm{Z} \times \mathrm{M} / \mathrm{N}}{\mathrm{V}}$

No. of Ni atoms, $\mathrm{Z}=4$ for an $f c c$ lattice

Avogadro constant

$$
\begin{aligned}
N=\frac{Z \times M}{\rho_{\mathrm{Ni}} V} & =\frac{4 \times 58.69 \mathrm{~g} \mathrm{~mol}^{-1}}{8.902 \mathrm{~g} \mathrm{~cm}^{-3} \times 43.76 \times 10^{-24} \mathrm{~cm}^{3}} \\
N & =\underline{6.02 \times 10^{23} \mathrm{~mol}^{-1}}
\end{aligned}
$$

15. Compounds of nitrogen

a.
i. $\quad \mathrm{NO}_{2}$: No. of electrons in the valence shell around nitrogen
$=5+0+2=7$

The Lewis structure for NO_{2} is as shown below.

:Ö: : N: Ö:

According to VSEPR, the molecule ideally should have linear geometry. However, this molecule has one single unpaired electron present on nitrogen. Due to the repulsion between the unpaired electron and the other two bonded pairs of electrons, the observed bond angle is less than $180\left(132^{\circ}\right)$. Thus, the shape of the molecule is angular as shown below.

ii. $\quad \mathrm{NO}_{2}{ }^{+}$: No. of electrons in the valence shell around nitrogen
$=(5+2+2-1)=8$

The Lewis structure is as shown below

```
Ö::\stackrel{+}{N}::Ö:
```

Thus, there are no non-bonded electrons present on nitrogen. The two σ - bonds will prefer to stay at 180° to minimize repulsion between bonded electron pairs giving a linear geometry $\left(180^{\circ}\right)$. The π-bonds do not influence the shape.

$\mathrm{NO}_{2}{ }^{-}$: No. of electron in the valence shell around nitrogen
$=5+2+1=8$

The Lewis structure is as shown below

In case of NO_{2}^{-}, there is a lone pair of electrons present on nitrogen.
Due to strong repulsion between the lone pair of electrons and the bonded pairs of electrons the angle between the two bond pairs shrinks from the ideal 120° to 115°.
b. In case of trimethylamine, the shape of the molecule is pyramidal with a lone pair present on nitrogen. Due to the lone pair Me-N-Me angle is reduced from $109^{\circ} 4^{\prime}$ to 108°.

However, in case of trisilylamine, d orbital of silicon and porbital of nitrogen overlaps giving double bond character to the $\mathrm{N}-\mathrm{Si}$ bond. Thus, delocalisation of the lone electron pair of nitrogen takes place and the resultant molecule is planar with 120° bond angle.

filled p-orbital
c. Both N and B are tricovalent. However, NF_{3} is pyramidal in shape. In case of $B F_{3}$, the B-F bond gets double bond character due to the overlapping of p orbitals present on boron and fluorine. The observed bond energy is, therefore, much greater in BF_{3}

d.
i. The difference in boiling points of NF_{3} and NH_{3} is due to hydrogen bonding which is present in ammonia.

High electronegativity of fluorine decreases the basicity of nitrogen in NF_{3}. Thus, NF_{3} does not act as a Lewis base.
ii. In NF_{3}, the unshared pair of electrons contributes to a dipole moment in the direction opposite to that of the net dipole moment of the

N-F bonds. See figure (a).

NF_{3}
(a)

(b)

In NH_{3}, the net dipole moment of the $\mathrm{N}-\mathrm{H}$ bonds and the dipole moment due to the unshared pair of electrons are in the same direction. See figure (b).
e.

$$
\begin{aligned}
& 2 \mathrm{NaNO}_{3}+8 \mathrm{Na}(\mathrm{Hg})+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+8 \mathrm{NaOH}+8 \mathrm{Hg} \\
& \mathrm{NH}_{2} \mathrm{OH}+\mathrm{EtNO}_{2}+2 \mathrm{NaOEt} \rightarrow \mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+3 \mathrm{EtOH}
\end{aligned}
$$

$\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ is the salt of $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ (Hyponitrous acid).

Structure :

or

Isomer is: $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NO}_{2} \quad$ (Nitramide)

16. Structure elucidation with stereochemistry
a.

3-oxo-1,3-pentanedioic acid
α - Hydroxy carboxylic acids undergo similar reaction.
b. Molecular weight of $\mathbf{A}=236$
$20 \mathrm{~mL} 0.05 \mathrm{M} \mathrm{KOH} \equiv 118 \mathrm{mg} \mathrm{A}$
$1000 \mathrm{~mL} 1 \mathrm{M} \mathrm{KOH} \equiv 118 \mathrm{~g} \mathrm{~A}$
\therefore The acid is dibasic
Molecular weight of $\mathbf{A}=236$
$80 \mathrm{mg} \mathrm{Br} 2_{2} \equiv 118 \mathrm{mg} \mathbf{A}$
$160 \mathrm{gm} \mathrm{Br}_{2} \equiv 236 \mathrm{~g} \mathrm{~A}$
A contains one double bond

It has anisole ring in the molecule

It is formed from $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{COOH}$
It has molecular formula $\mathbf{C}_{12} \mathbf{H}_{12} \mathbf{O}_{5}$
Due to steric hindrance the attachment of the aliphatic portion on the anisole ring will be para with respect to $-\mathrm{OCH}_{3}$. Hence the structure will be

As \mathbf{A} forms anhydride the two COOH groups should be on the same side of the double bond.
c. Isomers of \mathbf{A}

(E) 3-(2-methoxyphenyl)-2-pentenedioic acid

(Z) 3-(2-methoxyphenyl)-2-pentenedioic acid

(Z) 3-(4-methoxyphenyl)-2-pentenedioic acid
d. Two products are possible when compound \mathbf{A} reacts with bromine.

[1]

[2]

Structures 1 and 2 are enantiomers.
e.

f.

B

C
g. In the formation of compound \mathbf{A} from anisole, the attack takes place at the p position of the $\mathbf{O C H}_{3}$ group. However, when compound \mathbf{B} is formed from phenol, the attack takes place at the o-position of the $\mathbf{O H}$ group. Steric
hindrance of OCH_{3} group favours the attack at the para position. Steric hindrance of the $\mathbf{O H}$ group is comparatively less. Thus, the attack is possible at the ortho or para positions. However, addition at ortho position is favoured as it leads to cyclization of the intermediate acid to stable B.
h. Phenol has only one $\mathbf{O H}$ group on the phenyl ring whereas resorcinol has two OH groups on the phenyl ring at the m-positions. Hence, position 4 is considerably more activated (i.e, electron rich) in the case of resorcinol.

Phenol

Resorcinol

Therefore, under identical reaction conditions, the yield of compound \mathbf{C} is much higher than that of \mathbf{B}.

17. Organic spectroscopy and structure determination

a. The given Molecular formula is $\mathbf{C}_{3} \mathbf{H}_{6} \mathbf{O}$. Therefore, the possible structures are:

I

II

III

IV

v

VI

The NMR spectrum of compound \mathbf{A} shows a single peak which indicates that all the protons in \mathbf{A} are equivalent. This holds true only for structure I. The IUPAC name of this compound is 2-propanone.

The NMR spectrum of compound \mathbf{B} shows four sets of peaks, which indicate the presence of four non-equivalent protons. This holds true for structures III and IV. However, for structure IV, no singlet peak (see peak at $\delta=3$) will be observed. So, compound B must have structure III. The IUPAC name is 1 methoxyethene.
b.

Three doublets of doublets centred at $6.5 \mathrm{ppm}, 3.9 \mathrm{ppm}, 3.5 \mathrm{ppm}$ are seen in the spectrum. The assignments in the spectrum are

H_{a}	$:$	6.5 ppm
H_{b}	$:$	3.5 ppm
H_{c}	$:$	3.9 ppm

Due to the presence of electron donating $\mathbf{O C H}_{3}$, the trans proton H_{b} has higher electron density and thus more shielded than H_{c}. Thus, H_{b} appears upfield as compared to H_{c}. There is also a singlet line at $\delta=3$. This corresponds to the \mathbf{H} in $\mathbf{O C H}_{3}$.
c. Coupling constants

Note: $J=$ (difference in two lines in ppm) \times (Instrument frequency) Geminal coupling < cis-vicinal coupling < trans-vicinal coupling
d.

Peak positions in Hz (for $\mathbf{4 0 0} \mathbf{~ M H z ~ i n s t r u m e n t) ~}$	Peak positions in Hz (for $\mathbf{6 0 0} \mathbf{~ M H z ~ i n s t r u m e n t) ~}$
2614	3921
2602	3903
2598	3897
2586	3879

e. Compound \mathbf{A} will react with malonic acid in the following manner

Meldrum's acid ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$)

The structure of Meldrum's acid is consistent with the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and IR data. The peak in the IR spectrum at $1700-1800 \mathrm{~cm}^{-1}$ is because of the $\mathrm{C}=\mathrm{O}$ stretching. The presence of peaks only between $0-7 \delta$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum indicates that the compound doesn't have any acidic group like COOH or OH .

If compound B reacts, the only possibility is that it will add across the double bond giving a product with molecular formula equal to $\mathbf{C}_{6} \mathbf{H}_{10} \mathbf{O}_{5}$. This molecular formula does not match with the one stated in the problem.

Compound B
 Malonic Acid

f. The increased acidity is due to active $-\mathrm{CH}_{2}$ group of Meldrum's acid flanked by two - CO groups. The carbanion formed at $-\mathrm{CH}_{2}$ will be stabilised by these -CO groups, which are coplanar.

Meldrum's acid ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$)
g. The condensation product of Meldrum's acid with an aromatic aldehyde has the structure

18. Polymer synthesis

a.

b.

P

\qquad

Q

R

C.

p-xylene

dimethyl benzene-1,4-bis(acetate)
d. Three signals (three singlets for $-\mathrm{CH}_{3},-\mathrm{CH}_{2}$ and aromatic protons)
e. Structure of polymer

f.

g. With Glycerol (being a triol), cross-links between the polymer chains involving
the secondary hydroxyl group will form giving a three-dimensional network polymer is possible.

Glycerol

The polymer is unsuitable for drawing fibers because of its cross-linked, resinlike property.

19. Organic synthesis involving regioselection

a. The product obtained in the presence of catalyst HSbF_{6} is m-bromophenol. From the mass spectra given in the problem, direct bromination of phenol gives o / p-bromo derivatives as OH group present in phenol is o/p-directing.
b.

Compound B may undergo nucleophilic reaction at the carbon bearing bromine. Compound \mathbf{C} contains a carbanion and hence functions as a
nucleophile and will attack an electrophile. Thus, reactivity of \mathbf{B} is reversed on its conversion to \mathbf{C} (umpolung).
c.

Cyclohexanone

Tramadol
d.

Tramadol has two asymmetric carbon atoms. It has two pairs of enantiomers .

20. Carbon acids

a. The molecular formula of the keto ester is $\mathbf{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}$. Since \mathbf{X} and \mathbf{Y} are keto esters, they must have the following units-

This accounts for $\mathrm{C}_{4} \mathrm{O}_{3}$. The remaining part comprises of CH_{8}. Thus, only two types of ester groups are possible, methyl or ethyl.

For a methyl ester: $\mathbf{C H}_{3}$ will be a part of the ester moiety. This leaves CH_{5} to be attached.

For an ethyl ester: $\mathbf{C H}_{2} \mathbf{C H}_{3}$ will be a part of the ester group. Therefore H_{3} unit needs to be accounted for.

Therefore, possible structures of the keto esters are:

Structure I

Structure II

b. Reaction sequence for keto esters
*

Structure I

Keto acid ($\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$)

Keto acid ($\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$)
*

Keto acid ($\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$)

β - Keto acid

$\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\right)$
 Structure II

β-Keto acid
$-\mathrm{CO}_{2}$

($\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}$)

- Structure I gives a keto acid with molecular formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ which matches with the formula of the keto acid obtained from Y. \therefore Structure I is Y.
- Structure II gives a neutral compound with molecular formula $\mathbf{C}_{11} \mathbf{H}_{14} \mathbf{O}$ that matches with the molecular formula of the neutral acid stated for X. \therefore Structure II is \mathbf{X}.
- Structure III gives a keto acid with molecular formula $\mathbf{C}_{11} \mathbf{H}_{12} \mathbf{O}_{3}$ that also does not match with any given molecular formula.

Hence the two keto esters are :

Compound \mathbf{Y}
(Structure I)
α-keto ester

(Structure II)
β-keto ester
c. The β-keto ester gives on hydrolysis a β-keto acid. This acid readily undergoes decarboxylation involving a 6-membered transition state, giving a neutral product (Ketone).

d. i. When 1 equivalent of LDA is used compound \mathbf{X} produces a carbanion (monoanion) as shown below.

ii. Use of 2 equivalents of LDA leads to the formation of a dianion .

21. Amino acids and enzymes

a. The protonated amino group has an electron withdrawing effect. This enhances the release of proton from the neighboring -COOH , by stabilizing the conjugate base $-\mathrm{COO}^{-}$. This effect is greater when the $-\mathrm{COO}^{-}$is physically closer to $-\mathrm{NH}_{3}{ }^{+}$. As $-\mathrm{NH}_{3}{ }^{+}$group is present on the α-carbon, the effect is greater on $\alpha-\mathrm{COOH}$ than on the $\gamma-\mathrm{COOH}$. So the pKa value of α COOH is lower than that of $\gamma-\mathrm{COOH}$.
b. The ratio of ionized to unionized $\gamma-\mathrm{COOH}$ group is obtained by using Henderson-Hasselbalch equation,

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{COO}^{-}\right]}{[\mathrm{COOH}]}
$$

The $\mathrm{pH}=6.3$ and pKa of $\gamma-\mathrm{COOH}$ group is 4.3. Substituting these values in the above equation we get,

$$
\begin{aligned}
& 6.3=4.3+\log \frac{\left[\mathrm{COO}^{-}\right]}{[\mathrm{COOH}]} \\
& \therefore[\mathrm{COOH}]=\frac{100}{101}=0.99 \% \text { at } \mathrm{pH} 6.3
\end{aligned}
$$

c. Glutamic acid has two pKa values lower than 7.0 and one pKa value higher than 7.0. Thus, the isoelectric point (pl) for glutamic acid will lie between the two acidic pKa values.

$$
\mathrm{pl}=(2.2+4.3) / 2=3.25
$$

At $\mathrm{pH}=3.25$, net charge on glutamic acid will be zero since this pH coincides with pl of glutamic acid. Hence, glutamic acid will be stationary at pH 3.25.
d. In the hydrolysis of the glycosidic bond, the glycosidic bridge oxygen goes with C_{4} of the sugar \mathbf{B}. On cleavage, ${ }^{18} \mathrm{O}$ from water will be found on C_{1} of sugar \mathbf{A}.

NOTE: The reaction proceeds with a carbonium ion stabilized on the C_{1} of sugar A.
e. Most glycosidases contain two carboxylates at the active site that are catalytically important. Lysozyme is active only when one carboxylate is protonated and the other is deprotonated. A descending limb on the alkaline side of the pH profile is due to ionization of -COOH . An ascending limb on the acidic side is due to protonation of $-\mathrm{COO}^{-}$. Thus the enzyme activity drops sharply on either side of the optimum pH . The ideal state of ionization at $\mathrm{pH}=$ 5 will be,

NOTE: It is desirable to study the amino acid side chains (R-groups) and their ionization properties. The pKa values of these groups significantly determine the pH dependence of enzyme activity.
f. Answers 2 and 4 are correct. Ionization of -COOH leads to generation of a negatively charged species, $-\mathrm{COO}^{-}$. This charged species is poorly stabilized by diminished polarity and enhanced negative charge. Hence ionization of -COOH group is suppressed and the pKa is elevated.
g. The ratios of pseudo-first order rate constant (at $1 \mathrm{M} \mathrm{CH} \mathrm{COO}^{-}$) in (a) to the first order rate constants in (b) and (c) provide the effective local concentrations.
For example, $\quad(2) \quad(0.4) /(0.002)=200$ i.e the effective concentration $=200 \mathrm{M}$ (20) / (0.002) $=10,000$
i.e. the effective concentration $=10,000 \mathrm{M}$
h. In addition to the enhanced local concentration effect, the COO^{-}group in (3) is better oriented to act in catalysis. The double bond restricts the motion of COO^{-}and thus reduces the number of unsuitable orientation of $-\mathrm{COO}^{-}$, thereby enhancing the reaction rate.

22. Coenzyme chemistry

a. Step 1: Schiff base formation

Step 2: Proton abstraction

Step 3: Reprotonation

Step 4: Hydrolysis

b. From the information stated in the problem, the following conclusions can be drawn:

Structure 2: Removal of the phosphate group does not hamper the activity. This indicates that the phosphate is not critical for the activity of PLP.

Similarly,
Structure 3: $\mathrm{CH}_{2}-\mathrm{OH}$ is not critical.
Structure 4: Phenolic OH is needed in the free form.
Structure 5: $\quad \mathrm{NO}_{2}$, a well-known electron withdrawing group, causes benzaldehyde to become activated. Hence positively charged nitrogen in structure 3 must be also important for its electron withdrawing effect.
Structure 6: Electron withdrawing effect of NO_{2} is only effective from the para position. Introduction of this group at meta position leads to an inactive analog.
c. Role of metal ion: The metal ion is involved in a chelation, as shown below, and provides an explanation for the critical role of the phenolic OH . The planar structure formed due to chelation assists in the electron flow.

d. Step 1: Schiff base formation and decarboxlyation

$+$ CO_{2}

Step 2: Tautomerization

Step 3: Hydrolysis

e. Step 1: Schiff base formation followed by carbon- carbon bond scission.

Step 2: Tautomerization followed by hydrolysis

23. Protein folding

a. The planar amide group, that is, $\mathrm{C}_{\alpha}, \mathrm{O}, \mathrm{H}$ and the next C_{α} are in a single plane - is stabilized by resonance. The C-N bond of the amide assumes partial double bond character and the overlap between p orbitals of O, C and N is maximized. The C_{α} 's across this partial double bond can assume cis or trans arrangement.

b. With nineteen of the amino acids, the trans arrangement is sterically favoured (i. e. it is comparatively less crowded). In the case of proline, cis and trans arrangements are almost equally crowded.

trans - amide

cis - amide

c. Note about Ramchandran diagram: In a polypeptide, the amide units are planar (partial double bond character across the $\mathrm{N}-\mathrm{C}$ bond) but the bonds connecting N and C_{α}, and the carbonyl carbon and C_{α} are free to rotate. These rotational angles are defined as ϕ and ψ, respectively. The conformation of the main chain is completely defined by these angles. Only some combinations of these angles are allowed while others are disallowed due to steric hindrance. The allowed range of ϕ and ψ angles are visualised as a steric contour diagram, shown below, known as the Ramachandran diagram.

For nineteen amino acids, the conformational choice is largely restricted to the so-called α and β regions on left half of the Ramachandran diagram (Panel A). This is due to the L - chiral nature of amino acids and the steric effects of their R groups. Glycine is an achiral residue with H as the R group. Therefore, much larger conformational regions on both left and right halves of Ramachandran diagram are accessible to this residue (Panel B).

Panel A

Panel B
d. Consecutive residues in α conformation form the α-helix. Similarly, consecutive residues in β conformation form the β-sheet. Both α-helix and β sheet structures feature extensive networks of hydrogen bonds which stabilise them. Thus random combinations of α and β conformations are rarely found.

e. For a polypeptide to fold in an aqueous environment, nearly half the R groups should be nonpolar (water hating) and the other half polar (water loving). Upon folding to form a globular protein, the nonpolar R groups are packed inside (away from water) while the polar groups are positioned on the surface (in contact with water). The phenomenon is similar to the hydrophobic aggregation of a micellar structure in water. If all the R groups are either polar or non-polar, no hydrophobic segregation is possible, and no folding will occur.

f. Alternating polar/nonpolar periodicity of R groups favors β-sheets. All the nonpolar groups will face the apolar surface while the polar groups will be exposed to water. So the net folding will be like a β-sheet. On the other hand, a complex periodic pattern of R group polarities is needed in forming the α helix.

24. Protein sequencing

The sequence of amino acids in a protein or polypeptide is expressed starting from the N-terminal amino acid. From Edman degradation method the N-terminal amino acid is Asp. In the N-terminal fragment generated by trypsin or CNBr this amino acid should, therefore, be in position1. All other peptides generated by CNBr cleavage will
be preceded by Met on their N-terminal side. Likewise, all peptides generated by trypsin should be preceded by Arg or Lys. As we proceed from N-terminal amino acid to C-terminal amino acid, we carefully examine the different amino acids in each position shown in Table1(a) and 1(b)

For the first fragment starting from N-terminal Asp in position 1, we look for residues common in each position to CNBr and trypsin cleaved peptides. This gives

Position	1	2	3	4	5	6
Residue	Asp	-Pro/Tyr	- Tyr	-Val	-lle/Leu	-Arg

At position 6 Arg will render the polypeptide susceptible to trypsin. Therefore, $7^{\text {th }}$ residue of this CNBr fragment (Table1a) should be same as residue1 in another peptide generated by trypsin and $8^{\text {th }}$ residue of this CNBr fragment will be same as residue 2 in Table 1(b). Therefore we get

$7 \quad 8$

Gly/Phe - Tyr

Since 8 will be Tyr, Pro will be assigned to position 2 of the polypeptide

Residue 9 in the polypeptide should be at position 3 in the Table1(b) and residues $10,11,12,13$ and 14 should be at positions $4,5,6,7$ and 8 respectively in Table1(b). The same residues should be in positions 1 onwards in Table1(a).

None of the residues in position 3 (Table1b) is same as in position 1 in Table 1(a). However, positions 4 to 8 in Table 1(b) have residues common with positions 1 to 5 in Table 1(a). Further Glu in position 1 (Table 1a) will be preceded by Met (since it is a part of CNBr cleaved peptide). And position 3 in Table 1(b) has Met. Therefore, we get

$$
\begin{array}{llllll}
9 & 10 & 11 & 12 & 13 & 14
\end{array}
$$

Met- Glu - Thr - Ser - Ilu - Leu

Position 5 in the polypeptide can now be firmly assigned to llu

Positions 15 and 16 in the polypeptide will be beyond residue 8 in the trypsin cleaved peptide (not shown here). We now attempt to construct the remaining trypsin or CNBr fragments.

Table 1 (a) shows Arg in position 1. This will be preceded by a Met. Matching of the unassigned residues in position 2 in Table 1(a) with those in position 1 in Table 1(b) and for subsequent positions by the procedure demonstrated earlier that will give.

Met - Arg - Tyr - Pro - His - Asn - Trp - Phe - Lys - Gly - Cys
(The last two residues are the unassigned residues in position 1 and 2 in Table 1b) Considering (2), (5) and (6) together it is now possible to firmly assign position 7 on the polypeptide to Gly
a. The amino acid sequence common to the first fragments (N-terminal) obtained by CNBr and trypsin treatments is

1	2	3	4	5
Asp	-	Pro	-	Tyr

b. The sequence of the first fragment generated by CNBr treatment is

1	2	3	4	5	6	7	8
Asp- Pro	- Tyr-	Val-	Ile	-Arg	-Gly	-Tyr	

To complete the sequence of the polypeptide we need to construct the sequence of another trypsin fragment. Starting from position 4-(Arg) in Table 1(a) we get the sequence,

Arg-Phe-His-Thr-Ala
At this stage, we again examine the unassigned residues. The Arg in (8) will have to be serially preceded by Asn, Gln, Gly and Met (these are the unassigned residues in respective positions in Table 1(a). We then get the sequence,

Met-Gly-Gln-Asn-Arg-Phe-His-Thr-Ala
And following the Ala in (9)
Leu-Ser-Cys-Glu

From (9) and (10), we get the sequence
Met-Gly-Gln-Asn-Arg-Phe-His-Thr-Ala-Leu-Ser-Cys-Glu
Since the smallest fragment is a dipeptide (Table 1b) and (6) shows that it follows Lys, it follows that this will be at the C-terminal end. Therefore, the partial sequence shown in (6) will follow the partial sequence shown in (11). Thus, we get

Met-Gly-Gln-Asn-Arg-Phe-His-Thr-Ala-Leu-Ser-Cys-Glu-Met-Arg-Tyr-Pro-His-Asn-
Trp-Phe-Lys-Gly-Cys
There is already a Met in position 9 of the polypeptide. The next Met can only come earliest at position 17 since CNBr fragment have at least 8 amino acids. Therefore, the starting residues of (12) can be assigned position 17.

This leaves positions 15 and 16 which will be filled by the unassigned residues Val and Ala in the CNBr fragment at positions 6 and 7 (Table 1a).
c. The final sequence, therefore, will be

CNBr Trypsin
$\begin{array}{llllllllllll}23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & \downarrow & 31 & \downarrow & 32\end{array} \quad 33$
Trypsin

His - Asn - Trp - Phe - Lys - Gly - Cys

Arrows (\downarrow) indicate the CNBr and trypsin-labile sites.
d. There are 6 basic amino acid residues in the polypeptide. $6 / 40=15 \%$
e. An α helix has 3.6 amino acid residues per turn of $5.4 \AA$.

Thus, the length of the polypeptide in α helical conformation will be :
$40 / 3.6 \times 5.4=59.4 \AA$.
e. The polypeptide has 40 amino acids. Since each amino acid is coded for by a triplet of nucleotides, the total number of nucleotide pairs in the double stranded DNA of the exon will be
$40 \times 3=120$ base pairs.
The molecular weight of the DNA making the exon
$=330 \times 2 \times 120$
$=79200 \mathrm{Da}$
g. If the exon contains 120 base pairs and A and C are in equal numbers, there will be 60 A-T pairs and 60 G-C pairs. Each A-T pair is held by two H-bonds and each G-C pair is held by three H -bonds. Hence the total number of H bonds holding this double helix is :
$(60 \times 2)+(60 \times 3)=300$

