

Uniting Elements, Strengthening Bonds, Shaping Tomorrow!

30th Baltic Chemistry Olympiad Tartu, Estonia, May 4th-6th, 2024

Theoretical exam solutions

Student's code:

Problem	1	2	3	4	5	6
Points						

May 5th, 2024 Tartu, Estonia

Problem 1. Polygonal chemistry. Author: Siim Kaukver

a) Dinitro(*N*,*N*,*N*',*N*'-tetramethylethylenediamine)palladium(II)

(2 pts)

(18 pts)

b) Structures of A1–A4 and B1–B2: Each correct structure gives 3 points.

c) a = 3, b = 4

d) First, ΔH has to be found using the Van't Hoff equation:

$$\ln\left(\frac{K_1}{K_2}\right) = -\frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Substituting $T_1 = 313$ K, $T_2 = 333$ K, $K_1 = 21.5$ and $K_2 = 32.1$ and calculating, we get $\Delta H = 17.38 \text{ kJ} \cdot \text{mol}^{-1}$.

A new equation can now be written to calculate K_3 . It can be assumed ΔH is constant in the given temperature range. Whether K_3 is found via K_1 or K_2 makes no difference – both approaches are equally valid.

$$\ln\left(\frac{K_3}{K_1}\right) = -\frac{\Delta H}{R} \left(\frac{1}{T_3} - \frac{1}{T_1}\right)$$

By substituting known parameters and calculating, we get $K_3 = 26.4$. (3 pts)

- e) Equilibrium constant *K* for the reaction $3\mathbf{A} \rightleftharpoons 4\mathbf{B}$ can be written as $K = \frac{[\mathbf{B}]^4}{[\mathbf{A}]^3}$. (1 *pt*)
 - Let the ratio $\frac{[\mathbf{B}]}{[\mathbf{A}]}$ be equal to *x*. Hence, $K = [\mathbf{B}] \cdot x^3$. (2 pts)

Mass balance for Pd:
$$c_0 = 4 \cdot [\mathbf{A}] + 3 \cdot [\mathbf{B}].$$
 (2 pts)

By dividing the mass balance equation by [**B**], the following equation is obtained:

$$\frac{c_0}{|\mathbf{B}|} = \frac{4}{x} + 3$$
, from which $[\mathbf{B}] = \frac{c_0 x}{3x + 4}$. (2 pts)

Now, *K* can be expressed as: $K = [\mathbf{B}] \cdot x^3 = \frac{c_0 x^4}{3x+4}$. (1 *pt*)

(2 pts)

Finding the exact solution is impossible under exam conditions, but a simplification can be made.

As 3x >> 4, it can be assumed that $3x + 4 \approx 3x$. Therefore, $K = \frac{c_0 x^4}{3x + 4} \approx \frac{c_0 x^3}{3}$. (3 *pts*)

Finally,
$$x = \sqrt[3]{\frac{3K}{c_0}} = \sqrt[3]{\frac{3 \cdot 26.4}{1.154 \cdot 10^{-3}}} \approx 41.$$
 (1 pt)

Note: the exact solution is x = 41.38, hence the simplification is justified.

Problem 2. Unknown amino acid. Author: Andreas Päkk

- a) $n(N) = n(NH_3) = n(HCl) n(NaOH)$ (1 pt) $n(N) = 0.1350 \text{ mol} \cdot dm^{-3} \cdot 0.04000 \text{ dm}^3 - 0.1500 \text{ mol} \cdot dm^{-3} \cdot 0.01683 \text{ dm}^3 = 0.002875 \text{ mol}$ $w(N) = \frac{0.002875 \text{ mol} \cdot 14.01 \text{ g} \cdot \text{mol}^{-1}}{0.3425 \text{ g}} \cdot 100\% \approx 11.76\%$ (1 pt)
- **b)** Ammonium ions, which remain in the titrated solution, act as a weak acid: $NH_4^+ \rightleftharpoons NH_3 + H^+$

As the equilibrium is considerably shifted to the left, $[H^+]_{eq} = [NH_3]_{eq}$, therefore:

$$K_{a} = \frac{[\mathrm{NH}_{3}][\mathrm{H}^{+}]}{[\mathrm{NH}_{4}^{+}]} = \frac{[\mathrm{H}^{+}]^{2}}{[\mathrm{NH}_{4}^{+}]} \implies [\mathrm{H}^{+}] = \sqrt{K_{a} \cdot c(\mathrm{NH}_{4}^{+})} = \sqrt{K_{a} \cdot \frac{n(\mathrm{HCl}) - n(\mathrm{NaOH})}{V(\mathrm{HCl}) + V(\mathrm{NaOH})}}$$
(2 pts)

$$pH = -\log[H^+] = -\log\left(\sqrt{5.6 \cdot 10^{-10} \cdot \frac{0.002875 \text{ mol}}{0.05683 \text{ dm}^3}}\right) \approx 5.27$$
(1 pt)

c) Since **X** has two given dissociation constants, it can be assumed that there is only one ionizable amino group in its structure. The general formula of amino acids is R-CH(NH₂)COOH or R-CH(NH₃⁺)COO⁻ (zwitterionic form), where the R group represents a specific side chain. $M(R) = \frac{1 \cdot 14.01 \text{ g} \cdot \text{mol}^{-1} \cdot 100\%}{11.76\%} - M(C_2H_4NO_2) = 45.07 \text{ g} \cdot \text{mol}^{-1}$ (1 pt)

R corresponds to the hydroxylated carbon chain $CH_3CH(OH)$ –, thus the condensed structural formula of **X** is $CH_3CH(OH)CH(NH_2)COOH$ or $CH_3CH(OH)CH(NH_3^+)COO^-$ (Thr). (1 pt)

d) Each correctly drawn stereochemical structure gives 1 point – in total 4 points. **Each pair** of correct configuration indications (S/R) gives 0,5 points – in total 2 points.

e) Each correctly drawn stereochemical ionic form gives 1 point – in total 3 points.

f) Two-step dissociation of **X**:

1.
$$H_2A^+ \rightleftharpoons H^+ + HA$$
 $K_{a1} = \frac{[H^+][HA]}{[H_2A^+]} \Rightarrow [H_2A^+] = \frac{[H^+][HA]}{K_{a1}}$
2. $HA \rightleftharpoons H^+ + A^ K_{a2} = \frac{[H^+][A^-]}{[HA]} \Rightarrow [A^-] = \frac{K_{a2}[HA]}{[H^+]}$

At the isoelectric point $[H_2A^+] = [A^-]$, therefore:

$$\frac{[\mathrm{H}^+][\mathrm{HA}]}{K_{a1}} = \frac{K_{a2}[\mathrm{HA}]}{[\mathrm{H}^+]} \implies \frac{[\mathrm{H}^+]}{K_{a1}} = \frac{K_{a2}}{[\mathrm{H}^+]} \implies [\mathrm{H}^+] = \sqrt{K_{a1}K_{a2}} = \frac{K_{a1}K_{a2}}{2}$$
$$\mathrm{pH} = -\mathrm{log}[\mathrm{H}^+] = \frac{-\mathrm{log}K_{a1} - \mathrm{log}K_{a2}}{2} = \frac{\mathrm{pK}_{a1} + \mathrm{pK}_{a2}}{2} = \frac{2.09 + 9.10}{2} \approx \mathbf{5.60}$$

Problem 3. Reverse engineering. Author: Ritums Cepītis

- a) $\ln[A] = \ln[A]t kt$, where $k = \frac{\ln(0.05) \ln(1)}{30 \text{ s}} = 0.1 \text{ s}^{-1}$ (2 pts) b) $k_{300} = 0.1 \text{ s}^{-1}$; $k_{2024} = 1.0 \text{ s}^{-1}$
- $\ln\left(\frac{k_{300}}{k_{2024}}\right) = \frac{E_a}{8.314} \left(\frac{1}{2024} \frac{1}{300}\right), \text{ where } E_a = 6.7 \text{ kJ} \cdot \text{mol}^{-1}$ (3 pts)
- **c)** T_1 and t_2 .

(2 pts)

(4 pts)

- **d)** If T_1 is chosen, the answer is $T_1 = 1230$ K. (2 pts)
 - If t_2 is chosen, the answer is $t_2 = 3.79 \cdot 10^{-8}$ s. (2 pts)
- e) The equations for the missing elementary steps:

$$A \rightarrow A' + B \qquad k_1$$

$$A' + B \rightarrow A \qquad k_{-1}$$

$$A' + B \rightarrow B' + B + C \qquad k_2$$

$$A' + B' \rightarrow 2B \qquad k_3$$

Mechanism correspondance to the given reaction law:

$$\begin{aligned} \frac{d(B')}{dt} &= 0 = k_2[A'][B] - k_3[A'][B'] \implies [B'] = \frac{k_2[A'][B]}{k_3[A']} = \frac{k_2[B]}{k_3} \\ \frac{d(A')}{dt} &= 0 = k_1[A] - k_{-1}[A'][B] - k_2[A'][B] - k_3[A'][B'] = \\ &= k_1[A] - k_{-1}[A'][B] - k_2[A'][B] - k_2[A'][B'] = \\ &= k_1[A] - [A'](k_{-1}[B] + 2 \cdot k_2[B]) \\ &\Rightarrow [A'] = k_1[A] \\ - \frac{d(A)}{dt} &= k_1[A] - k_{-1}[A'][B] = k_1[A] - \frac{k_{-1}k_1[A]}{(k_{-1} + 2 \cdot k_2)} = \left(\frac{2 \cdot k_{-1}k_1}{k_{-1} + 2 \cdot k_2}\right)[A] \end{aligned}$$

(2 pts)

(4 pts)

Problem 4. Have you heard about cerium? Author: Deimantas Šmigelskas

Part I. Minerals

- a) There are 4 tetrahedral PO_{4³⁻} ions and 4 Ce atoms in a unit cell which consists of 24 atoms in total.
 (1 pt)
- **b) Th** isotopes are radioactive while La and Nd have stable isotopes. (1 *pt*)
- **c)** $\Delta m = n(U) \cdot M(U) n(Ce) \cdot M(Ce) = 4.53 \text{ g}$

$$97.91n = 4.53 \Rightarrow n = 0.0463$$
 (1 pt)

$$\frac{n}{n_0} = \frac{0.0463}{\frac{m(\text{CePO}_4)}{M(\text{CePO}_4)}} = 0.71$$
(1 pt)

d) $N_n(^{238}_{92}\text{U}) = N_0 e^{-\lambda_U t}$

Since there was no pre-existing lead in the mineral: $N_0 = N_n \begin{pmatrix} 238\\92 \end{pmatrix} + N_n \begin{pmatrix} 206\\82 \end{pmatrix}$ (1 *pt*)

$$\frac{N_{n}\binom{238}{92}U}{N_{n}\binom{238}{92}U + N_{n}\binom{206}{82}Pb} = e^{-\lambda_{U}t} \implies \ln\left(\frac{N_{n}\binom{238}{92}U}{N_{n}\binom{238}{92}U + N_{n}\binom{206}{82}Pb}\right) = -\lambda_{U}t \implies t = \frac{\ln\left(\frac{N_{n}\binom{238}{92}U}{N_{n}\binom{238}{92}U + N_{n}\binom{206}{82}Pb}\right)}{-\lambda_{U}} = \frac{\ln\left(\frac{N_{n}\binom{238}{92}U + N_{n}\binom{206}{82}Pb}{N_{n}\binom{238}{92}U}\right)}{\lambda_{U}} = \frac{\ln\left(1 + \frac{N_{n}\binom{206}{82}Pb}{N_{n}\binom{238}{292}U}\right)}{\lambda_{U}} \qquad (2 \ pts)$$

$$\lambda = \frac{\ln(2)}{t_{0.5}}$$

Moles of atoms can be used instead of the number of atoms and Pb mass is 206 because of $^{238}U \rightarrow ^{206}Pb$ decay.

$$t = \frac{\ln\left(1 + \frac{n_n\binom{206}{82}\text{Pb}}{n_n\binom{238}{92}\text{U}}\right)}{\frac{\ln(2)}{t_{0.5}}} = \frac{\ln\left(1 + \frac{\frac{6.05 \text{ g} \cdot 0.0001}{222 \text{ g} \cdot \text{mol}^{-1}}\right)}{\frac{6.05 \text{ g} \cdot 0.0001}{524 \text{ g} \cdot \text{mol}^{-1}}\right)}{\ln(2)} \cdot t_{0.5} = 0.0453 \cdot t_{0.5} = 0.202 \text{ billion}$$
(1 pt)

e) 1 mol of CO_3^{2-} produces 1 mol of CO_2 , which gives:

$$n(\text{CO}_3^{2-}) = \frac{m(\text{CO}_2)}{M(\text{CO}_2)} = 0.014224 \text{ mol}$$
 (0.5 pts)

$$M(\text{Ce}_{0.48}\text{La}_{0.37}\text{Nd}_{0.1}\text{Pr}_{0.04}\text{Sm}_{0.01}\text{CO}_3\text{F}) = \frac{m}{n(\text{CO}_3^{2-})} = 219.235 \text{ g}\cdot\text{mol}^{-1}$$
(0.5 pts)

Mass balance:

$$x \cdot M(\text{La}) + y \cdot M(\text{Nd}) = 219.235 - n(\text{Ce}) \cdot M(\text{Ce}) - n(\text{Pr}) \cdot M(\text{Pr}) - n(\text{Sm}) \cdot M(\text{Sm}) - n(\text{C})$$

(1.5 pts)

(0.5 pts)

$$M(C) - n(0) \cdot M(0) - n(F) \cdot M(F)$$
 (0.5 pts)

$$x \cdot M(\text{La}) + y \cdot M(\text{Nd}) = 65.827 \tag{1 pt}$$

Charge balance:

$$3 \cdot [n(Ce^{3+}) + n(La^{3+}) + n(Nd^{3+}) + n(Pr^{3+}) + n(Sm^{3+})] = 2 \cdot n(CO_3^{2-}) + n(F^{-})$$

(La³⁺) + n(Nd³⁺) = 0.47 (1 pt)

The system of equations yields:

$$\begin{cases} x \cdot M(\text{La}) + y \cdot M(\text{Nd}) = 65.827\\ x + y = 0.47 \end{cases} \Rightarrow (x; y) = (0.37; 0.1)$$

$Ce_{0.48}La_{0.37}Nd_{0.1}Pr_{0.04}Sm_{0.01}CO_{3}F$

- f) There are 6 atoms closely located to cerium in the same plane plus 3 above and 3 below the plane – in total 12 atoms, which means the coordination number of Ce is 12. (1 pt)
- g) $2\text{CeO}_2 + 8\text{HCl} \rightarrow 2\text{CeCl}_3 + 4\text{H}_2\text{O} + \text{Cl}_2$

$$n(\text{HCl}) = 4 \cdot n(\text{CeO}_2) = 4 \cdot \frac{5.0 \cdot 10^3 \text{ kg} \cdot w(\text{Ce})}{M(\text{Ce}) \cdot 100\%} = 45675.14 \text{ mol}$$

$$V(\text{HCl}) = \frac{n}{2} = 91350.27 \text{ dm}^3 \approx 93 \text{ m}^3 \qquad (1 \text{ pt})$$

h) β -cerium (*a* = 0.3681 nm, *c* = 1.1857 nm). DHCP structure can be subdivided into 6 rhombic prism unit cells each of which has 2 atoms inside it: (2.5 pts)

$$\rho = \frac{m(\text{atoms})}{V(\text{unit cell})} = \frac{2 \cdot \frac{M(\text{Ce})}{N_A}}{\frac{\sqrt{3}}{2} a^2 \frac{c}{2}} = 6.69 \text{ g} \cdot \text{cm}^{-3}$$

 γ -cerium (*a* = 0.5161 nm). FCC unit cell contains 4 atoms of Ce: (2 pts)

$$\rho = \frac{m(\text{atoms})}{V(\text{unit cell})} = \frac{4 \cdot \frac{M(\text{Ce})}{N_A}}{a^3} = 6.77 \text{ g} \cdot \text{cm}^{-3}$$

Thus, γ -cerium is more dense than β -cerium.

Part II. Cerium loves redox

i) $H^+ + [Ce(NO_3)_6]^{2-} + Fe(OH)_2 + Cu_2O \rightarrow Ce^{3+} + Fe^{3+} + Cu^{2+} + H_2O + NO_3^{-}$

Oxidation half-equations:

 $2H^+ + Fe(OH)_2 \rightarrow Fe^{3+} + 2H_2O + e^-$ (0.5 pts)

 $2H^+ + Cu_2O \rightarrow 2Cu^{2+} + + 2e^-$ (0.5 pts)

Reduction half-equation:

 $[Ce(NO_3)_6]^{2-} + e^- \rightarrow Ce^{3+} + 6NO_3^ |\cdot 6$ (0.5 pts)

The sum of oxidation and reduction half-equations:

 $10H^{+} + 6[Ce(NO_3)_6]^{2-} + 4Fe(OH)_2 + Cu_2O \rightarrow 6Ce^{3+} + 4Fe^{3+} + 2Cu^{2+} + 9H_2O + 36NO_3^{-}$ (0.5 pts)

j) The structrure of the anion of CAN:

k) Each identified compound **A**–**C** gives 1 point. (3 pts)A must contain Ce and O. Hydrogen in water is a weak oxidizing agent, so Ce will be in +3 form, and out of Ce₂O₃, CeO(OH), Ce(OH)₃, or other non-polymeric formulas, Ce(OH)₃ gives the right answer. In the second reaction peroxide ion is consumed and water is produced, meaning that

(1 pt)

(1 pt)

(1 pt)

(0.5 pts)

the HO₂⁻ ion has lost its hydrogen and replaced two OH⁻ ions in hydroxide resulting in **B**

Ce(O₂)OH (Ce cannot be +4 here because no oxidation occurrs for cerium). However, anhydride Ce₂(O₂)₂O formed after dimerization of Ce(O₂)OH followed by H₂O abstraction is also a possible choice. Ce must be +4 in **C** due to oxidation and since all oxygens have the same oxidation number CeO₂ or Ce(OH)₄ are possible. The absence of stronger base to deprotonate OH⁻ leaves us with the choice of Ce(OH)₄.

Balanced reaction equations:

a) $A - [PCl_3CH_3]^+ [AlCl_3I]^-$

- i) $2Ce + 6H_2O \rightarrow 2Ce(OH)_3 + 3H_2$
- ii) $Ce(OH)_3 + HO_2^- \rightarrow Ce(O_2)OH + H_2O + OH^$ or $2Ce(OH)_3 + 2HO_2^- \rightarrow Ce_2(O_2)_2O + 3H_2O + 2OH^-$
- iii) $2Ce(O_2)OH + 3H_2O + OH^- \rightarrow 2Ce(OH)_4 + HO_2^$ or $Ce_2(O_2)_2O + 4H_2O + OH^- \rightarrow 2Ce(OH)_4 + HO_2^-$
- I) Ceria (CeO₂) plays a special role in heterogeneous catalysis. In the ideal cell of CeO₂, the structure consists of a **face-centered** cubic unit cell of cations with anions occupying the **tetrahedral** holes. In the structure, each cerium cation is coordinated by **8** nearest-neighbor oxygen anions, while each oxygen anion is coordinated by **4** nearest-neighbor cerium cations. Ceria can also be doped with other metal cations to alter electric conductivity. When cerium cations are replaced with lower oxidation state elements (M²⁺/M³⁺), the lattice oxygen atoms in CeO₂ are **removed**. The ceria crystal usually exhibits a few defects due to the co-existence of Ce⁴⁺ and **Ce³⁺** ions. /.../ Because the metal surfaces are essentially saturated in CO when excess CO is present, the rate-limiting step for the reaction is **2**. /.../ (3 pts)

m) I – NO _x (NO, NO ₂); J – O ₂ ; K – O; I – Ce ₂ O ₃ ; M – H ₂ .	(3 pts)
n) 5. $2CeO_2 \rightarrow O_{ad} + Ce_2O_3$	(1 pt)
6. $Ce_2O_3 + 0.5O_2 \rightarrow 2CeO_2$	(1 pt)

- 7. $Ce_2O_3 + H_2O \rightarrow 2CeO_2 + H_2$ (1 pt)
- o) Ce(5,5'-(Cl)₂-salen)₂ is a stronger oxidizing agent, because methoxy-substituted aromatic rings are more electron-rich, therefore, stabilizing central Ce(IV).
 (1 pt)

Problem 5. Poisonous chemicals. Author: Denis Sokol

(3 pts)

(4 pts)

(12 pts)

f) Each correct structure gives 2 points – in total 8 points.

Hydrolysis reactions with aqueous sodium hydroxide:

g) G

 $\begin{array}{c}
1 \\
CH_3 \\
1 \\
H_3C \\
H_3C \\
H_3C \\
H_3C \\
CH_31 \\
H_3C \\
CH_31 \\
H_3C \\
CH_32 \\
CH_32$

(8 pts)

(2 pts)

(8 pts)

(4 pts)

j) Phosphorus	(4 pts)
k) qd , sept , s (should be multiplate in a real spectrum), d , t , d .	(2 pts)
l) LD = $\frac{7 \text{ mg} \cdot 30 \text{ dm}^3}{1000 \text{ dm}^3} = 0.21 \text{ mg} = 0.00021 \text{ g}$	(1 pt)
m) LD = $\frac{0.00021 \text{ g}}{80 \text{ kg}}$ = 2.62 · 10 ⁻⁶ g·kg ⁻¹	(1 pt)
n) 3816 lethal doses.	(1 pt)

Problem 6. Simple organic chemistry. Author: Nauris Narvaišs

e) Number of possible stereoisomers and products: *1 point for each correct answer.* (4 pts)

	i) (R1 = R2) ≠ H	ii) (R1 ≠ R2) ≠ H
Stereoisomers formed	2	2
Exist in total for product	3	4

f) 1 pt for formation of iodonium, 1 pt for attack on iodonium, 1 pt for cyclization, 1 pt for attack of second carboxylate. If mechanism is just 2 S_N2 reactions, then 2 pts total. If relative stereochemistry is incorrect or missing, then 1 pt deduction.

Simplified mechanism:

g) Compounds A1-A3:

A1	A2	A3
HN ^{CN} Br	HN OEt	
<i>If stereochemistry is incorrect or not specified 2 pts in total.</i>	3 pts	<i>If stereochemistry is incorrect or not specified 2 pts in total.</i>

h) 1 pt for bromonium formation, 2 pts for rearrangement, 1 point for elimination. 0.5 pts for E_2 instead of E₁CB.

