2005 Semifinal Exam - Part A

Cell Biology

1. Which of the following is the most important type of force used to stabilize secondary structure in proteins?
a) Ionic bonds
b) Hydrogen bonds
c) Aromatic-aromatic ring interactions
d) Hydrophobic Interactions
e) Peptide bonds
2. Which of the following is NOT true of allosterically regulated enzymes?
a) they follow Michaelis-Menten kinetics
b) they demonstrate cooperativity
c) their activity can be modulated by effector molecules
d) plots of their rate of product formation versus substrate concentration are sigmoidal in shape
e) their activity can be modulated by substrate concentration
3. Which two amino acids are usually phosphorylated by protein kinases?
a) Leucine, Isoleucine
b) Serine, Threonine
c) Methionine, Cysteine
d) Valine, Alanine
e) Glycine, Tyrosine
4. Why can glycolysis proceed under anaerobic or aerobic conditions while the citric acid cycle is strictly aerobic?
a) Under anaerobic conditions, NAD+ for glycolysis can be regenerated through the conversion of pyruvate into lactate
b) Oxygen is a byproduct of the conversion of the glycolytic intermediate glucose-6phosphate to fructose-6-phosphate.
c) Enzymes of glycolysis do not use oxygen as cofactors, while enzymes of the citric acid cycle require oxygen for proper folding.
d) Enzyme catalysis during the citric acid cycle is regulated by allosteric effectors which include oxygen.
e) NAD+ is produced during three steps of glycolysis and only one step of the citric acid cycle.
5. Compared to an uncatalyzed reaction, all of the following are characteristics of an enzyme-catalyzed reaction EXCEPT:
a) it has a smaller activation energy
b) there is no change in equilibrium value
c) the rate of the reaction is accelerated
d) a maximal velocity can be achieved
e) the free energy for the reaction is reduced
6. A researcher is interested in identifying a gene or genes whose expression pattern is altered in response to temperature fluctuations. Which laboratory technique would be most appropriate for addressing this question?
a) PCR of genomic DNA
b) Southern blotting
c) gel electrophoresis
d) sucrose gradient centrifugation
e) microarray analysis
7. Which of the following is/are not evolutionary advantage(s) provided by operons to bacterial cells?
a) genes may be regulated together by a single operator sequence
b) intron sequences are more easily spliced from operon mRNA sequences
c) multiple proteins may be encoded by a single mRNA
d) multiple proteins may be translated simultaneously by a single mRNA
e) both b and d
8. Where, in the cell, are disulfide bonds primarily made?
a) cytoplasm
b) endoplasmic reticulum
c) lysosome
d) nucleus
e) nucleoplasm

Plant Anatomy and Physiology

1. Reactions associated with the light dependent reaction of photosynthesis (in eukaryotic cells) may be found in the:
a) grana only
b) stroma only
c) inner surface on the thylakoids only
d) inner and outer surface of the thylakoids
e) outer membrane of the chloroplast envelope
2. Which of the following is correctly matched with its tissue system?
a) xylem...ground tissue system
b) phloem...epidermis
c) cortex...ground tissue system
d) pith...vascular tissue system
f) all of the above are correctly matched
3. Lowering the level of a hedge with a hedge trimmer stimulates the hedge to become bushy because:
a) it stimulates the production of ethylene gas
b) removing the apical meristems makes more auxin which stimulates lateral branch buds to grow
c) removing the apical meristems makes less ethylene which stimulates lateral branches to grow
d) removing the apical meristems results in less auxin which then allows lateral branches to grow
e) removing the lateral buds results in apical dominance under the influence of cytokinins
4. Correctly identify the tissue types A, B, C in the image below.

a) sclerenchyma, parenchyma, collenchyma
b) collenchyma, parenchyma, sclerenchyma
c) collenchyma, sclerenchyma, parenchyma
d) parenchyma, collenchyma, sclerenchyma
e) parenchyma, sclerenchyma, collenchyma
5. The cell shown in the image below is most likely a:

a) companion cell
b) fiber
c) sclerid
d) sieve tube element
e) vessel element
6. The part of the flower that is adapted to catch pollen is the
a) anther
b) ovule
c) sepal
d) stigma
e) style
7. A plant cell with a solute potential of -0.8 MPa maintains a constant volume when bathed in a solution that has a solute potential of -0.25 MPa and is in an open container. From this information, we know that:
a) the cell has a pressure potential of +0.25 MPa
b) the cell has a pressure potential of +0.55 MPa
c) the cell has a pressure potential of +0.80 MPa
d) the cell has a water potential of -0.8 MPa
e) none of the above
8. Plasmodesmata in plant cells are most similar in function to which of the following structure in animals cells?
a) desmosomes
b) gap junctions
c) glycocalyx
d) peroxisomes
e) tight junctions
9. A beaver eats the bark, both inner and outer bark, all the way around a tree trunk. Why does this always cause the tree to eventually die?
a) The tree is more susceptible to insect and fungal diseases.
b) The transport of sugars between leaves and twigs is interrupted.
c) Cells of the apical meristem can no longer divide.
d) The supply of water and minerals to the leaves is no longer possible.
e) The transport of sugars between leaves and roots is interrupted.
10. You discover an unidentified weed that you cut with a lawn mower almost to the ground. Soon it is as tall as it was before you cut it. This growth is likely due to what growth region?
a) basal meristem
b) root apical meristem
c) shoot apical meristem
d) cork cambium
e) vascular cambium

Genetics \& Evolution

1. In the genetic pathway containing genes A, B, and C , gene A negatively regulates gene B , which in turn negatively regulates gene C . If a loss-of-function mutation were introduced into gene B , what would be the resulting effect on the expression of gene C ?
a) changes in expression levels of gene C would be the same as those for gene A
b) changes in expression levels of gene C would be the same as those for gene B
c) decreased expression of gene \mathbf{C}
d) increased expression of gene C
e) no effect on expression of gene C
2. A researcher performs a cross between 2 mice, both having black fur. Black fur is dominant over white fur. 75% of the offspring have black fur and 25% have white fur. The researcher can assume that the parent genotypes were most likely:
a) $\mathrm{BB} \times \mathrm{BB}$
b) $\mathrm{BB} \times \mathrm{Bb}$
c) $\mathrm{BB} \times \mathrm{bb}$
d) $\mathrm{Bb} \times \mathrm{Bb}$
e) $\mathrm{bb} x \mathrm{bb}$
3. Assuming that in the year 2500 , five human male and five human female space colonists from Earth settled on an uninhabited Earth-like planet in the Andromeda Galaxy. The colonists and their offspring randomly mate for many generations. All ten of the colonists expressed Hitchhiker's Thumb (useful, if you're out in the middle of nowhere in space), though two were heterozygous for this trait. Hitchhiker's Thumb (S) is dominant and "Straight Thumb" (s) is recessive.

If one assumes that Hardy-Weinberg equilibrium applies to this population of colonists, about how many people will express "Straight Thumb" when the planet's population reaches 10,000 ?
a) $\mathbf{1 0 0}$
b) 400
c) 800
d) 1000
e) not enough information to determine
4. Which of the following is the most important missing evidence in Darwin's theory of natural selection when it was published in 1859 ?
a) evidence of the overproduction of offspring
b) evidence that some organisms became extinct
c) knowledge of the source of genetic variation
d) observation that even members of the same species are variable
e) observation that environmental resources can be a limiting factor to population growth
5. Which of the following statements is false?
a) The first living cells were prokaryotes.
b) The cyclic pathway of photosynthesis first appeared in some eubacterial species.
c) Oxygen began accumulating in the atmosphere after the noncyclic pathway of photosynthesis evolved.
d) In the Proterozoic, increasing levels of atmospheric oxygen enhanced the spontaneous formation of organic molecules.
e) All are correct.
6. If you rely exclusively on the biological species concept, which of the following show evidence that the populations belong to 2 separate species?
a) In two groups of tamarins, copulation takes place, but the hybrid embryos are spontaneously aborted.
b) Matings beween two guenon monkey species results in live born but infertile offspring.
c) Red and black howler monkeys do not interbreed in the wild because they have different mating calls.
d) Only a and b are examples of two separate species.
e) a, b, and c are examples of two separate species.

Biosystematics

1. While walking to school one day, you notice a group of purple ants who all walk sideways. Excited by your discovery, you decide to classify your ants. Which of the following characteristics would classify the purple ants as a new strain of ants and NOT a new species?
a) the purple ants have a similar DNA polymerase as the tropical fire ant Solenopsis geminate
b) the purple ants may produce fertile offspring when crossed with Solenopsis geminate
c) the purple ants have ribosomal subunits of the same size as Solenopsis geminate
d) the purple ants are found to inhabit similar areas as Solenopsis geminate
e) both b and d are necessary characteristics

Ethology

1. The coefficient of relatedness between an uncle/aunt and his/her nephew is:
a) 0.125
b) 0.25
c) 0.5
d) 1.0
e) cannot be determined

Ecology

1. For terrestrial and most aquatic environments neither animal nor plant life could exist without the metabolic "services" provided by:
a) chemoheterotrophs
b) extremophile archaeans
c) fungi
d) Homo sapiens
e) nitrogen-fixing bacteria
2. What is the most likely result of the removal of carnivores from an ecosystem?
a) decrease in the number of herbivores, decrease in the amount of vegetation
b) decrease in the number of herbivores, increase in the amount of vegetation
c) increase in the number of herbivores, increase in the amount of vegetation
d) increase in the number of herbivores, decrease in the amount of vegetation
e) decrease in the number of omnivores, increase in the amount of vegetation
3. The equilibrium model of island biogeography suggests all of the following except:
a) larger islands have more species than smaller islands
b) smaller islands have lower rates of extinction
c) species richness of an island is determined by colonization and extinction
d) islands closer to the mainland have higher colonization rates
e) colonial populations become genetically divergent from their parent population, over time, due to natural selection, mutation, and/or genetic drift.

Animal

1. Excessive production of which hormone may cause a patient to develop gastric ulceration refractory to medical management.
a) bilirubin
b) cholecystikinin
c) gastrin
d) secretin
e) somatostatin
2. Which of the following graphs correctly displays the relationship of blood flow velocity in humans as the blood flows from the aorta \rightarrow arteries \rightarrow aterioles \rightarrow capillaries \rightarrow venules \rightarrow veins \rightarrow venae cavae:
a)

d)

b)

e)

c)

3. The inspiratory phase of mammal respiration is characterized by:
a) collapse of the rib cage and contraction of the diaphragm
b) collapse of the rib cage and relaxation of the diaphragm
c) expansion of the rib cage and contraction of the diaphragm
d) expansion and the rib cage and relaxation of the diaphragm
e) expansion of the rib cage only
4. Which of the following are likely to cause cellular changes when injected directly into the appropriate cell's cytoplasm?
I) Triiodothyronine (T_{3})
II) Cortisol
III) Insulin
IV) Epidermal Growth Factor
a) I, II
b) I, IV
c) II, III
d) II, IV
e) III, IV
5. The inner ear of humans and most other mammals is sensitive to body position and balance. What organ(s) is/are responsible for this?
a) cochlea
b) cochlea and basilar membrane
c) semicircular canals
d) semicircular canals and cochlea
e) semicircular canals, utricle and saccule
6. K^{+}secretion into the nephron tubule takes place at the:
a) ascending loop of Henle
b) descending loop of Henle
c) collecting duct
d) distal tubule
e) proximal tubule

For questions 1 through 7 on Part B of the 2005 USABO Semifinal Exam, fill-in the appropriate bubble(s) on your Scantron sheet that indicate your response. Scantron sheet numbers are placed adjacent to the space, blank, or box of each question.

1. (6 points) In the evolution of 'organismic' from simpler, single 'cell' organization, there appears to have been a selective advantage to being part of the more complex form, rather than 'going it alone'.

In the table below, match each term with its appropriate phrase.

Cell Behavior	Single Cell	Organism
Cooperation: (Scantron \#51) [__e___]	Negative: (Scantron \#53) [__b _ _]	Positive: (Scantron \#55) [__d__]
Defection: (Scantron \#52)	Positive: (Scantron \#54) \qquad c]	Negative: (Scantron \#56) [__ \qquad 1

a) cell abandons function in order to reproduce
b) lowers cell reproductive rate
c) increases cell reproductive rate
d) improves organism function and reproduction
e) cell assumes specialized function
ab) decreases organism function and reproduction
2. (4 points) For the following pedigree, indicate yes (Y) or no (N) if the inheritance of the trait could be caused by:

NOTE: On your Scantron sheet, fill-in [a] for ' Y ' or $[\mathrm{b}]$ for ' N '

\qquad a recessive autosomal gene (Scantron \#57) $\frac{\mathrm{a}}{\text { (Scantron } \# 58 \text {) }}$ a dominant autosomal gene __b__ a recessive X-linked gene (Scantron \#59)
$\underset{\text { (Scantron } \# 60 \text {) }}{\mathrm{b}-\quad \text { dominant } \mathrm{X} \text {-linked gene }}$
3. (4 points) Match the gastrointestinal organ on the left with the chemical or protein it produces to aid in digestion on the right.
 stomach (Scantron \#61)
\qquad pancreas (Scantron \#62) liver (Scantron \#63)
\qquad
\qquad small intestine (Scantron \#64)
a) lipase
b) maltase
c) pepcid
d) bile

4. (5 points) Match the numbers from the photo above with the appropriate definition below.

| Number $1($ Scantron \#65) | a) simple columnar epithelium |
| :--- | :--- | :--- |
| Number $2($ Scantron \#66) | b) longitudinal layer of smooth muscle |
| n__ Number $3($ Scantron \#67) | c) lumen of the intestine |

5. (5 points) Match the function on the right with the appropriate cell type on the left.

macrophages (Scantron \#70) ____ b	a) viral defenses
neutrophils (Scantron \#71)____ b	b) phagocytosis
platelets (Scantron \#72)___C	c) hemostatis
T lymphocytes (Scantron \#73)____	d) a and b
B lymphocytes (Scantron \#74)____d	e) none of the above

\qquad
6. (10pts) Match each item on the right with the term it is most closely associated with on the left.
__bc golgi apparatus (Scantron \#75)
\qquad leucoplasts (Scantron \#76)
\qquad smooth ER (Scantron \#77)
\qquad
\qquad genome (Scantron \#78)
d) complete set of genetic instructions
e) starch storage
ab) lipid synthesis
ac) secreted protein synthesis
ad) spindle fiber
ae) microtubule-organizing center
bc) protein modification and targeting
7. (6 points) Match the description on the left with the appropriate term on the right using the figure below.

\qquad stage of mitosis (Scantron \#85)
\qquad structures at Z (Scantron \#86)
\qquad structure at Y (Scantron \#87)
\qquad structure at X (Scantron \#88)
\qquad structure at W (Scantron \#89)
\qquad site of disassembly of structure Y (Scantron \#90)
a) centrioles ad) microtubule
b) metaphase
ae) anaphase
c) microfilament
bc) site V
d) prophase
bd) site W
e) chromosome
be) site X
ab) telophase
cd) site Y
ac) kinetochore
ce) site Z

For questions 8 through 26, WRITE your response(s) in the space, blank, or box provided. You WILL NOT need your Scantron sheet for questions 8 through 26.
8. (8 points) Trophic levels are indicated below with numbered lines in the flowchart. Write the appropriate tropic level name in the space provided next to its number. Write ONLY the letter of the tropic characteristic.

NOTE: Left-hand circle in flowchart is Heat; right-hand circle in flowchart is To detritivores.

1. \qquad
2. \qquad
a. energy used in cellular respiration
3. \qquad
4.

b. sunlight
c. tertiary consumers
d. energy in wastes

7. \qquad
e. primary producers
f. primary consumers
g. production energy
h. secondary consumers
9. (14 points) Match the following word with its definition or function. Answers may be used more than once.

i. pits	(question	a. thin regions with only a primary wall
	$\begin{aligned} & \text { automatically given } \\ & 2 \text { pts regardless of } \\ & \text { answers) } \end{aligned}$	
ii. tracheids	c and/or d correct (1 pt)	b. water migrates laterally between neighboring vessels
iii. secondary wall	$\mathrm{d} _(1 \mathrm{pt})$	c. long, thin cells with tapered ends
ix. xylem vessel	e and f (2 pts)	d. contain lignin
x. sieve-tube member	g and h (2 pts)	e. wide, short, and thin-walled; aligned end-to-end to form micropipes
xi. companion cell	$\underline{\text { and }} 1$ (2 pts)	f. perforated ends
xii. plasmodesmata	jand k (2 pts)	
	m(1 pt)	g. chains of cells that conduct organic compounds
		h. lack nucleus, vacuole, and ribosomes
ix. stele	n _ (1pt)	i. does not conduct flow of fluid from cell to cell
		j. connects photoplasts of neighboring cells
		k. continuous ER in structures called desmotubules
		1. sits alongside sieve-tube members
		m . porous walls between cells

10. (2 points) Assume for a particular plant that small flower blossoms are dominant to large flower blossoms, yellow seeds are dominant to green seeds, and round seeds are dominant to wrinkled seeds. If you cross a triple heterozygote with a plant that has green wrinkled seeds and is heterozygous for small flower blossoms, what is the fraction of the offspring that will have at least two recessive traits?

$6 / 16$ or $3 / 8$ or 0.375 or 37.5%

11. (2 points) The human genome contains several types of repetitive DNA. One of these is called the Alu sequence (it is cleaved by the restriction enzyme Alu I). Alu I sequence elements are about 300bp in length. If the human genome is $3 \times 10^{9} \mathrm{bp}$ in size and Alu I elements comprise 15% of the human genome, approximately how many Alu elements are in the human genome (round to nearest hundred)?

$1,500,000$ or 1.5×10^{6}

12. (7 points) Match the phrase on the right with the appropriate ethological term on the left. Write ONLY the letter of the ethological term in the space provided.
\qquad signaling or exchange of information
a. cognition
\qquad may reinforce genetically inherited social behavior in humans
b. search image
\qquad helps an animal look for food
c. dominance hierarchy
help or sacrifice that is repaid later
d. territory
\qquad interaction between individuals, usually of same species
\qquad self-sacrifice on behalf of other(s)
\qquad the ability to use, process, and store sensory information
\qquad ranking by social interactions
\qquad area defended against members of same species
\qquad minimizes agonistic behavior before mating
\qquad most efficient feeding behavior
\qquad when self-sacrifice, on part of relatives, leads to altruism
\qquad threat or combat
\qquad study of the biological basis of social behavior
m. altruism
e. social behavior
f. kin selection
g. optimal foraging
h. reciprocal altruism
i. sociobiology
j. courtship ritual
k. culture
13. agonistic behavior
n. communication
14. (6 points) Calculate the partial pressures of O_{2} and CO_{2} in the below table. Round your answer to the nearest one-hundredth.

	Partial Pressure of $\mathbf{O}_{\mathbf{2}}$ (in $\mathbf{~ m m H g}$)	Partial Pressure of $\mathbf{C O}_{\mathbf{2}}$ (in $\mathbf{~ m m H g}$)	Composition of air:
Sea level: 760 mmHg	159.07	0.23	$\mathbf{O}_{\mathbf{2}}: 20.93 \%$
$\mathbf{1 , 0 0 0 f t}$ above sea level: 733 mmHg	153.42	0.22	$\mathbf{C O}_{2}: 0.03 \%$
$\mathbf{1 5 , 0 0 f t}$ above sea level: 429 mmHg	89.79	0.13	$\mathbf{N}_{\mathbf{2}}: 79.04 \%$

14. (5 points) Identify the patterns of leaf veination (6-8) and root types (9-10):

6

9

10
15. _palmate_
16. _pinnate
17. _parallel
18. _adventitious or prop_
19. _tap
20. (8 points) You have discovered a series of mutations in the A locus, which governs the distribution of pigment in the coat of horses. The alleles, their associated phenotypes, and frequencies in a certain population are:

Allele	Associated phenotype	Frequency
A+	bay (wild type)	0.4
A	dark bay (black mane and tail)	0.2
a^{t}	seal brown	0.1
a	recessive black	0.3

$*$ The order of dominance of the alleles is: $\mathrm{A}^{+}>\mathrm{A}>\mathrm{a}^{\mathrm{t}}>\mathrm{a}$
What are the expected frequencies of the four possible phenotypes, assuming this population is in HardyWeinberg equilibrium?

NOTE: Indicate your answers to only two decimal places.

0.64	bay
0.20	dark bay
0.07	seal brown
0.09	black

16. (4 points) Complete the following table by writing the number of the energy and carbon source(s) listed below for the appropriate mode of nutrition in the table:
1) organic compounds
2) inorganic chemicals
3) CO_{2}
4) light

Mode of Nutrition	Energy Source	Carbon Source
Chemoautotroph	2	3
Chemoheterotroph	1	1
Photoautotroph	4	3
Photoheterotroph	4	1

17. (8 points) The enzyme polynucleotide phosphorylase was used by M. Niremberg and others to synthesize artificial, random sequence RNAs in the absence of a template. The RNA was then used as a template in a cell-free system for protein synthesis. [Assume that an RNA was synthesized using polynucleotide phosphorylase from a mixture of ribonucleotides that consisted of 90% ATP and 10% CTP.]

Use the table below to answer the following questions:
a) Which amino acid(s) could possibly appear in the synthetic protein?

```
Lysine/Lys/K; Asparagine/Asn/N; Threonine/Thr/T; Proline/Pro/P; Glutamine/Gln/Q;
Histidine/His/H
(1 point per correct amino acid)
```

b) Which amino acid(s) would be the most prevalent and which would be least prevalent? State the amino acid and give the percent to the nearest tenth for both the most prevalent and the least prevalent.

```
Lysine/Lys/K (72.9%); Histidine/His/H (0.9%)
(1 point per correct amino acid; 1 point per correct percentage)
```

1st position (5 ' end)	2cd position					Alanine Arginine	Ala	A
	U	C	A	G	3rd positior		Arg	R
					(3' end)	Asparagine	Asn	N
	Phe -					Aspartic acid	Asp	D
	Phe - F Phe - F	$\begin{aligned} & \text { Ser - S } \\ & \text { Ser - S } \end{aligned}$	$\begin{aligned} & \text { Tyr - } \\ & \text { Tvr } \end{aligned}$	$\begin{aligned} & \text { Cys - C } \\ & \text { Cys - C } \end{aligned}$	U	Cysteine	Cys	C
	Leu - L	Ser-S	Stop	Stop	A	Glutamic acid	Glu	E
	Leu - L	Ser-S	Stop	Trp - W	G	Glutamine	Gln	Q
Ω						Glycine	Gly	G
	Leu - L	Pro - P	His - H	Arg - R	U	Histidine	His	H
	Leu - L	Pro-P	His - H	Arg - R	C	Isoleucine	Ile	I
	Leu - L Leu - L	Pro - P Pro-P	Gln - Q	Arg - R	A	Leucine	Leu	L
	Leu-L	Pro-	Gln	Arg	G	Lysine	Lys	K
\boldsymbol{A}	Ile - I	Thr - T	Asn - N	Ser - S	U	Methionine	Met	M
	Ile - I	Thr-T	Asn - N	Ser-S	C	Phenylalanine	Phe	F
	Ile - I	Thr - T	Lys - K	Arg - R	A	Proline	Pro	P
	Met - M	Thr-T	Lys - K	Arg - R	G	Serine	Ser	S
\square	Val - V	Ala - A	Asp - D	Gly - G	U	Threonine	Thr	T
	Val - V	Ala - A	Asp - D	Gly - G	C	Tryptophan	Trp	W
	Val - V	Ala - A	Glu - E	Gly - G	A	Tyrosine	Tyr	Y
	Val - V	Ala - A	Glu - E	Gly - G	G	Valine	Val	V

18. (4 points) Fill-in the blanks provided for each cross-section. State whether the cross-section is a monocot or dicot, and if it is a root or a stem.

a. dicot root
\qquad

b. _dicot stem_c. \qquad d. __monocot stem_
19. (6 points) Match the biome in the figure below with the appropriate plotted area (a, b, c, d, e, and f) in the climograph.

20. (10 points) Match the endocrine activity on the left with the appropriate hormone on the right. Answers may be used once, more than once, or not at all.
\qquad lowers level of glucose in the blood
\qquad stimulates contraction of uterus
\qquad stimulates calcium deposition in bones
\qquad promotes reabsorption of sodium ions in kidney
\qquad its secretion is directly regulated by light-dark cycles
\qquad secreted by the alpha cells of the islets of Langerhans
\qquad secretion is increased when blood calcium levels are low
a and/or d promotes the growth of uterine lining
\qquad stimulates contraction of mammary gland cells
\square
c secreted by pineal gland
21. (5 points) Match the term on the left with its definition on the right. Write ONLY the letter of the ethological term in the space provided.
Terms
 niche
 habitat fragmentation
\qquad extinction
\qquad threatened species
\qquad ecological restoration
\qquad metapopulation
\qquad endangered species
\qquad extirpation
\qquad endemic
\qquad deme

Definitions

a. the dividing of contiguous blocks of habitat into two or more fragments
b. where there is no member of a given species left alive anywhere in the world
c. where clusters of a single species intermittently occupying discrete sites whose populations exchange breeders (A.K.A.: a population of populations)
d. a species that is found naturally in a single geographic area and in no other place
e. rehabilitation or re-creation of an ecosystem the natural functions of which have been destroyed or impaired
f. where no member of a species is found in an area that it once inhabited, but is found elsewhere in the wild
g. collection of individuals that are sufficiently close genetically and geographically that they mate with one another
h. ecological role or relationship between a species and various ecosystem components
i. species likely to go extinct as a result of human activity
j. species likely to become endangered in the near future
22. (5 points) Referring to the action potential graph below, write the number (from the graph) that corresponds with the appropriate action potential action on the right of what is occurring at that stage of the action potential.

\qquad the membrane is unable to respond to any further stimulation regardless of intensity
_- 4 or 5 (1pt) sodium gates close, and potassium gates re-open

1 and 6 (2 pts) both sodium and potassium voltage-gated channels are closed
$\frac{2}{2}$ stimulus opens some sodium channels
23. (3 points) Below is an example of data collected from FACS (fluorescence activated cell sorting) analysis of dividing yeast cells analyzed on the basis of their size and the amount of Cyclin D they are expressing. Cyclin D is a cell cycle regulatory protein that accumulates in G_{1} phase and is broken down before the cells enter the next phase of the cell cycle. The accumulation and destruction of Cyclin D must occur for cells to successfully progress through the cell cycle.

NOTE: Y-axis reads increasing concentration of Cyclin D; X-axis reads increasing relative cell size Individual cells sorting to quadrant I are likely to be in the middle of G_{1} phase. Answer the following questions based on the information provided.
a. Individual cells sorting to which quadrant(s) are the smallest by volume?

```
I and III (1/2 pt
each)
```

b. Cells in late M phase are most likely in which quadrant?
c. If the gene encoding Cyclin D underwent a mutation rendering it nonfunctional, the resulting yeast cells would most likely sort to III (1 pt) which quadrant(s)?

III (1 pt)

24. (5 points) In the table below, write the letter to match the adult brain regions with the 4 -week embryonic brain regions from which they arise. Some 4 -week embryonic brain regions give rise to more than one region of the adult brain.

Regions present in adult:

a) cerebrum
b) diencephalons
c) medulla oblongata
d) midbrain
e) pons

4-week embryonic brain regions	Adult brain regions
Forebrain	a and $\mathrm{b}(1 \mathrm{pt}$ each $)$
Midbrain	$\mathrm{d}(1 \mathrm{pt})$
Hindbrain	c and e $(1 \mathrm{pt}$ each $)$

